首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 46 毫秒
1.
龙门山断裂带北段第四纪活动的地质地貌证据   总被引:26,自引:7,他引:19  
以龙门山断裂带北段中的青川断裂、茶坝-林庵寺断裂沿线的地质地貌为研究对象,在青川断裂沿线的土关铺、大安,茶坝-林庵寺断裂上的薛家沟、胡家坝等地,对断裂附近的河流地貌进行了详细的构造地貌制图。龙门山断裂带北段所在地区的河流一般发育5级阶地,T1阶地拔河高度3~5m,为全新世堆积阶地。T2阶地拔河高度10m左右,为晚更新世基座阶地。T3阶地拔河高度一般为30~35m,为晚更新世早期形成的基座阶地。T4阶地拔河高度60~70m,残留的阶地砾石层中花岗岩、砂岩砾石已经被强风化,只保留砾石的形态。T5阶地拔河高度为90m左右,阶地堆积物被剥蚀殆尽。青川断裂、茶坝-林庵寺断裂在河流的T4和T5阶地上形成宽30~180m的断层槽地,深度达8~20m,T4阶地砾石层底面落差达10~15m。T3阶地上不发育断层槽地,或断层两盘的T3阶地拔河高度一致,一些地段断层被T3阶地砾石层覆盖。因此认为,这两条断裂在T3阶地形成之前,T4阶地形成之后有过强烈的活动  相似文献   

2.
在2008年5月12日汶川MS8.0地震和2013年4月20日芦山MS7.0地震中,龙门山中央断裂南段的盐井—五龙断裂均未发现地表破裂现象,加之该断裂浅层地球物理资料极度匮乏,在一定程度上限制了对龙门山断裂带南段地震危险性的评价和发震能力的评估。针对龙门山中央断裂南段的盐井-五龙断裂经过区段的主要乡(镇)所在地多为宽度不大于300m的山间峡谷地区,且探测场区存在交通条件不便、场地工作面狭窄等问题,在浅层地震反射波法探测工作中采用小道间距、小偏移距、多道短排列接收和共反射点多次覆盖观测的地震数据采集方式,并经数据处理后获得地震反射剖面图像。浅层地震探测定位结果结合高密度电阻率成像断面、探槽开挖和钻孔联合剖面资料,共同揭示了NE向的盐井—五龙断裂在宝兴县五龙乡东风村一带精确的空间展布位置、产状规模和近地表构造形态。探测结果表明盐井—五龙断裂于五龙乡北东风村西河两岸的T1阶地处隐伏通过,性质为倾向NW的逆冲断裂,近地表倾角50°~60°,上断点埋深19m。该断裂断错宝兴西河T2、T3阶地,西河右岸T1阶地断裂通过处两侧基岩的断距6~8 m,其破碎带及其影响带宽度约30m。本文浅层地球物理探测成果可对判定盐井—五龙断裂的近地表构造活动提供可靠的地震学证据,也为地震重灾区(宝兴县城)的灾后工程选址重建、地震危险性评价和制定抗震防灾规划提供了科学的基础资料。  相似文献   

3.
龙门山断裂带北段晚第四纪活动性讨论   总被引:43,自引:11,他引:43       下载免费PDF全文
在野外考察的基础上 ,结合所采集的各条断裂之上的覆盖物或断层带物质的热释光 (TL)或电子自旋共振 (ESR)样品年龄 ,对龙门山断裂带北段的晚第四纪活动性进行了分析 ,认为 :后山断裂在第四纪早 -中期曾有过活动 ,晚更新世以来已不再活动 ;中央断裂早更新世或前第四纪是活动的 ;前山断裂在白龙江以北变成一些小的、零星分布的断裂 ,它们在第四纪早期以前有过活动。而已有研究表明龙门山断裂带中段和西南段晚第四纪以来仍在活动。造成龙门山断裂带不同段落新活动时代不同的主要原因 ,可能是区域应力场的变化所导致的活动地块边界的变化。龙门山断裂带的北段现在已不构成活动块体的边界 ,加之岷山隆起对龙门山断裂带东北段的屏障作用 ,使得龙门山断裂带北段活动减弱。而龙门山推覆构造带中南段和岷山隆起构造带共同成为块体持续挤压作用的东界。这为研究青藏高原的运动学及动力学等问题提供了重要信息  相似文献   

4.
2008年5月12日在四川省汶川地区发生了8级特大地震,断裂长度达300km,地震中最大错位10m以上,造成震区地面建筑大面积倒塌和大量人员伤亡,并诱发了严重的地质灾害,毁坏了公路、桥梁等交通系统和通讯设施。由于地震的发生和破坏程度与地壳内部断裂构造的形态和分布之间有着密切的关系,因此,尽快确定龙门山断裂带目前的状况。探明各分支断层的位置和几何形态,  相似文献   

5.
龙门山逆断裂带中段的构造地貌学研究   总被引:39,自引:15,他引:39       下载免费PDF全文
赵小麟  陈社发 《地震地质》1994,16(4):422-428
龙门山逆断裂带中段由3条主要的逆断裂带组成,根据构造地貌学特征和地震活动性推测,其第四纪活动性自南西向北东方向递减,表现出明显的分段性。其中灌县-江油断裂控制了山地与平原或山地与丘陵区的分界以及第四系的厚度,根据这一特征可知该断裂的活动性自南向北,在大邑、灌县和彭县一带最强,绵竹次之,安县至江油最弱。断裂活动的分段性可能受龙门山北部南北向岷山隆起的控制。由于新构造活动分布在3条断裂上,所以区内以6级以下的中小地震活动为主  相似文献   

6.
龙门山断裂带晚第四纪活动性分段的初步研究   总被引:24,自引:3,他引:21  
NE向展布于松潘-甘孜造山带与扬子陆块之间的龙门山断裂带,是由后山断裂等4条主干断裂及其控制的冲断构造岩片组成的具前展式发育特点的推覆构造带。它形成于印支运动,此后多次活动,第四纪以来活动强烈,但不同地段活动程度具有明显的非均一性。根据地貌、地质构造、布格重力异常和地震活动等资料的综合分析研究认为:1)以位于虎牙—北川—安县一线的近SN向虎牙断裂和擂东断裂为界划分出断裂带西南段和东北段,其活动性迥然不同,西南段晚更新世以来活动强烈,中小地震频繁;东北段第四纪活动微弱,仅偶有小震分布。2)在青藏高原被挤压隆升和块体侧向滑移的作用下,川青地块向SEE滑动,使它东缘发育的岷山隆起与被其截切的龙门山断裂带西南段一起构成了川青地块东部的活动边界,而龙门山断裂带东北段则被遗弃  相似文献   

7.
<正>在地壳内部存在大量的地震断裂带,地震的发生是断裂带上应力不断积累的结果,而地震发生的地点和时间取决于断裂带之间的应力传递。地震矩张量分析是研究断裂活动应力性质的重要手段。2008年5月12日汶川8.0级地震极大地改变了区域应力场,在附近多个断  相似文献   

8.
龙门山中段后山断裂带晚第四纪运动特征   总被引:3,自引:1,他引:3       下载免费PDF全文
本文通过对龙门山断裂带中段后山断裂带主要断裂的研究,认识到从茂汶断裂往西北到挂思岭断裂,断裂最新活动时代有逐渐变老的趋势,反映了龙门山后山断裂在晚新生代同样具有前展式(背驮式)逆冲推覆特征,主断裂茂汶断裂的最新活动时代为晚更新世晚期;后山断裂带除逆冲挤压构造变形外,还存在拉张变形,这为研究青藏高原的运动学及动力学等问题提供了重要信息.  相似文献   

9.
龙门山断裂带北段活动特征的遥感地质解译研究   总被引:2,自引:0,他引:2  
文中通过龙门山断裂北段卫星遥感影像的解译分析,对该区活动断裂的分布与发育情况进行了研究.文章选取ETM光学影像和遥感1号雷达影像为主要数据源,结合研究区已有研究成果,分析了遥感影像上地质地貌特征,建立了研究区的解译标志,对龙门山断裂带北段主要断裂(平武-青川断裂、南坝-林庵寺断裂、江油-广元断裂)分布特征与活动性进行了深入的遥感解译.研究结果表明,平武-青川断裂对不同规模的水系位错的影响较大,且广元地区历史地震主要分布在该断裂带上,因此平武-青川断裂活动性最强,对该区地震的发生起着重要的控制作用.  相似文献   

10.
龙门山断裂带南段应力状态与强震危险性研究   总被引:12,自引:5,他引:12       下载免费PDF全文
龙门山断裂带可分为南段、中段和北段,2008年汶川M8.0级地震发生在该断裂带中-北段. 龙门山断裂带南段是否存在发生强震的危险性倍受关注. 利用1977—2012年四川区域地震台网资料,获得了龙门山断裂带南段的地震活动性参数b值图像以及汶川地震前、后b值的差值Δb图像. 同时,根据宽频带数字地震波形资料,计算了2007年以来南段及附近区域ML≥3.8级地震的视应力. 结果表明,2008年汶川地震后,龙门山断裂带南段天全—芦山、泸定和宝兴北部等区域应力增强,而靠近汶川余震区南端的大邑地区应力水平降低. 天全至宝兴段应力水平相对较高,具有发生中-强地震的条件. 鲜水河断裂带康定以南段应力水平低,短期内发生强震的可能性较小.  相似文献   

11.
龙门山前山断裂北段晚第四纪活动性研究   总被引:16,自引:5,他引:16  
5月12日汶川8.0级地震沿龙门山断裂带中央断裂映秀—石坎段、前山断裂白鹿—汉旺段形成了典型的逆断层-褶皱地震地表形变带,两侧构筑物遭受了毁灭性的破坏。中央断裂地震地表形变带突破了以往所认识的断裂活动分段边界,向北扩展了约60km,余震亦具有从中段向北段迁移的趋势。龙门山断裂带北段在此次地震中地表有什么影响或破坏?该段晚第四纪是否有过地震活动?在前人工作的基础上,我们对前山断裂北段的地震地表特征和晚第四纪活动性进行了详细的地质地貌调查,并重点选择2个影像线性特征清晰、震害较强烈的疑似地点进行了探槽揭露,以期为解决这些问题以及灾后重建积累翔实可靠的基础资料及获得相应的初步认识。主要结论是:前山断裂北段地质地貌、构造、5月12日汶川8.0级地震的地表表现等与其南侧的灌县-安县断裂(中段)均存在显著差异,晚第四纪活动迹象不明显,前山断裂晚第四纪活动段可能终止在永安镇往南一带;永安镇一带前人认为的"活动断裂陡坎"应为侵蚀河岸  相似文献   

12.
The Longmenshan fault zone is located in eastern margin of Tibetan plateau and bounded on the east by Sichuan Basin, and tectonically the location is very important. It has a deep impact on the topography, geomorphology, geological structure and seismicity of southwestern China. It is primarily composed of multiple parallel thrust faults, namely, from northwest to southeast, the back-range, the central, the front-range and the piedmont hidden faults, respectively. The MS8.0 Wenchuan earthquake of 12th May 2008 ruptured the central and the front-range faults. But the earthquake didn't rupture the back-range fault. This shows that these two faults are both active in Holocene. But until now, we don't know exactly the activity of the back-range fault. The back-range fault consists of the Pingwu-Qingchuan Fault, the Wenchuan-Maoxian Fault and the Gengda-Longdong Fault. Through satellite image(Google Earth)interpretation, combining with field investigation, we preliminarily found out that five steps of alluvial platforms or terraces have been developed in Minjiang region along the Wenchuan-Maoxian Fault. T1 and T2 terraces are more continuous than T3, T4 and T5 terraces. Combining with the previous work, we discuss the formation ages of the terraces and conclude, analyze and summarize the existing researches about the terraces of Minjiang River. We constrain the ages of T1, T2, T3, T4 and T5 surfaces to 3~10ka BP,~20ka BP, 40~50ka BP, 60ka BP and 80ka BP, respectively. Combining with geomorphologic structural interpretation, measurements of the cross sections of the terraces by differential GPS and detailed site visits including terraces, gullies and other geologic landforms along the fault, we have reason to consider that the Wenchuan-Maoxian Fault was active between the formation age of T3 and T2 terrace, but inactive since T2 terrace formed. Its latest active period should be the middle and late time of late Pleistocene, and there is no activity since the Holocene. Combining with the knowledge that the central and the front-range faults are both Quaternary active faults, the activity of Longmenshan fault zone should have shifted to the central and the front-range faults which are closer to the basin, this indicates that the Longmenshan thrust belt fits the "Piggyback Type" to some extent.  相似文献   

13.
用岷江都江堰—汶川段晚第四纪阶地面的变形量估算了龙门山断裂带中段的滑动速率。岷江及其支流发育3级晚第四纪河流阶地,阶地面的年龄分别约为10,20,50kaBP。阶地纵剖面在茂汶-汶川断裂、北川-映秀断裂和江油-灌县断裂处有明显的垂直变形。断裂活动具有间歇性特点,晚第四纪以来有过3期活动,其起始时间分别为50,20,10kaBP。依据各级阶地面年龄和变形量估算的茂汶-汶川断裂、北川-映秀断裂和江油-灌县断裂晚第四纪逆冲滑动速率分别为0.5,0.6~0.3,0.2mm/a;据阶地走滑位错估算的茂汶-汶川断裂和北川-映秀断裂的晚第四纪右旋走滑速率均约为1mm/a。现代河床之下发育很厚的河流堆积物表明,龙门山的构造抬升经历了较为复杂的过程  相似文献   

14.
The Longmenshan fault zone is divided into three sections from south to north in the geometric structure. The middle and northern segments are mainly composed of three thrust faults, where the deformation of foreland is weak. The geometric structure of the southern segment is more complex, which is composed of six fault branches, where the foreland tectonic deformation is very strong. The Wenchuan MS8.0 earthquake occurred in the middle of the Longmenshan in 2008, activating the bifurcation of two branches, the Yingxiu-Beichuan and the Guixian-Jiangyou faults. In 2013, the Lushan MS7.0 earthquake occurred in the southern Longmenshan, whose seismogenic structure was considered to be a blind fault. After the Lushan earthquake, the seismic hazard in the southern Longmenshan has been widely concerned. At present, the studies on active tectonics in the southern Longmenshan are limited to the Dachuan-Shuangshi and the Yanjing-Wulong faults. The Qingyi River, which flows across the southern Longmenshan, facilitates to study fault slip by the deformation of river terraces. Based on satellite imagery and high-resolution DEM analysis, we measured the fluvial terraces along the Qingyi river in detail. During the measurement, the Sichuan network GPS system (SCGNSS)was employed to achieve a precision of centimeter grade. Besides, the optical luminescence dating (OSL)method was employed to date the terraces' ages. And the late Quaternary activities of the six branch faults in the southern Longmen Shan were further analyzed. The Gengda-Longdong, Yanjing-Wulong and the Xiao Guanzi faults (west branch of the Dachuan-Shuangshi fault)all show thrust slip and displaced the terrace T2. Their average vertical slip rates in the late Quaternary are 0.21-0.30mm/a, 0.12-0.21mm/a and 0.10-0.12mm/a, respectively. Since the Late Quaternary, vertical slip of the east branch of the Dachuan-Shuangshi fault was not obvious, and the arc-like Jintang tectonic belt was not active. Crustal shortening rate of the southern Longmenshan thrust fault zone in the late Quaternary is 0.48-0.77mm/a, which equals about half of the middle segment of the Longmenshan. Based on the previous study on the tectonic deformation of the foreland, we consider that the foreland fold belt in the southern Longmenshan area has absorbed more than half of the crustal shortening. The three major branch faults in the southern Longmenshan are active in the late Quaternary, which have risk of major earthquakes.  相似文献   

15.
THE STUDY OF LATE QUATERNARY ACTIVITY OF HANCHENG FAULT   总被引:1,自引:0,他引:1       下载免费PDF全文
Based on the 1︰50000 geological and geomorphologic mapping of active fault, the structural geomorphic features and activity of Hancheng Fault are investigated in detail. In the study, we divide the fault into three sections from north to south: the section between Xiweikou and Panhe River, the section between Panhe River and Xingjiabao and the section between Xingjiabao and Yijing, the three sections show different characters of tectonic landform. The section between Xiweikou and Panhe River is a kind of typical basin-mountain landform, where diluvial fans spread widely. In the north of Yumenkou, the fault deforms the diluvial fans, forming scarps, along which the fault extends. In the south of Yumenkou, the fault extends along the rear edge of the diluvial fans. In the section between Panhe River and Xingjiabao the fault extends along the front of the loess mesa. In the section between Xingjiabao and Yijing the fault forms scarp in the loess and extends as an arc shaped zone, and the landform is formed by the accumulative deformation of the fault. The activity of the fault becomes weak gradually from northeast to southwest. The fault activity of the section between Xiweikou and Panhe River is the strongest, and the latest age of activity is Holocene. The slip rate since the mid-Holocene is bigger than 0.8mm/a at Yumenkou. The fault activity of the section between Panhe River and Xingjiabao is weaker than the north part, the fault's latest active age is identified as the later period of Late Pleistocene and the activity becomes weak gradually from northeast to southwest. At the estuary of the Jushui River the slip rate of the fault is about 0.49mm/a since late Late Pleistocene. The fault activity of the section between Xingjiabao and Yijing is the weakest. There is no evidence of paleosol S1 deformed in fault profiles, and only some phenomena of fracture and sand liquefaction in the earlier Late Pleistocene loess. The activity of the fault is in line with the fault landform feature. At macro level, the relationship between the uplifted side and the thrown side of the fault switches gradually from the Ordos uplifting region and the rifted basin to the interior blocks of the rifted basin, which maybe is the regional reason why the activity of the Hancheng Fault becomes weak from the northeast to the southwest.  相似文献   

16.
Based on the 1︰50000 active fault geological mapping, combining with high-precision remote imaging, field geological investigation and dating technique, the paper investigates the stratum, topography and faulted landforms of the Huashan Piedmont Fault. Research shows that the Huashan Piedmont Fault can be divided into Lantian to Huaxian section (the west section), Huaxian to Huayin section (the middle section) and Huayin to Lingbao section (the east section) according to the respective different fault activity. The fault in Lantian to Huaxian section is mainly contacted by loess and bedrock. Bedrock fault plane has already become unsmooth and mirror surfaces or striations can not be seen due to the erosion of running water and wind. 10~20m high fault scarps can be seen ahead of mountain in the north section near Mayu gully and Qiaoyu gully, and we can see Malan loess faulted profiles in some gully walls. In this section terraces are mainly composed of T1 and T2 which formed in the early stage of Holocene and late Pleistocene respectively. Field investigation shows that T1 is continuous and T2 is dislocated across the fault. These indicate that in this section the fault has been active in the late Pleistocene and its activity becomes weaker or no longer active after that. In the section between Huaxian and Huayin, neotectonics is very obvious, fault triangular facets are clearly visible and fault scarps are in linear distribution. Terrace T1, T2 and T3 develop well on both sides of most gullies. Dating data shows that T1 forms in 2~3ka BP, T2 forms in 6~7ka BP, and T3 forms in 60~70ka BP. All terraces are faulted in this section, combing with average ages and scarp heights of terraces, we calculate the average vertical slip rates during the period of T3 to T2, T2 to T1 and since the formation of T1, which are 0.4mm/a, 1.1mm/a and 1.6mm/a, and among them, 1.1mm/a can roughly represent as the average vertical slip rate since the middle stage of Holocene. Fault has been active several times since the late period of late Pleistocene according to fault profiles, in addition, Tanyu west trench also reveals the dislocation of the culture layer of(0.31~0.27)a BP. 1~2m high scarps of floodplains which formed in(400~600)a BP can be seen at Shidiyu gully and Gouyu gully. In contrast with historical earthquake data, we consider that the faulted culture layer exposed by Tanyu west trench and the scarps of floodplains are the remains of Huanxian MS8½ earthquake. The fault in Huayin to Lingbao section is also mainly contacted by loess and mountain bedrock. Malan loess faulted profiles can be seen at many river outlets of mountains. Terrace geomorphic feature is similar with that in the west section, T1 is covered by thin incompact Holocene sand loam, and T2 is covered by Malan loess. OSL dating shows that T2 formed in the early to middle stage of late Pleistocene. Field investigation shows that T1 is continuous and T2 is dislocated across the fault. These also indicate that in this section fault was active in the late Pleistocene and its activity becomes weaker or no longer active since Holocene. According to this study combined with former researches, we incline to the view that the seismogenic structure of Huanxian MS8½ earthquake is the Huashan Piedmont Fault and the Northern Margin Fault of Weinan Loess, as for whether there are other faults or not awaits further study.  相似文献   

17.
In this paper, we report friction experiments performed on natural fault gouge samples embedded in granitic rock from drilled core by a project entitled "the Longmenshan Fault Shallow Drilling(LMFD)". Compared with other natural fault gouge, this yellow-greenish gouge(YGG)is dominantly chlorite-rich. The maximum content of chlorite reaches 47%in the YGG. To understand the frictional properties of the YGG sample, experiments were performed at constant confining pressure of 130MPa, with constant pore pressure of 50MPa and at different temperatures from 25℃ to 150℃. The experiments aim to address the frictional behavior of the YGG under shallow, upper crustal pressure, and temperature conditions. Compared with previous studies of natural gouge, our results show that the YGG is stronger and shows a steady state friction coefficient of 0.47~0.51. Comparison with previous studies of natural gouge with similar content of clay minerals indicates a sequence of strengths of different clay minerals:chlorite > illite > smectite. At temperatures up to 150℃ hence depths up to~8km in the Longmenshan region, the YGG shows stable velocity-strengthening behavior at shallow crustal conditions. Combined with the fact of strong direct velocity effect, i.e., (a-b)/a>0.5, faults cutting the present clastic lithology up to~8km depth in the Longmenshan fault zone(LFZ)are likely to offer stable sliding resistance, damping co-seismic rupture propagating from below at not-too-high slip rates. However, as the fault gouge generally has low permeability, co-seismic weakening through thermal pressurization may occur at high slip rates(>0.05m/s), leading to additional hazards.  相似文献   

18.
右江断裂带地处桂西断块区,有记载以来沿带曾发生40~50级地震15次,属中强地震带。笔者在室内卫片、航片、大比例尺地形图解译和分析的基础上,经野外实地调查,获得了断裂带晚更新世活动的若干地质地貌证据,实测了断裂的左旋位移数据。文中介绍了有关证据,并根据年龄数据,计算了断裂中、晚更新世以来的水平和垂直位移速率。断裂带在平面上分3大段,即百色以西段、百色—思林段、思林—坛洛段,各大段又可进一步分为若干个小段。断裂断错了距今(328±025)×104a~(1016±079)×104a的阶地堆积物和残坡积物,控制着百色—田东晚第四纪盆地的发育,地貌上形成断层谷和槽地、断层崖和陡坎,横穿断裂的水系发生同步左旋位移,其活动性质以左旋走滑为主,兼有张性差异运动。晚更新世不同时段以来断裂的水平位移速率为147~198mm/a,中更新世以来的垂直位移速率为074~076mm/a,晚更新世以来为01~035mm/a。该断裂的位移速率明显低于其西的川滇断块内部断裂,更低于川滇断块周边断裂  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号