共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
4.
5.
6.
区域四维变分资料同化的数值试验 总被引:14,自引:0,他引:14
针对中尺度数值预报模式预报误差的主要来源,尝试利用四维变分资料同化的方法来改善预报效果。在已建立的中尺度模式(MM4)四维变分资料同化系统基础上,进行了若干数值试验,通过比较同化前后的预报来检验同化的效果。这些试验中初始场、模式误差和侧边界条件被分别或同时作为控制变量来进行调整,主要探讨了模式误差和侧边界条件对同化及预报的影响,以及同时结合两者或三者的途径和方法。对两组个例分别进行的试验结果表明,区域中尺度模式预报误差除了来源于初始误差外,模式误差、侧边界条件也有不可忽视的作用。同化时应同时考虑初始场、模式误差和侧边界条件这三方面的共同作用,仅修正其中某一个或某两个会把由于其它方面造成的预报误差转嫁到它们之上,从而出现尽管目标函数下降很快而预报结果并没有相应改善的现象。 相似文献
7.
雷达径向风资料的四维变分同化试验 总被引:6,自引:2,他引:6
在MM5四维变分同化系统(MM5 4D-Var)的基础上开发出雷达径向风资料的同化模块,利用改进后的同化系统对2002年7月22日湖北宜昌多普勒雷达的径向风观测资料进行四维变分同化试验,分析雷达径向风资料的同化对中尺度数值模式初始场的调整以及对中尺度强降水模拟的影响.研究结果表明,同化雷达径向风资料加强了中尺度对流系统低层100km左右范围内的风场辐合.调整后的风场具有更明显的β中尺度特征.利用14 min的雷达径向风资料可以改进3 h之内的强降水模拟,尤其是对雷达站东南侧强降水的模拟. 相似文献
8.
该文简单地叙述了国家气象中心四维资料同化业务系统中的各子系统,即资料处理、客观分析、初值化和模式预报子系统。该系统能较好地为预报模式提供初始条件。并对四维资料同化业务系统中的分析质量进行了评述。 相似文献
9.
10.
《气象科学进展》2016,(5)
背景误差协方差矩阵的精确定义是构建高水平资料同化系统的先决条件。传统四维变分资料同化(4D-Var)方法将观测资料处理转化成以动力模式为约束的泛函极小化问题,通过调整控制变量,使指定时间窗口内由控制变量得到的模式预报结果与实际观测资料之间的偏差达到最小。该方法在同化窗口内可以利用模式的切线性和伴随隐式地改变背景误差协方差,能够在某种程度上满足快速发展的天气过程。但是大部分业务中心的四维变分资料同化系统仍采用静态化的背景误差协方差矩阵模型来缓解背景误差协方差矩阵的维度问题,即矩阵维数远大于可用信息量。随着计算机科学的迅猛发展,维度问题可以进一步通过集合的方法缓解。集合四维变分资料同化就是基于这一目标通过构造多个能反映出背景误差协方差分布特征的样本集合来弥补可用信息量的不足。该方法目前已在ECMWF、Mete-France等业务中心实现业务化,为确定性四维变分资料同化系统提供流依赖背景误差协方差估计。简要介绍了集合四维变分资料同化方法的基本原理;其次以ECMWF为例,概述了四维变分资料同化系统的业务现状,重点阐述了系统在开发过程中需要解决的扰动、滤波、校正等一些关键技术;最后探讨集合四维变分资料同化系统目前存在的问题和未来可能的研究方向。 相似文献
11.
四维数据同化在一次梅雨锋暴雨过程中的应用研究 总被引:1,自引:0,他引:1
通过2008年梅雨季内的一次暴雨过程来着重研究WRF模式中四维测站同化技术的应用情况以及不同的同化策略对模拟结果的影响,使用的同化资料包括常规高空和地面探测资料。结果表明:高空探测资料的同化能够较好地修正中α尺度系统的移动发展速度,从而有效地改进强降雨带的落区位置;湿度观测资料的同化反而降低了强降雨带的降水强度,这可能因为同化湿度观测量可能减小近饱和区域内的水汽混合比,从而导致这些区域内的潜热加热减小,对流强度变弱,降水减少;地面观测资料的同化能够对模式行星边界层进行修正,这种同化影响通常在模式最低层上表现得较为明显,向上逐渐减小,而边界层模拟质量对降水至关重要,因此地面观测资料的加入使得模拟降水更加接近于实况。区域嵌套模拟试验表明对粗网格区域进行四维分析同化处理可以有效抑制中α尺度模式误差的增长,对细网格区域进行四维测站同化处理则可以进一步抑制中β尺度模式误差增长。 相似文献
12.
为检验臭氧卫星资料同化对臭氧分析场和预报场的影响,基于集合平方根滤波(ENSRF)理论,结合通用地球系统模式(CESM),构建了CESM-ENSRF同化预报系统。系统构建过程考虑了卡尔曼滤波同化中的关键问题:利用全场随机扰动对初始场加扰,结合一般协方差膨胀和松弛协方差膨胀方法实现协方差膨胀,使用五阶距离相关函数进行协方差局地化。将构建的系统用于微波临边探测器(MLS)臭氧廓线数据的同化,分析臭氧卫星资料同化对模式预报的影响。结果表明:构建的CESM-ENSRF同化系统有效实现了臭氧资料同化,臭氧卫星资料同化对臭氧分析场和预报场精度有较大改进。 相似文献
13.
利用变分方法建立预报场和预报倾向场这一预报场组合与模式预报非系统性误差之间的映射关系,来估计GRAPES(Global/Regional Assimilation and PrEdiction System)模式的非系统性误差,从而对预报做出修正。采用两种不同的历史样本建立这一映射关系,其中,利用相同时刻历史样本建立映射关系的方法称为DEM方法;通过相似面积比选取“相似样本”来建立上述映射关系的方法称为SEM方法。以FNL分析资料作为评判预报误差的依据,根据2002—2010年7月GRAPES模式500 hPa高度场48 h预报的回报资料,利用两种不同的方案进行非系统性误差的估计及预报订正试验。对279个检验样本的试验结果表明:SEM方法和DEM方法都对非系统性误差有一定的估算能力,二者估算的非系统性误差空间分布和量级与模式非系统性误差较一致,SEM方法的修订效果略优于DEM方法,但并不明显。对预报做出系统性误差和非系统性误差两步订正后,DEM方法和SEM方法的订正有效率分别为98.566%和100%,可明显提高预报的准确性。
相似文献14.
A four-dimensional variational (4D-Var) data assimilation method is implemented in an improved intermediate coupled model (ICM) of the tropical Pacific. A twin experiment is designed to evaluate the impact of the 4D-Var data assimilation algorithm on ENSO analysis and prediction based on the ICM. The model error is assumed to arise only from the parameter uncertainty. The “observation” of the SST anomaly, which is sampled from a “truth” model simulation that takes default parameter values and has Gaussian noise added, is directly assimilated into the assimilation model with its parameters set erroneously. Results show that 4D-Var effectively reduces the error of ENSO analysis and therefore improves the prediction skill of ENSO events compared with the non-assimilation case. These results provide a promising way for the ICM to achieve better real-time ENSO prediction. 相似文献
15.
Constructing β-mesoscale weather systems in initial fields remains a
challenging problem in a mesoscale numerical weather prediction (NWP) model.
Without vertical velocity matching the β-mesoscale weather system,
convection activities would be suppressed by downdraft and cooling caused by
precipitating hydrometeors. In this study, a method, basing on the
three-dimensional variational (3DVAR) assimilation technique, was developed
to obtain reasonable structures of β-mesoscale weather systems by
assimilating radar data in a next-generation NWP system named GRAPES (the
Global and Regional Assimilation and Prediction System) of China.
Single-point testing indicated that assimilating radial wind significantly
improved the horizontal wind but had little effect on the vertical velocity,
while assimilating the retrieved vertical velocity (taking Richardson's
equation as the observational operator) can greatly improve the vertical
motion. Experiments on a typhoon show that assimilation of the radial wind
data can greatly improve the prediction of the typhoon track, and can
ameliorate precipitation to some extent. Assimilating the retrieved vertical
velocity and rainwater mixing ratio, and adjusting water vapor and cloud
water mixing ratio in the initial fields simultaneously, can significantly
improve the tropical cyclone rainfall forecast but has little effect on
typhoon path. Joint assimilating these three kinds of radar data gets the
best results. Taking into account the scale of different weather systems and
representation of observational data, data quality control, error setting of
background field and observation data are still requiring further in-depth
study. 相似文献
16.
The three-/four-dimensional variational data assimilation systems (3/4DVAR) of the Weather Research and Forecasting (WRF) model were explored in the forecasting of two Antarctic synoptic cyclones, which had large influence on the Ross Sea/Ross Ice Shelf region in October 2007. A suite of variational data assimilation experiments, including regular 3DVAR, high-resolution 3DVAR, and 4DVAR experiments, were designed to evaluate their performances in weather analysis and forecasting in Antarctica. In general, both 4DVAR and high-resolution 3DVAR experiments showed better forecasting skill than regular 3DVAR experiments. High-resolution 3DVAR experiments were the most efficient in reducing the analysis errors of surface winds and temperature, and had the best performance during the first 24 h of forecasting. However, during the following forecast period, 4DVAR experiments showed either better or about comparable performance to high-resolution 3DVAR experiments. These results indicate that increasing the spatial resolution during 3DVAR is an economical approach to improving the weather analysis and forecasting over Antarctica. At the same time, the 4DVAR approach had a longer impact on forecasting than the high-resolution 3DVAR approach. Understandably, both of the variational assimilation approaches are promising techniques toward improving the regional analysis and forecasting over Antarctica. 相似文献
17.
Roger Daley 《大气与海洋》2013,51(4):421-450
Abstract Kalman filter theory shows great promise when applied to the assimilation of atmospheric observations. Previous work has concentrated on extratropical dynamics, and tropical aspects have not yet been seriously tackled. In this article, a Kalman filter is applied to the linearized shallow water equations on an equatorial beta plane. The system or model error is constructed from the slow eigenmodes of the model and is based on an expansion in parabolic cylinder functions. The resulting second‐moment statistics are discussed in some detail. The Kalman filter is applied to a special observation network that allows the diagonalization of the system. Following Daley and Ménard (1993), it is then possible to obtain the complete space and time solution for the second‐moment forecast and analysis error statistics. The slow (low‐frequency) and fast (high‐frequency) error statistics are examined separately for both the optimal and suboptimal cases. 相似文献
18.
面对日益严峻的大气污染形势,针对卫星气溶胶光学厚度(AOD)资料在灰霾数值预报领域的合理有效利用问题,使用WRF-Chem(WRF coupled with Chemistry)大气化学模式以及GSI(Gridpoint Statistical Interpolation)三维变分同化系统,利用MODIS和FY-3A/MERSI AOD资料,对一次灰霾天气过程进行了同化预报试验。试验结果显示,同化卫星AOD资料有效改善了模式初始场,MODIS和MERSI同化试验分别在AOD分析场的中心强度和空间分布各具优势,且对PM2.5和PM10的后续预报改进明显;从统计分析上看,同化试验的预报效果整体上好于控制试验,同化试验中PM2.5和PM10预报值的平均值、中值、平均偏差、均方根误差等指标均明显优于控制试验,且MODIS和MERSI同化试验分别在PM2.5和PM10预报统计结果中体现出了优势;卫星AOD资料同化能明显降低污染事件的空报率和漏报率,提高预报的TS评分和ETS评分。不同卫星AOD资料的差异对分析场中AOD的分布和强度产生了相应影响,进而影响了模式的灰霾预报效果;本次试验中,MODIS和MERSI AOD同化试验分别在PM2.5和PM10预报的评分上表现更佳。结果表明,卫星AOD资料同化对数值预报产生了积极的效果。 相似文献
19.
This paper examines how assimilating surface observations can improve the analysis and forecast ability of a fourdimensional Variational Doppler Radar Analysis System(VDRAS).Observed surface temperature and winds are assimilated together with radar radial velocity and reflectivity into a convection-permitting model using the VDRAS four-dimensional variational(4DVAR) data assimilation system.A squall-line case observed during a field campaign is selected to investigate the performance of the technique.A single observation experiment shows that assimilating surface observations can influence the analyzed fields in both the horizontal and vertical directions.The surface-based cold pool,divergence and gust front of the squall line are all strengthened through the assimilation of the single surface observation.Three experiments—assimilating radar data only,assimilating radar data with surface data blended in a mesoscale background,and assimilating both radar and surface observations with a 4DVAR cost function—are conducted to examine the impact of the surface data assimilation.Independent surface and wind profiler observations are used for verification.The result shows that the analysis and forecast are improved when surface observations are assimilated in addition to radar observations.It is also shown that the additional surface data can help improve the analysis and forecast at low levels.Surface and low-level features of the squall line—including the surface warm inflow,cold pool,gust front,and low-level wind—are much closer to the observations after assimilating the surface data in VDRAS. 相似文献
20.
基于WRF(Weather Research and Forecasting)模式及其3DVAR(3-Dimentional Variational)资料同化系统,采用36 km、12 km 、4 km三层嵌套网格进行逐3 h资料同化和快速更新循环预报,对2011年5月8日鲁中一次局地大暴雨过程进行了资料同化敏感性试验。试验结果表明,地面观测资料同化和快速更新循环对本次降水的预报起到了关键性作用。在快速更新循环预报时不同化地面观测资料,或同化全部观测资料进行冷启动预报,模式均不能预报出山东的降水。同化地面观测资料后,显著改进了模式降水落区预报。地面观测资料同化可以影响到700 hPa高度以上温压湿风要素的变化,从而改变了大气初始场的温湿结构,导致模式预报的700 hPa附近高空大气湿度和热力不稳定增强,700 hPa以下低层风场更强,850 hPa鲁中以南风速较无观测资料同化的偏强2~4 m·s-1,低层风场的动力作用触发高空的不稳定大气,降水出现在山东。 相似文献