首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper contains an analysis of the attitude stability of a spinning axisymmetric satellite whose mass center moves in any known planar periodic orbit of the restricted three-body problem while the spin axis remains normal to the orbit plane. A procedure based on Floquet theory is developed for constructing attitude instability charts, and examples of these are presented for two stable periodic orbits of the Earth-Moon system—one direct and one retrograde. The physical significance of these instability predictions is then explored by means of numerical integration of the full nonlinear equations of motion. Finally, an analysis based on averaging is performed, leading to approximate instability charts and indicating a possible connection between certain orbital-attitude resonance conditions and unstable attitude motions.  相似文献   

2.
Some properties of the dumbbell satellite attitude dynamics   总被引:1,自引:0,他引:1  
The dumbbell satellite is a simple structure consisting of two point masses connected by a massless rod. We assume that it moves around the planet whose gravity field is approximated by the field of the attracting center. The distance between the point masses is assumed to be much smaller than the distance between the satellite’s center of mass and the attracting center, so that we can neglect the influence of the attitude dynamics on the motion of the center of mass and treat it as an unperturbed Keplerian one. Our aim is to study the satellite’s attitude dynamics. When the center of mass moves on a circular orbit, one can find a stable relative equilibrium in which the satellite is permanently elongated along the line joining the center of mass with the attracting center (the so called local vertical). In case of elliptic orbits, there are no stable equilibrium positions even for small values of the eccentricity. However, planar periodic motions are determined, where the satellite oscillates around the local vertical in such a way that the point masses do not leave the orbital plane. We prove analytically that these planar periodic motions are unstable with respect to out-of-plane perturbations (a result known from numerical investigations cf. Beletsky and Levin Adv Astronaut Sci 83, 1993). We provide also both analytical and numerical evidences of the existence of stable spatial periodic motions.  相似文献   

3.
We deal with the stability problem of planar periodic motions of a satellite about its center of mass. The satellite is regarded a dynamically symmetric rigid body whose center of mass moves in a circular orbit.By using the method of normal forms and KAM theory we study the orbital stability of planar oscillations and rotations of the satellite in detail. In two special cases we investigate the orbital stability analytically by introducing a small parameter. In the general case, numerical calculations of Hamiltonian normal form are necessary.  相似文献   

4.
This paper is devoted to the dynamics in a central gravity field of two point masses connected by a massless tether (the so called “spring–mass” model of tethered satellite systems). Only the motions with straight strained tether are studied, while the case of “slack” tether is not considered. It is assumed that the distance between the point masses is substantially smaller than the distance between the system’s center of mass and the field center. This assumption allows us to treat the motion of the center of mass as an unperturbed Keplerian one, so to focus our study on attitude dynamics. A particular attention is given to the family of planar periodic motions in which the center of mass moves on an elliptic orbit, and the point masses never leave the orbital plane. If the eccentricity tends to zero, the corresponding family admits as a limit case the relative equilibrium in which the tether is elongated along the line joining the center of mass with the field center. We study the bifurcations and the stability of these planar periodic motions with respect to in-plane and out-of-plane perturbations. Our results show that the stable motions take place if the eccentricity of the orbit is sufficiently small.  相似文献   

5.
We study orbits of planetary systems with two planets, for planar motion, at the 1/1 resonance. This means that the semimajor axes of the two planets are almost equal, but the eccentricities and the position of each planet on its orbit, at a certain epoch, take different values. We consider the general case of different planetary masses and, as a special case, we consider equal planetary masses. We start with the exact resonance, which we define as the 1/1 resonant periodic motion, in a rotating frame, and study the topology of the phase space and the long term evolution of the system in the vicinity of the exact resonance, by rotating the orbit of the outer planet, which implies that the resonance and the eccentricities are not affected, but the symmetry is destroyed. There exist, for each mass ratio of the planets, two families of symmetric periodic orbits, which differ in phase only. One is stable and the other is unstable. In the stable family the planetary orbits are in antialignment and in the unstable family the planetary orbits are in alignment. Along the stable resonant family there is a smooth transition from planetary orbits of the two planets, revolving around the Sun in eccentric orbits, to a close binary of the two planets, whose center of mass revolves around the Sun. Along the unstable family we start with a collinear Euler–Moulton central configuration solution and end to a planetary system where one planet has a circular orbit and the other a Keplerian rectilinear orbit, with unit eccentricity. It is conjectured that due to a migration process it could be possible to start with a 1/1 resonant periodic orbit of the planetary type and end up to a satellite-type orbit, or vice versa, moving along the stable family of periodic orbits.  相似文献   

6.
We present families of symmetric and asymmetric periodic orbits at the 1/1 resonance, for a planetary system consisting of a star and two small bodies, in comparison to the star, moving in the same plane under their mutual gravitational attraction. The stable 1/1 resonant periodic orbits belong to a family which has a planetary branch, with the two planets moving in nearly Keplerian orbits with non zero eccentricities and a satellite branch, where the gravitational interaction between the two planets dominates the attraction from the star and the two planets form a close binary which revolves around the star. The stability regions around periodic orbits along the family are studied. Next, we study the dynamical evolution in time of a planetary system with two planets which is initially trapped in a stable 1/1 resonant periodic motion, when a drag force is included in the system. We prove that if we start with a 1/1 resonant planetary system with large eccentricities, the system migrates, due to the drag force, along the family of periodic orbits and is finally trapped in a satellite orbit. This, in principle, provides a mechanism for the generation of a satellite system: we start with a planetary system and the final stage is a system where the two small bodies form a close binary whose center of mass revolves around the star.  相似文献   

7.
A problem of attitude motion of the smallest body for the restricted three-body problem is analyzed. Axial symmetry is assumed for the body, and attention is focused on the case in which the symmetry axis is normal to the orbit plane. For libration point satellites, results are similar to those for a satellite in orbit about a single body. However, for orbit equilibrium points lying on the line joining the two larger bodies, attitude stability results depart markedly from those for the two-body problem.This paper presents the results of one phase of research carried out at the Jet Propulsion Laboratory, California Institute of Technology, under Contract No. NAS 7-100, sponsored by the National Aeronautics and Space Administration.  相似文献   

8.
For a satellite in a nominally circular orbit at arbitrary inclination whose mean motion is commensurable with the Earth's rotation, the dependence of gravity on longitude leads to a resonant variation in eccentricity as well as the long-period oscillation in longitude. Provided forces capable of processing perigee are present, it is shown that the change in eccentricity for a satellite captured in librational resonance is not secular but periodic.

There are corresponding resonance effects for a satellite in a nominally equatorial but eccentric orbit. Here the commensurability condition is that the longitudes of the apses shall be nearly repetitive relative to the rotating Earth. There will be a long-period oscillation in longitude which can take the form of either a libration (trapped) or a circulation (free), and there will also be an oscillation of the orbital plane having the same period as the precession of perigee relative to inertial space.  相似文献   


9.
We study the orbit of a particle in the plane of symmetry of two equal mass primaries in rectilinear keplerian motion. Using the surfaces of section we look for periodic orbits, examine their stability and search for quasi-periodic orbits and regions of escape. For large values of the angular momentumC, we verify the validity of the approximation of two fixed centers. However, we also find irregular families of orbits and resonance zones.For small values ofC, the approximation is no longer valid, but we find invariant curves whose interpretation might be interesting.  相似文献   

10.
We locate members of an important category of periodic orbits in the Newtonian four-body problem. These systems perform an interplay motion similar to that of the periodic three-body orbit discovered by Schubart. Such orbits, when stable, have been shown to be a key feature and influence on the dynamics of few-body systems. We consider the restricted case where the masses are collinear and are distributed symmetrically about their centre of mass. A family of orbits is generated from the known (three-dimensionally) unstable equal masses case by varying the mass ratio, whilst maintaining the symmetry. The stability of these orbits to perturbation is studied using linear stability analysis, analytical approximation of limiting cases and nonlinear simulation. We answer the natural question: are there any stable periodic orbits of this kind? Three ranges of the mass ratio are found to have stable orbits and three ranges have unstable orbits for three-dimensional motion. The systems closely resemble their three-body counterparts. Here the family of interplay orbits is simpler requiring just one parameter to characterise the mass ratio. Our results provide a further insight into three-body orbits studied previously.  相似文献   

11.
Based on the ideas of Lyapunov’s method, we construct a family of symmetric periodic solutions of the Hill problem averaged over the motion of a zero-mass point (a satellite). The low eccentricity of the satellite orbit and the sine of its inclination to the plane of motion of the perturbing body are parameters of the family. We compare the analytical solution with numerical solutions of the averaged evolutionary system and the rigorous (nonaveraged) equations of the restricted circular three-body problem.  相似文献   

12.
The Norma specialized program package, intended for normalization of autonomous Hamiltonian systems by means of computer algebra, is used in studies of small-amplitude periodic motions in the neighbourhood of regular precessions of a dynamically symmetric satellite on a circular orbit. The case of hyperboloidal precession is considered. Analytical expressions for normal forms and generating functions depending on frequencies of the system as on parameters are derived. Possible resonances are considered in particular. The 6th order of normalization is achieved. Though the intermediate analytical expressions occupy megabytes of computer's main memory, final ones are quite compact. Obtained analytical expressions are applied to the analysis of stability of small-amplitude periodic motions in the neighbourhood of hyperboloidal precession.  相似文献   

13.
14.
Gravity-gradient perturbations of the attitude motion of a tumbling tri-axial satellite are investigated. The satellite center of mass is considered to be in an elliptical orbit about a spherical planet and to be tumbling at a frequency much greater than orbital rate. In determining the unperturbed (free) motion of the satellite, a canonical form for the solution of the torque-free motion of a rigid body is obtained. By casting the gravity-gradient perturbing torque in terms of a perturbing Hamiltonian, the long-term changes in the rotational motion are derived. In particular, far from resonance, there are no long-period changes in the magnitude of the rotational angular momentum and rotational energy, and the rotational angular momentum vector precesses abound the orbital angular momentum vector.At resonance, a low-order commensurability exists between the polhode frequency and tumbling frequency. Near resonance, there may be small long-period fluctuations in the rotational energy and angular momentum magnitude. Moreover, the precession of the rotational angular momentum vector about the orbital angular momentum vector now contains substantial long-period contributions superimposed on the non-resonant precession rate. By averaging certain long-period elliptic functions, the mean value near resonance for the precession of the rotational angular momentum vector is obtained in terms of initial conditions.  相似文献   

15.
In this paper we present an analytical theory with numerical simulations to study the orbital motion of lunar artificial satellites. We consider the problem of an artificial satellite perturbed by the non-uniform distribution of mass of the Moon and by a third-body in elliptical orbit (Earth is considered). Legendre polynomials are expanded in powers of the eccentricity up to the degree four and are used for the disturbing potential due to the third-body. We show a new approximated equation to compute the critical semi-major axis for the orbit of the satellite. Lie-Hori perturbation method up to the second-order is applied to eliminate the terms of short-period of the disturbing potential. Coupling terms are analyzed. Emphasis is given to the case of frozen orbits and critical inclination. Numerical simulations for hypothetical lunar artificial satellites are performed, considering that the perturbations are acting together or one at a time.  相似文献   

16.
The photo-gravitational problems of two or more bodies have attracted much attention during the last decades. In this paper, radiation is considered as an additional factor influencing the particle motion in a regular polygon formation of N big bodies where the ν = Ν ? 1 primary bodies have equal masses and are located at the vertices of a regular polygon and the Nth primary has different mass and is located at the mass center of the system. We assume that some or all the primary bodies are radiation sources and we numerically explore various cases where symmetry of the resultant force field with respect to the same axis is preserved. For the purposes of our investigation we adopt Radzievski’s theory and assumptions. The material gathered helps us to estimate the radiation effect on the evolution of periodic orbits and their characteristics, such as their periods and their stability. Figures and diagrams illustrate these alterations and document our conclusions.  相似文献   

17.
18.
The Hill differential equation describes the relative motion of a satellite w.r.t. a circular reference orbit. The deviations in the orbit are caused by a residual acceleration, which is small compared to the effect of the central gravitational field. In this paper, the acceleration of a local mass anomaly in the central body is considered, which rotates w.r.t. the inertial frame with a constant angular velocity. The mass anomaly is modeled by a superposition of radial base functions. The potential and the gradient of each base function are represented in the orbit by the Keplerian elements, the rotation rate of the central body and the parameters of the base function, i.e. the position of its center, the shape and a scaling factor. The inhomogeneous solution of the Hill differential equation for short arcs is found by means of the Laplace transform. A few lower orders of the solution require an additional Laplace transform, to consider the so-called resonance cases. The final deviations are described in a closed and differentiable formula of the Keplerian elements and the parameters of the base function.  相似文献   

19.
The motion of a satellite around a planet can be studied by the Hill model, which is a modification of the restricted three body problem pertaining to motion of a satellite around a planet. Although the dynamics of the circular Hill model has been extensively studied in the literature, only few results about the dynamics of the elliptic model were known up to now, namely the equations of motion and few unstable families of periodic orbits. In the present study we extend these results by computing a large set of families of periodic orbits and their linear stability and classify them according to their resonance condition. Although most of them are unstable, we were able to find a considerable number of stable ones. By computing appropriate maps of dynamical stability, we study the effect of the planetary eccentricity on the stability of satellite orbits. We see that, even for large values of the planetary eccentricity, regular orbits can be found in the vicinity of stable periodic orbits. The majority of irregular orbits are escape orbits.  相似文献   

20.
The motion of a satellite with negligible mass in the Schwarzschild metric is treated as a problem in Newtonian physics. The relativistic equations of motion are formally identical with those of the Newtonian case of a particle moving in the ordinary inverse-square law field acted upon by a disturbing function which varies asr ?3. Accordingly, the relativistic motion is treated with the methods of celestial mechanics. The disturbing function is expressed in terms of the Keplerian elements of the orbit and substituted into Lagrange's planetary equations. Integration of the equations shows that a typical Earth satellite with small orbital eccentricity is displaced by about 17 cm from its unperturbed position after a single orbit, while the periodic displacement over the orbit reaches a maximum of about 3 cm. Application of the equations to the planet Mercury gives the advance of the perihelion and a total displacement of about 85 km after one orbit, with a maximum periodic displacement of about 13 km.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号