首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cox MH  Su GW  Constantz J 《Ground water》2007,45(2):187-195
Commonly measured water quality parameters were compared to heat as tracers of stream water exchange with ground water. Temperature, specific conductance, and chloride were sampled at various frequencies in the stream and adjacent wells over a 2-year period. Strong seasonal variations in stream water were observed for temperature and specific conductance. In observation wells where the temperature response correlated to stream water, chloride and specific conductance values were similar to stream water values as well, indicating significant stream water exchange with ground water. At sites where ground water temperature fluctuations were negligible, chloride and/or specific conductance values did not correlate to stream water values, indicating that ground water was not significantly influenced by exchange with stream water. Best-fit simulation modeling was performed at two sites to derive temperature-based estimates of hydraulic conductivities of the alluvial sediments between the stream and wells. These estimates were used in solute transport simulations for a comparison of measured and simulated values for chloride and specific conductance. Simulation results showed that hydraulic conductivities vary seasonally and annually. This variability was a result of seasonal changes in temperature-dependent hydraulic conductivity and scouring or clogging of the streambed. Specific conductance fits were good, while chloride data were difficult to fit due to the infrequent (quarterly) stream water chloride measurements during the study period. Combined analyses of temperature, chloride, and specific conductance led to improved quantification of the spatial and temporal variability of stream water exchange with shallow ground water in an alluvial system.  相似文献   

2.
Modeling effects of multinode wells on solute transport   总被引:1,自引:0,他引:1  
Long-screen wells or long open boreholes with intraborehole flow potentially provide pathways for contaminants to move from one location to another in a ground water flow system. Such wells also can perturb a flow field so that the well will not provide water samples that are representative of ground water quality a short distance away from the well. A methodology is presented to accurately and efficiently simulate solute transport in ground water systems that include wells longer than the grid spacing used in a simulation model of the system and hence are connected to multiple nodes of the grid. The methods are implemented in a MODFLOW-compatible solute-transport model and use MODFLOW's Multi-Node Well Package but are generic and can be readily implemented in other solute-transport models. For nonpumping multinode wells (used to simulate open boreholes or observation wells, for example) and for low-rate pumping wells (in which the flow between the well and the ground water system is not unidirectional), a simple routing and local mixing model was developed to calculate nodal concentrations within the borehole. For high-rate pumping multinode wells (either withdrawal or injection, in which flow between the well and the ground water system is in the same direction at all well nodes), complete and instantaneous mixing in the wellbore of all inflows is assumed.  相似文献   

3.
Blasch KW  Bryson JR 《Ground water》2007,45(3):294-308
Stable isotope values of hydrogen and oxygen from precipitation and ground water samples were compared by using a volumetrically based mixing equation and stable isotope gradient to estimate the season and location of recharge in four basins. Stable isotopes were sampled at 11 precipitation sites of differing elevation during a 2-year period to quantify seasonal stable isotope contributions as a function of elevation. Supplemental stable isotope data collected by the International Atomic Energy Association during a 14-year period were used to reduce annual variability of the mean seasonal stable isotope data. The stable isotope elevation relationships and local precipitation elevation relationships were combined by using a digital elevation model to calculate the total volumetric contribution of water and stable isotope values as a function of elevation within the basins. The results of these precipitation calculations were compared to measured ground water stable isotope values at the major discharge points near the terminus of the basins. Volumetric precipitation contributions to recharge were adjusted to isolate contributing elevations. This procedure provides an improved representation of recharge contributions within the basins over conventional stable isotope methods. Stable isotope values from wells and springs at the terminus of each basin were used to infer the elevations of precipitation important for recharge of the regional ground water flow system. Ancillary climatic, geologic, and stable isotope values were used to further constrain the location where precipitation is entering the ground water flow system.  相似文献   

4.
The vertical variation of drawdown around pumping wells generates an induced flow in the observation wells. A set of governing equations is presented to couple the drawdown variation and the vertical flux distribution in observation wells. A numerical example is performed to justify the governing equations and to verify the solution methods used by the simulation software WT. The example analyzes the effect of skin loss, wellbore storage, and vertical segmentation on the drawdown and induced flow in observation well during pumping. The evaluation of the Fairborn pumping test involves a vertically homogeneous and anisotropic water table aquifer, uniform well‐face drawdown conditions in the pumping well and simulation of the drawdown evolution in the observation well with and without the effect of induced flow. The computer calibrations resulted in small differences between the measured and simulated drawdown curves.  相似文献   

5.
Subsurface temperature is affected by heat advection due to groundwater flow and surface temperature changes. To evaluate their effects, it was implemented the measurements of temperature-depth profile (T-D profile) and the continuous monitoring of soil temperature in the southern part of Kamchatka which has not affected by human activity. Additionally, stable isotopic compositions of surface water and groundwater were analyzed. T-D profile and stable isotopic compositions show groundwater flow system is differ from the shallow aquifer to the deep aquifer. In the shallow aquifer, T-D profile suggests the existence of upward groundwater flux. On the other hand, the annual variation of soil temperature is divided into the large variation period (VP) and the stable period (SP) by the magnitude of daily and seasonal variation. VP and SP correspond to the summer and the winter season, respectively, and it considers that the difference between VP and SP is caused by the effect of snow cover. Therefore, the T-D profile is affected by not only upward groundwater flux but also the surface warming particularly in the summer season (VP).  相似文献   

6.
To better understand the groundwater resources of southern Nye County, Nevada, a multipart distributed thermal perturbation sensing (DTPS) test was performed on a complex of three wells. These wells penetrate an alluvial aquifer that drains the Nevada National Security Site, and characterizing the hydraulic properties and flow paths of the regional groundwater flow system has proven very difficult. The well complex comprised one pumping well and two observation wells, both located 18 m from the pumping well. Using fiber‐optic cables and line heaters, DTPS tests were performed under both stressed and unstressed conditions. Each test injects heat into the water column over a period of one to two days, and observes the rising temperature during heat injection and falling temperatures after heating ceases. Aquifer thermal properties are inferred from temperature patterns in the cased section of the wells, and fluxes through the 30‐m screened section are estimated based on a model that incorporates conductive and advective heat fluxes. Vertical variations in flux are examined on a scale of tens of cm. The actively flowing zones of the aquifer change between the stressed and unstressed test, and anisotropy in the aquifer permeability is apparent from the changing fluxes between tests. The fluxes inferred from the DTPS tests are compared to solute tracer tests previously performed on the same site. The DTPS‐based fluxes are consistent with the fastest solute transport observed in the tracer test, but appear to overestimate the mean flux through the system.  相似文献   

7.
Langseth DE  Smyth AH  May J 《Ground water》2004,42(5):689-699
Predicting the future performance of horizontal wells under varying pumping conditions requires estimates of basic aquifer parameters, notably transmissivity and storativity. For vertical wells, there are well-established methods for estimating these parameters, typically based on either the recovery from induced head changes in a well or from the head response in observation wells to pumping in a test well. Comparable aquifer parameter estimation methods for horizontal wells have not been presented in the ground water literature. Formation parameter estimation methods based on measurements of pressure in horizontal wells have been presented in the petroleum industry literature, but these methods have limited applicability for ground water evaluation and are based on pressure measurements in only the horizontal well borehole, rather than in observation wells. This paper presents a simple and versatile method by which pumping test procedures developed for vertical wells can be applied to horizontal well pumping tests. The method presented here uses the principle of superposition to represent the horizontal well as a series of partially penetrating vertical wells. This concept is used to estimate a distance from an observation well at which a vertical well that has the same total pumping rate as the horizontal well will produce the same drawdown as the horizontal well. This equivalent distance may then be associated with an observation well for use in pumping test algorithms and type curves developed for vertical wells. The method is shown to produce good results for confined aquifers and unconfined aquifers in the absence of delayed yield response. For unconfined aquifers, the presence of delayed yield response increases the method error.  相似文献   

8.
In the late 1980s, dramatic increases in water use caused over‐exploitation of groundwater resources and deterioration of water quality in Seoul metropolitan city. To monitor changes in quantity of groundwater resources and their quality, the metropolitan government established a local groundwater monitoring network in 1997 consisting of 119 monitoring wells. Groundwater resources in the urban area were affected by various human activities, including underground construction such as subways, pumping for public or private water use, leaky sewer systems and pavements. The variation patterns of the groundwater levels were mainly classified into four types, reflecting natural recharge due to rainfall events during the wet season, artificial recharge from leaky sewer or water supply systems, and heavy groundwater pumping for drainage or flood control purposes at underground construction sites. Significantly decreasing trends of groundwater levels in the suburbs of Seoul indicate groundwater use for various agricultural activities. Subway construction lowered the water level by an average of 25 m. Electrical conductivity values showed a wide range, from 100 to 1800 µS/cm (mean 470 µS/cm). Groundwater temperature generally showed a stable pattern, except for some sensitive increases at relatively shallow monitoring wells. Detailed analysis of the monitored groundwater data would provide some helpful implications for optimal and efficient management of groundwater resources in this metropolitan city. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

9.
Shallow groundwater is an important source of water for the maintenance and restoration of ecosystems in arid environments, which necessitates a deeper understanding of its complex spatial and temporal dynamics driven by hydrological processes. This study explores the dominant hydrological processes that control the shallow groundwater dynamics in the Gobi Desert‐riparian‐oasis system of the lower Heihe River, a typical arid inland river basin located in northwestern China. The groundwater level and temperature were monitored in 14 shallow wells at 30‐min intervals during the 2010–2012 period. After combining this information with meteorological and hydrological data, a comprehensive analysis was conducted to understand the dynamic behaviour of the shallow groundwater system and to determine the dominant factors that control the groundwater flow processes. The results of the study indicate notably large temporal and spatial variations in both the groundwater level and temperature. Noticeable fluctuations in the groundwater level (0.5–1 m) and temperature (4–8 °C) were observed in the riparian zone, evidencing a clear river influence. In comparison, the groundwater fluctuations in the Gobi Desert were more stable (the annual variations of the water table were less than 0.5 m, and the water temperature varied by no more than 2 °C). Strong variations in the groundwater table (1.5–5.0 m/year) and temperature (1.5–6.5 °C), mainly caused by surface flood irrigation and groundwater pumping, were observed in the oasis area. The investigated sites were categorized into three types that reflect the dominant hydrological processes: (1) the riparian zone, dominated by riverbank filtration and groundwater evapotranspiration; (2) the Gobi Desert area, controlled by groundwater evaporation and lateral recharge; and (3) the oasis area, dominated by groundwater evapotranspiration as well as surface–groundwater interactions caused by human activities. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
Methyl tert -butyl ether (MTBE) and benzene have been measured since 1993 in a shallow, sandy aquifer contaminated by a mid-1980s release of gasoline containing fuel oxygenates. In wells downgradient of the release area, MTBK was detected before benzene, reflecting a chromatographic-like separation of these compounds in the direction of ground water flow. Higher concentrations of MTBE and benzene were measured in the deeper sampling ports of multilevel sampling wells located near the release area, and also up to 10 feet (3 m) below the water table surface in nested wells located farther from the release area. This distribution of higher concentrations at depth is caused by recharge events that deflect originally horizontal ground water flowlines. In the laboratory, microcosms containing aquifer material incubated with uniformly labeled 14C-MTBE under aerobic and anaerobic. Fe(III)-reducing conditions indicated a low but measurable biodegradation potential (<3%14C-MTBW as 14CO2) after a seven-month incubation period, Tert -butyl alcohol (TBA), a proposed microbial-MTBE transformation intermediate, was detected in MTBE-contaminated wells, but TBA was also measured in unsaturated release area sediments. This suggests that TBA may have been present in the original fuel spilled and does not necessarily reflect microbial degradation of MTBE. Combined, these data suggest that milligram per liter to microgram per liter decreases in MTBE concentrations relative to benzene are caused by the natural attenuation processes of dilution and dispersion with less-contaminated ground water in the direction of flow rather than biodegradation at this point source gasoline release site.  相似文献   

11.
Temperature is often used to infer the effect of land use and climate conditions on aquifers. Reliable data are needed to examine the temperature behaviour in the subsurface; thus, the use of robust acquisition techniques is unavoidable. Three temperature measurement techniques were applied to assess the sources of bias that could occur during temperature logging in a shallow Quaternary coastal aquifer in Ferrara (Northern Italy). Open borehole temperature logging, multilevel sampling straddle packers isolated temperature measurements within a flow cell above ground and multilevel sampling straddle packers isolated temperature measurements via an in‐well level logger (MLS‐IW) were compared for several coastal monitoring wells to gain insights on the limitations of each technique. Results show that the source of bias between the three applied techniques are different: (i) the open borehole temperature logging method tends to record heat convection through the open borehole and is not representative of the aquifer temperature distribution; (ii) the multilevel sampling straddle packers isolated temperature measurements within a flow cell above ground method is swayed by the air temperature and the heating of the submersible pump used to lift groundwater above ground; and (iii) the MLS‐IW provides the most reliable vertical thermal profiling both in summer and winter, because groundwater temperature is directly measured at the selected monitoring depth. The implementation of a 1D flow model demonstrates that if precise temperature profiles are needed to infer the influence that land use and climate changes have on groundwater, the MLS‐IW method is a reliable method that could be applied to existing monitoring wells. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
鲁豫交界地区深井水位持续大幅度下降原因分析   总被引:4,自引:2,他引:2  
鲁豫交界地区豫01、11井和鲁27井等3口地震观测深井的水位于2006年后出现了准同步的异常下降变化,下降幅度3 ~12m不等.经调查落实,发现该地区近年来地热开采活动日益增强,开采量逐年增大,并且开采层与异常井水位观测层同属于奥陶系热储层.为此,本文依据聊城-兰考断裂带附近区域的水文地质构造特征,建立了三维地下水流动模型,基于周边地热开采量数据和相关含水层参数,运用有限差分方法计算了地热开采所引起的区域水位降落漏斗,并分析了水位下降异常的时间演化和空间分布特征.结果显示,聊城-兰考断裂带附近区域自1995年开始地热开采活动以来,其逐年增加的地热开采量与地震观测井水位的下降幅度之间存在较好的对应关系,分析认为鲁豫交界地区3口深井水位的准同步异常下降与周边地热开采活动有关.  相似文献   

13.
A confined aquifer may become unconfined near the pumping wells when the water level falls below the confining unit in the case where the pumping rate is great and the excess hydraulic head over the top of the aquifer is small. Girinskii's potential function is applied to analyze the steady ground water flow induced by pumping wells with a constant-head boundary in a mixed confined-unconfined aquifer. The solution of the single-well problem is derived, and the critical radial distance at which the flow changes from confined to unconfined condition is obtained. Using image wells and the superposition method, an analytic solution is presented to study steady ground water flow induced by a group of pumping wells in an aquifer bounded by a river with constant head. A dimensionless function is introduced to determine whether a water table condition exists or not near the pumping wells. An example with three pumping wells is used to demonstrate the patterns of potentiometric surface and development of water table around the wells.  相似文献   

14.
A main purpose of groundwater inverse modeling lies in estimating the hydraulic conductivity field of an aquifer. Traditionally, hydraulic head measurements, possibly obtained in tomographic setups, are used as data. Because the groundwater flow equation is diffusive, many pumping and observation wells would be necessary to obtain a high resolution of hydraulic conductivity, which is typically not possible. We suggest performing heat tracer tests using the same already installed pumping wells and thermometers in observation planes to amend the hydraulic head data set by the arrival times of the heat signals. For each tomographic combinations of wells, we recommend installing an outer pair of pumping wells, generating artificial ambient flow, and an inner well pair in which the tests are performed. We jointly invert heads and thermal arrival times in 3-D by the quasi-linear geostatistical approach using an efficiently parallelized code running on a mid-range cluster. In the present study, we evaluate the value of heat tracer versus head data in a synthetic test case, where the estimated fields can be compared to the synthetic truth. Because the sensitivity patterns of the thermal arrival times differ from those of head measurements, the resolved variance in the estimated field is 6 to 10 times higher in the joint inversion in comparison to inverting head data only. Also, in contrast to head measurements, reversing the flow field and repeating the heat-tracer test improves the estimate in terms of reducing the estimation variance of the estimate. Based on the synthetic test case, we recommend performing the tests in four principal directions, requiring in total eight pumping wells and four intersecting observation planes for heads and temperature in each direction.  相似文献   

15.
地下水位变化引起的地面形变   总被引:2,自引:0,他引:2       下载免费PDF全文
本文探讨了抽用地下水对地面形变所造成的影响。文中应用了几个抽水试验实例, 说明了它们在时间上、空间上的相互变化关系。抽水所造成的地下水漏斗区范围内, 不仅能产生垂直形变, 而且在其影响的不同部位, 还形在压缩和拉伸的水平形变。对抽水引起的地面形变与其他因素所造成的地面形变的区别, 进行了视步的讨论。   相似文献   

16.
Water resources in the arid southwestern United States are frequently the subject of conflict from competing private and public interests. Legal remedies may remove impasses, but the technical analysis of the problem often determines the future success of legal solutions. In Owens Valley, California, the source of water for the Los Angeles Aqueduct (LAA) is flow diverted from the Owens River and its tributaries and ground water from valley aquifers. Future management of ground water delivered to the LAA needs technical support regarding quantity available, interconnection of shallow and confined aquifers, impact on local springs, and rate of recharge. Ground water flow models and ground water composition are tools already in use, but these have large uncertainty for local interpretations. This study conducted targeted sampling of springs and wells to evaluate the hydrologic system to corroborate conceptual and numerical models. The effort included measurement of intrinsic isotopic composition at key locations in the aquifers. The stable isotopic data of boron (delta(11)B), sulfur (delta(34)S), oxygen (delta(18)O), hydrogen (delta D), and tritium ((3)H) supported by basic chemical data provided rules for characterizing the upper and the lower aquifer system, confirmed the interpretation of ground water flow near faults and flow barriers, and detected hydraulic connections between the LAA and the perennial springs at key locations along the unlined reach of the LAA. This study exemplifies the use of forensic isotopic approaches as independent checks on the consistency of interpretations of conceptual models of a ground water system and the numerical hydrologic simulations.  相似文献   

17.
The present study investigates the possible hydrologic effects of the proposed lignite open‐cast mining in Drama lignite field (north Greece). Recent years have seen a rapid increase in surface mining. This activity has generated a growing concern for the potential environmental impacts associated with large scale surface mining. In order to achieve a safe mine operation and allow extraction of lignite to considerable depths, extensive dewatering by pumping will be necessary, while at the same time it is desirable to avoid presence of overpumping conditions in the broader area. Based on stratigrafic, hydrologic and hydrogeologic data, a three‐dimensional finite difference model was developed in order to simulate the dewatering process of the western part of the lignite open‐cast mine in Drama and to predict both spatially and temporally the decline of ground water level down to the lignite surface. The dewatering of the part of the aquifer which underlies the mine area will influence the hydrological conditions of the broader region. The most important anticipated effects will be the abandonment of shallow wells as well as the decrease of ground water pumping rates of deep wells. Aquifer discharge towards the ditches of the study area will cease and there will be an inversion of ground water flow from the ditches towards the underlying aquifer. Dewatering activities will probably result in minor subsidence of the nearby peat deposits of Drama Philippi marshes. Moreover, sand pumping as well as the presence of gasses is likely to cause local subsidence phenomena, mainly in the pit slopes. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

18.
The combination of flowmeter and depth-dependent water-quality data was used to evaluate the quantity and source of high-chloride water yielded from different depths to eight production wells in the Pleasant Valley area of southern California. The wells were screened from 117 to 437 m below land surface, and in most cases, flow from the aquifer into the wells was not uniformly distributed throughout the well screen. Wells having as little as 6 m of screen in the overlying upper aquifer system yielded as much as 50% of their water from the upper system during drought periods, while the deeper parts of the well screens yielded 15% or less of the total yield of the wells. Mixing of water within wells during pumping degraded higher-quality water with poorer-quality water from deeper depths, and in some cases with poorer-quality water from the overlying upper aquifer system. Changes in the mixture of water within a well, resulting from changes in the distribution of flow into the well, changed the quality of water from the surface discharge of wells over time. The combination of flowmeter and depth-dependent water quality data yielded information about sources of high-chloride water to wells that was not available on the basis of samples collected from nearby observation wells. Changing well design to eliminate small quantities of poor-quality water from deeper parts of the well may improve the quality of water from some wells without greatly reducing well yield.  相似文献   

19.
A geochemical study was carried out in a small spa area (Onyang Spa, Korea) where intensive pumping of deep thermal groundwater (1 300 000 m3 year−1) is taking place. This has caused the deep fractures to lose their artesian pressure and the upper shallow fractures have been encroached by shallow, cold waters. To quantify the influence of long‐term heavy pumping on the quality of the geothermal water, groundwater sampling and chemical analysis, water‐level measurement, and well loggings were performed for the selected deep thermal wells and shallow cold wells. Chemical analysis results indicate a big contrast in water chemistry and origins between the two water types. Shallow groundwater shows a wider concentration ranges in solutes that are closely related to human activity, illustrating the water's vulnerability to contamination near the land surface. Plots of water chemistry as a function of fluoride reveal that the quality of the thermal water was greatly influenced by the shallow, cold groundwater and that intensive pumping of the deep thermal groundwater has caused the introduction of shallow groundwater into the deeper fractures. Although the deep and the shallow fractures were piezometrically separated to some extent, a mixing model based on fluoride and nitrate indicated that the cold‐water fractions in the thermal wells are up to 50%. This suggests that the thermal water is faced with water quality degradation by the downward flow of the shallow, cold water. Restriction on the total of all the pumpage permits per unit area is suggested to restore the artesian pressure of the deep thermal aquifer and to prevent cold‐water intrusion in the study area. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

20.
Field Test of the In Situ Permeable Ground Water Flow Sensor   总被引:1,自引:0,他引:1  
Two in situ permeable flow sensors, recently developed at Sandia National Laboratories, were field tested at the Brazos River Hydrologic Field Site near College Station, Texas. The flow sensors use a thermal perturbation technique to quantify the magnitude and direction of ground water flow in three dimensions. Two aquifer pumping tests lasting eight and 13 days were used to field test the flow sensors. Components of ground water flow as determined from piezometer gradient measurements were compared with ground water flow components derived from the 3-D flow sensors. The changes in velocity magnitude and direction of ground water flow induced by the pump were evaluated using flow sensor data and piezometric analyses. Flow sensor performance closely matched piezometric analysis results. Ground water flow direction (azimuth), as measured by the flow sensors and derived in the piezometric analysis, predicted the position of the pumping well accurately. Ground water flow velocities measured by the flow sensors compared well to velocities derived in the piezometric analysis. A significant delay in flow sensor response to relatively rapid changes in ground water flow was observed. Preliminary tests indicate that the in situ permeable flow sensor provides accurate and timely information on the velocity magnitude and direction of ground water flow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号