首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present a numerical method that incorporates particle sticking in simulations using the N-body code pkdgrav to study motions in a local rotating frame, such as a patch of a planetary ring. Particles stick to form non-deformable but breakable aggregates that obey the (Eulerian) equations of rigid-body motion. Applications include local simulations of planetary ring dynamics and planet formation, which typically feature hundreds of thousands or more colliding bodies. Bonding and breaking thresholds are tunable parameters that can approximately mimic, for example, van der Waals forces or interlocking of surface frost layers. The bonding and breaking model does not incorporate a rigorous treatment of internal fracture; rather the method serves as motivation for first-order investigation of how semi-rigid bonding affects the evolution of particle assemblies in high-density environments.We apply the method to Saturn’s A ring, for which laboratory experiments suggest that interpenetration of thin, frost-coated surface layers may lead to weak cohesive bonding. These experiments show that frost-coated icy bodies can bond at the low impact speeds characteristic of the rings. Our investigation is further motivated by recent simulations that suggest a very low coefficient of restitution is needed to explain the amplitude of the azimuthal brightness asymmetry in Saturn’s A ring, and the hypothesis that fine structure in Saturn’s B ring may in part be caused by large-scale cohesion.This work presents the full implementation of our model in pkdgrav, as well as results from initial tests with a limited set of parameters explored. We find a combination of parameters that yields aggregate size distribution and maximum radius values in agreement with Voyager data for ring particles in Saturn’s outer A ring. We also find that the bonding and breaking parameters define two strength regimes in which fragmentation is dominated either by collisions or other stresses, such as tides. We conclude our study with a discussion of future applications of and refinements to our model.  相似文献   

2.
Sascha Kempf  Uwe Beckmann 《Icarus》2010,206(2):446-457
Pre-Cassini models of Saturn’s E ring [Horányi, M., Burns, J., Hamilton, D., 1992. Icarus 97, 248-259; Juhász, A., Horányi, M., 2002. J. Geophys. Res. 107, 1-10] failed to reproduce its peculiar vertical structure inferred from Earth-bound observations [de Pater, I., Martin, S.C., Showalter, M.R., 2004. Icarus 172, 446-454]. After the discovery of an active ice-volcanism of Saturn’s icy moon Enceladus the relevance of the directed injection of particles for the vertical ring structure of the E ring was swiftly recognised [Juhász, A., Horányi, M., Morfill, G.E., 2007. Geophys. Res. Lett. 34, L09104; Kempf, S., Beckmann, U., Moragas-Klostermeyer, G., Postberg, F., Srama, R., Economou, T., Schmidt, J., Spahn, F., Grün, E., 2008. Icarus 193, 420-437]. However, simple models for the delivery of particles from the plume to the ring predict a too small vertical ring thickness and overestimate the amount of the injected dust.Here we report on numerical simulations of grains leaving the plume and populating the dust torus of Enceladus. We run a large number of dynamical simulations including gravity and Lorentz force to investigate the earliest phase of the ring particle life span. The evolution of the electrostatic charge carried by the initially uncharged grains is treated selfconsistently. Freshly ejected plume particles are moving in almost circular orbits because the Enceladus orbital speed exceeds the particles’ ejection speeds by far. Only a small fraction of grains that leave the Hill sphere of Enceladus survive the next encounter with the moon. Thus, the flux and size distribution of the surviving grains, replenishing the ring particle reservoir, differs significantly from the flux and size distribution of the particles freshly ejected from the plume. Our numerical simulations reproduce the vertical ring profile measured by the Cassini Cosmic Dust Analyzer (CDA) [Kempf, S., Beckmann, U., Moragas-Klostermeyer, G., Postberg, F., Srama, R., EconoDmou, T., Smchmidt, J., Spahn, F., Grün, E., 2008. Icarus 193, 420-437]. From our simulations we calculate the deposition rates of plume particles hitting Enceladus’ surface. We find that at a distance of 100 m from a jet a 10 m sized ice boulder should be covered by plume particles in 105-106 years.  相似文献   

3.
We propose a simple theoretical model for aggregative and fragmentative collisions in Saturn’s dense rings. In this model the ring matter consists of a bimodal size distribution: large (meter sized) boulders and a population of smaller particles (tens of centimeters down to dust). The small particles can adhesively stick to the boulders and can be released as debris in binary collisions of their carriers. To quantify the adhesion force we use the JKR theory (Johnson, K., Kendall, K., Roberts, A. [1971]. Proc. R. Soc. Lond. A 324, 301–313). The rates of release and adsorption of particles are calculated, depending on material parameters, sizes, and plausible velocity dispersions of carriers and debris particles. In steady state we obtain an expression for the amount of free debris relative to the fraction still attached to the carriers. In terms of this conceptually simple model a paucity of subcentimeter particles in Saturn’s rings (French, R.G., Nicholson, P.D. [2000]. Icarus 145, 502–523; Marouf, E. et al. [2008]. Abstracts for “Saturn after Cassini–Huygens” Symposium, Imperial College London, UK, July 28 to August 1, p. 113) can be understood as a consequence of the increasing strength of adhesion (relative to inertial forces) for decreasing particle size. In this case particles smaller than a certain critical radius remain tightly attached to the surfaces of larger boulders, even when the boulders collide at their typical speed. Furthermore, we find that already a mildly increased velocity dispersion of the carrier-particles may significantly enhance the fraction of free debris particles, in this way increasing the optical depth of the system.  相似文献   

4.
Wei-Ling Tseng  Wing-Huen Ip 《Icarus》2011,212(1):294-299
The existence of an oxygen exosphere and ionosphere in Saturn’s main ring region has been confirmed by the Saturn Orbital Insertion (SOI) observations of the Cassini spacecraft. Through the ion-molecule collisions, the ring atmosphere could serve as a source of ions throughout Saturn’s magnetosphere. If photolysis of ice in the main rings is the dominant source of O2, then the complex structure of the ring atmosphere/ionosphere and the injection rate of neutral O2 will be subject to modulation by the seasonal variation of Saturn along its orbit (Tseng, Wei-Ling, Ip, W.-H., Johnson, R.E., Cassidy, T.A., Erlod, M.K. [2010]. Icarus 206, 382-389). In addition, the radio and plasma wave science (RPWS) instrument onboard Cassini found that a large amount of the Enceladus-originated water-group plasma would be deposited on the outer edge of the A ring (Farrell, W.M., Kaiser, M.L., Gurnett, D.A., Kurth, W.S., Persoon, A.M., Wahlund, J.E., Canu, P. [2008]. Geophys. Res. Lett. 35, L02203). A large amount of Enceladus’ plume neutrals (water-group neutrals) would collide with the main rings through collisional interaction with the ambient neutrals and plasma ions (Jurac, S., Richardson, J.D. [2007]. Geophys. Res. Lett. 34, L08102; Cassidy, T.A., Johnson, R.E. [2010]. Icarus, in press). These absorbed ions and neutrals could be recycled to neutral oxygen molecules via grain-surface chemistry to contribute the ring oxygen atmosphere. In this work, we have examined the mass budget of the ring oxygen atmosphere of Saturn taking into account such an “exogenic” source. The maximum O2 source rate from recycling of Enceladus-originated plasma and neutrals is probably comparable or higher to the one from photolytic decomposition of ices. In the above case, the neutral O2 source rate would be independent of the solar insolation angle. Therefore, even at Saturn’s Equinox, the extended oxygen atmosphere still could be an important supplier of oxygen ions in the saturnian magnetosphere. We have performed several studies for different recycling source rates from Enceladus. These predictions need further the Cassini Plasma Spectrometer (CAPS) and the Magnetospheric Imaging Instrument (MIMI) observations to be verified in future.  相似文献   

5.
Two and a half years after Saturn orbit insertion (SOI) the Cassini composite infrared spectrometer (CIRS) has acquired an extensive set of thermal measurements (including physical temperature and filling factor) of Saturn's main rings for a number of different viewing geometries, most of which are not available from Earth. Thermal mapping of both the lit and unlit faces of the rings is being performed within a multidimensional observation space that includes solar phase angle, spacecraft elevation and solar elevation. Comprehensive thermal mapping is a key requirement for detailed modeling of ring thermal properties.To first order, the largest temperature changes on the lit face of the rings are driven by variations in phase angle while differences in temperature with changing spacecraft elevation are a secondary effect. Ring temperatures decrease with increasing phase angle suggesting a population of slowly rotating ring particles [Spilker, L.J., Pilorz, S.H., Wallis, B.D., Pearl, J.C., Cuzzi, J.N., Brooks, S.M., Altobelli, N., Edgington, S.G., Showalter, M., Michael Flasar, F., Ferrari, C., Leyrat, C. 2006. Cassini thermal observations of Saturn's main rings: implications for particle rotation and vertical mixing. Planet. Space Sci. 54, 1167-1176, doi: 10.1016/j.pss.2006.05.033]. Both lit A and B rings show that temperature decreases with decreasing rings solar elevation while temperature changes in the C ring and Cassini Division are more muted. Variations in the geometrical filling factor, β, are primarily driven by changes in spacecraft elevation. For the optically thinnest region of the C ring, β variations are found to be nearly exclusively determined by spacecraft elevation. Both a multilayer and a monolayer model provide an excellent fit to the data in this region. In both cases, a ring infrared emissivity >0.9 is required, together with a random and homogeneous distribution of the particles. The interparticle shadowing function required for the monolayer model is very well constrained by our data and matches experimental measurements performed by Froidevaux [1981a. Saturn's rings: infrared brightness variation with solar elevation. Icarus 46, 4-17].  相似文献   

6.
The two major factors contributing to the opposition brightening of Saturn’s rings are (i) the intrinsic brightening of particles due to coherent backscattering and/or shadow hiding on their surfaces, and (ii) the reduced interparticle shadowing when the solar phase angle α → 0°. We utilize the extensive set of Hubble Space Telescope observations (Cuzzi, J.N., French, R.G., Dones, L. [2002]. Icarus 158, 199–223) for different elevation angles B and wavelengths λ to disentangle these contributions. We assume that the intrinsic contribution is independent of B, so that any B dependence of the phase curves is due to interparticle shadowing, which must also act similarly for all λ’s. Our study complements that of Poulet et al. (Poulet, F., Cuzzi, J.N., French, R.G., Dones, L. [2002]. Icarus 158, 224), who used a subset of data for a single B ∼ 10°, and the French et al. (French, R.G., Verbiscer, A., Salo, H., McGhee, C.A., Dones, L. [2007b] PASP 119, 623–642) study for the B ∼ 23° data set that included exact opposition. We construct a grid of dynamical/photometric simulation models, with the method of Salo and Karjalainen (Salo and Karjalainen [2003]. Icarus 164, 428–460), and use these simulations to fit the elevation-dependent part of opposition brightening. Eliminating the modeled interparticle component yields the intrinsic contribution to the opposition effect: for the B and A rings it is almost entirely due to coherent backscattering; for the C ring, an intraparticle shadow hiding contribution may also be present.Based on our simulations, the width of the interparticle shadowing effect is roughly proportional to B. This follows from the observation that as B decreases, the scattering is primarily from the rarefied low filling factor upper ring layers, whereas at larger B’s the dense inner parts are visible. Vertical segregation of particle sizes further enhances this effect. The elevation angle dependence of interparticle shadowing also explains most of the B ring tilt effect (the increase of brightness with elevation). From comparison of the magnitude of the tilt effect at different filters, we show that multiple scattering can account for at most a 10% brightness increase as B → 26°, whereas the remaining 20% brightening is due to a variable degree of interparticle shadowing. The negative tilt effect of the middle A ring is well explained by the the same self-gravity wake models that account for the observed A ring azimuthal brightness asymmetry (Salo, H., Karjalainen, R., French, R.G. [2004]. Icarus 170, 70–90; French, R.G., Salo, H., McGhee, C.A., Dones, L. [2007]. Icarus 189, 493–522).  相似文献   

7.
A hexagonal structure has been observed at ∼76°N on Saturn since the 1980s (Godfrey, D.A. [1988]. Icarus 76, 335-356). Recent images by Cassini (Baines, K., Momary, T., Roos-Serote, M., Atreya, S., Brown, R., Buratti, B., Clark, R., Nicholson, P. [2007]. Geophys. Res. Abstr. 9, 02109; Baines, K., Momary, T., Fletcher, L., Kim, J., Showman, A., Atreya, S., Brown, R., Buratti, B., Clark, R., Nicholson, P. [2009]. Geophys. Res. Abstr. 11, 3375) have shown that the feature is still visible and largely unchanged. Its long lifespan and geometry has puzzled the planetary physics community for many years and its origin remains unclear. The measured rotation rate of the hexagon may be very close to that of the interior of the planet (Godfrey, D.A. [1990]. Science 247, 1206-1208; Caldwell, J., Hua, X., Turgeon, B., Westphal, J.A., Barnet, C.D. [1993]. Science 206, 326-329; Sánchez-Lavega, A., Lecacheux, J., Colas, F., Laques, P. [1993]. Science 260, 329-332), leading to earlier interpretations of the pattern as a stationary planetary wave, continuously forced by a nearby vortex (Allison, M., Godfrey, D.A., Beebe, R.F. [1990]. Science 247, 1061-1063). Here we present an alternative explanation, based on an analysis of both spacecraft observations of Saturn and observations from laboratory experiments where the instability of quasi-geostrophic barotropic (vertically uniform) jets and shear layers is studied. We also present results from a barotropic linear instability analysis of the saturnian zonal wind profile, which are consistent with the presence of the hexagon in the North Pole and absence of its counter-part in the South Pole. We propose that Saturn’s long-lived polygonal structures correspond to wavemodes caused by the nonlinear equilibration of barotropically unstable zonal jets.  相似文献   

8.
Cassini UVIS star occultations by the F ring detect 13 events ranging from 27 m to 9 km in width. We interpret these structures as likely temporary aggregations of multiple smaller objects, which result from the balance between fragmentation and accretion processes. One of these features was simultaneously observed by VIMS. There is evidence that this feature is elongated in azimuth. Some features show sharp edges. At least one F ring object is opaque and may be a “moonlet.” This possible moonlet provides evidence for larger objects embedded in Saturn's F ring, which were predicted as the sources of the F ring material by Cuzzi and Burns [Cuzzi, J.N., Burns, J.A., 1988. Icarus 74, 284-324], and as an outcome of tidally modified accretion by Barbara and Esposito [Barbara, J.M., Esposito, L.W., 2002. Icarus 160, 161-171]. We see too few events to confirm the bi-modal distribution which Barbara and Esposito [Barbara, J.M., Esposito, L.W., 2002. Icarus 160, 161-171] predict. These F ring structures and other youthful features detected by Cassini may result from ongoing destruction of small parent bodies in the rings and subsequent aggregation of the fragments. If so, the temporary aggregates are 10 times more abundant than the solid objects. If recycling by re-accretion is significant, the rings could be quite ancient, and likely to persist far into the future.  相似文献   

9.
This paper examines the onset of the viscous overstability in dense particulate rings. First, we formulate a dense gas kinetic theory that is applicable to the saturnian system. Our model is essentially that of Araki and Tremaine [Araki, S., Tremaine, S., 1986. Icarus 65, 83-109], which we show can be both simplified and generalised. Second, we put this model to work computing the equilibrium properties of dense planetary rings, which we subsequently compare with the results of N-body simulations, namely those of Salo [Salo, H., 1991. Icarus 90, 254-270]. Finally, we present the linear stability analyses of these equilibrium states, and derive criteria for the onset of viscous overstability in the self-gravitating and non-self-gravitating cases. These are framed in terms of particle size, orbital frequency, optical depth, and the parameters of the collision law. Our results compare favourably with the simulations of Salo et al. [Salo, H., Schmidt, J., Spahn, F., 2001. Icarus 153, 295-315]. The accuracy and practicality of the continuum model we develop encourages its general use in future investigations of nonlinear phenomena.  相似文献   

10.
We have completed a series of local N-body simulations of Saturn’s B and A rings in order to identify systematic differences in the degree of particle clumping into self-gravity wakes as a function of orbital distance from Saturn and dynamical optical depth (a function of surface density). These simulations revealed that the normal optical depth of the final configuration can be substantially lower than one would infer from a uniform distribution of particles. Adding more particles to the simulation simply piles more particles onto the self-gravity wakes while leaving relatively clear gaps between the wakes. Estimating the mass from the observed optical depth is therefore a non-linear problem. These simulations may explain why the Cassini UVIS instrument has detected starlight at low incidence angles through regions of the B ring that have average normal optical depths substantially greater than unity at some observation geometries [Colwell, J.E., Esposito, L.W., Srem?evi?, M., Stewart, G.R., McClintock, W.E., 2007. Icarus 190, 127-144]. We provide a plausible internal density of the particles in the A and B rings based upon fitting the results of our simulations with Cassini UVIS stellar occultation data. We simulated Cassini-like occultations through our simulation cells, calculated optical depths, and attempted to extrapolate to the values that Cassini observes. We needed to extrapolate because even initial optical depths of >4 (σ > 240 g cm−2) only yielded final optical depths no greater than 2.8, smaller than the largest measured B ring optical depths. This extrapolation introduces a significant amount of uncertainty, and we chose to be conservative in our overall mass estimates. From our simulations, we infer the surface density of the A ring to be , which corresponds to a mass of . We infer a minimum surface density of for Saturn’s B ring, which corresponds to a minimum mass estimate of . The A ring mass estimate agrees well with previous analyses, while the B ring is at least 40% larger. In sum, our lower limit estimate is that the total mass of Saturn’s ring system is 120-200% the mass of the moon Mimas, but significantly larger values would be plausible given the limitations of our simulations. A significantly larger mass for Saturn’s rings favors a primordial origin for the rings because the disruption of a former satellite of the required mass would be unlikely after the decay of the late heavy bombardment of planetary surfaces.  相似文献   

11.
12.
Brightness measurements made during 1963-1965 and 1991-2009 are used in constructing models of the brightness of the Saturn system in the Johnson B, V, R and I system. The models cover nearly the full range of phase angles and ring opening angles visible from the Earth and are believed to be accurate to 0.03-0.05 magnitudes. A U-filter model is also selected which covers ring opening angles of between 4° and 14°. The model is the first such one that treats the light from the rings as a function of the saturnicentric latitude from the Earth and Sun in a way that is consistent with observations and theoretical considerations. Six conclusions of this work are: (1) the Saturn system brightens as the solar phase angle decreases, (2) the Saturn system has an opposition surge, (3) the opposition surge increases as the ring opening angle increases, (4) the solar phase angle coefficient increases as the ring opening angle increases, (5) the B-V, V-R and R-I color indexes change by up to 0.2 magnitudes as Saturn orbits the Sun and (6) the V-filter model in this report is a better fit to the 1963-2009 data than the one proposed by Harris (Harris, D.L. [1961]. In: Kuiper, G.P., Middlehurst, B.M. (Eds), Planets and Satellites. Univ. of Chicago, Chicago, IL, pp. 272-342].  相似文献   

13.
Kari Lumme  H.J. Reitsema 《Icarus》1978,33(2):288-300
Analysis of 206 high-quality plates from three recent apparitions taken in five colors has yielded several photometric parameters for Saturn and its A and B rings. Phase curves and geometric albedos are derived for two regions of Saturn and for each ring. The phase coefficients of the rings are found to be independent of the ring-plane inclination angle. A comparison of the phase curves shows that the particles of ring A exhibit a larger phase coefficient than do those of ring B. When examined with a multiple-scattering model using Henyey-Greenstein phase functions, the observations of the ring tilt effect indicate that the particles of ring A may also have lower single-scattering and geometric albedos. The color dependence of the geometric albedo of the particles in ring B is shown to be very similar to that of Europa (J II). We find for ring A an optical thickness of 0.50 (0.45 ≤ τA ≤ 0.57) and for the Cassini division, 0.018 ± 0.004.  相似文献   

14.
The origin of Saturn's massive ring system is still unknown. Two popular scenarios—the tidal splitting of passing comets and the collisional destruction of a satellite—rely on a high cometary flux in the past. In the present paper we attempt to quantify the cometary flux during the Late Heavy Bombardment (LHB) to assess the likelihood of both scenarios. Our analysis relies on the so-called “Nice model” of the origin of the LHB [Tsiganis, K., Gomes, R., Morbidelli, A., Levison, H.F., 2005. Nature 435, 459-461; Morbidelli, A., Levison, H.H., Tsiganis, K., Gomes, R., 2005. Nature 435, 462-465; Gomes, R., Levison, H.F., Tsiganis, K., Morbidelli, A., 2005. Nature 435, 466-469] and on the size distribution of the primordial trans-neptunian planetesimals constrained in [Charnoz, S., Morbidelli, A., 2007. Icarus 188, 468-480]. We find that the cometary flux on Saturn during the LHB was so high that both scenarios for the formation of Saturn rings are viable in principle. However, a more detailed study shows that the comet tidal disruption scenario implies that all four giant planets should have comparable ring systems whereas the destroyed satellite scenario would work only for Saturn, and perhaps Jupiter. This is because in Saturn's system, the synchronous orbit is interior to the Roche Limit, which is a necessary condition for maintaining a satellite in the Roche Zone up to the time of the LHB. We also discuss the apparent elimination of silicates from the ring parent body implied by the purity of the ice in Saturn's rings. The LHB has also strong implications for the survival of the saturnian satellites: all satellites smaller than Mimas would have been destroyed during the LHB, whereas Enceladus would have had from 40% to 70% chance of survival depending on the disruption model. In conclusion, these results suggest that the LHB is the “sweet moment” for the formation of a massive ring system around Saturn.  相似文献   

15.
M. Seiß  F. Spahn  Jürgen Schmidt 《Icarus》2010,210(1):298-317
Saturn’s rings host two known moons, Pan and Daphnis, which are massive enough to clear circumferential gaps in the ring around their orbits. Both moons create wake patterns at the gap edges by gravitational deflection of the ring material (Cuzzi, J.N., Scargle, J.D. [1985]. Astrophys. J. 292, 276-290; Showalter, M.R., Cuzzi, J.N., Marouf, E.A., Esposito, L.W. [1986]. Icarus 66, 297-323). New Cassini observations revealed that these wavy edges deviate from the sinusoidal waveform, which one would expect from a theory that assumes a circular orbit of the perturbing moon and neglects particle interactions. Resonant perturbations of the edges by moons outside the ring system, as well as an eccentric orbit of the embedded moon, may partly explain this behavior (Porco, C.C., and 34 colleagues [2005]. Science 307, 1226-1236; Tiscareno, M.S., Burns, J.A., Hedman, M.M., Spitale, J.N., Porco, C.C., Murray, C.D., and the Cassini Imaging team [2005]. Bull. Am. Astron. Soc. 37, 767; Weiss, J.W., Porco, C.C., Tiscareno, M.S., Burns, J.A., Dones, L. [2005]. Bull. Am. Astron. Soc. 37, 767; Weiss, J.W., Porco, C.C., Tiscareno, M.S. [2009]. Astron. J. 138, 272-286). Here we present an extended non-collisional streamline model which accounts for both effects. We describe the resulting variations of the density structure and the modification of the nonlinearity parameter q. Furthermore, an estimate is given for the applicability of the model. We use the streamwire model introduced by Stewart (Stewart, G.R. [1991]. Icarus 94, 436-450) to plot the perturbed ring density at the gap edges.We apply our model to the Keeler gap edges undulated by Daphnis and to a faint ringlet in the Encke gap close to the orbit of Pan. The modulations of the latter ringlet, induced by the perturbations of Pan (Burns, J.A., Hedman, M.M., Tiscareno, M.S., Nicholson, P.D., Streetman, B.J., Colwell, J.E., Showalter, M.R., Murray, C.D., Cuzzi, J.N., Porco, C.C., and the Cassini ISS team [2005]. Bull. Am. Astron. Soc. 37, 766), can be well described by our analytical model. Our analysis yields a Hill radius of Pan of 17.5 km, which is 9% smaller than the value presented by Porco (Porco, C.C., and 34 colleagues [2005]. Science 307, 1226-1236), but fits well to the radial semi-axis of Pan of 17.4 km. This supports the idea that Pan has filled its Hill sphere with accreted material (Porco, C.C., Thomas, P.C., Weiss, J.W., Richardson, D.C. [2007]. Science 318, 1602-1607). A numerical solution of a streamline is used to estimate the parameters of the Daphnis-Keeler gap system, since the close proximity of the gap edge to the moon induces strong perturbations, not allowing an application of the analytic streamline model. We obtain a Hill radius of 5.1 km for Daphnis, an inner edge variation of 8 km, and an eccentricity for Daphnis of 1.5 × 10−5. The latter two quantities deviate by a factor of two from values gained by direct observations (Jacobson, R.A., Spitale, J., Porco, C.C., Beurle, K., Cooper, N.J., Evans, M.W., Murray, C.D. [2008]. Astron. J. 135, 261-263; Tiscareno, M.S., Burns, J.A., Hedman, M.M., Spitale, J.N., Porco, C.C., Murray, C.D., and the Cassini Imaging team [2005]. Bull. Am. Astron. Soc. 37, 767), which might be attributed to the neglect of particle interactions and vertical motion in our model.  相似文献   

16.
Several different trans-neptunian objects have been studied in order to investigate their physical and chemical properties. New observations in the 1.1-1.4 μm range, obtained with the ISAAC instrument, are presented in order to complete previous observations carried out with FORS1 in the visible and SINFONI in the near infrared. All of the observations have been performed at the ESO/Very Large Telescope. We analyze the spectra of six different objects (2003 AZ83, Echeclus, Ixion, 2002 AW197, 1999 DE9 and 2003 FY128) in the 0.45-2.3 μm range with the model of Hapke (Hapke, B. [1981]. J. Geophys. Res. 86, 4571-4586) and the method of Shkuratov et al. (Shkuratov, Y., Starukhina, L., Hoffmann, H., Arnold, G. [1999]. Icarus 137, 235-246). Water ice is found on two objects, and in particular it is confirmed in its amorphous and crystalline states on 2003 AZ84 surface. Upper limits on the water ice content are given for the other four TNOs investigated, confirming previous results (Barkume, K.M., Brown, M.E., Schaller, E.L. [2008]. Astron. J. 135, 55-67; Guilbert, A., Alvarez-Candal, A., Merlin, F., Barucci, M.A., Dumas, C., de Bergh, C., Delsanti, A. [2009]. Icarus 201, 272-283). Whatever the absorption features in the near infrared, all objects but one exhibit a moderate red slope in the visible, as most TNOs and Centaurs. We discuss the implications of the presence of water ice and the probable sources of the red slope.  相似文献   

17.
Over the last 15 to 20 years several high quality, high resolution data have been taken with the very large array (VLA). These data exhibit a wide range of ring opening angles (|B|=0 to 26°) and wavelengths (λ=0.7 to 20 cm). At these wavelengths the primary flux from the rings is scattered saturnian thermal emission, with a small contribution coming from the ring particles' own thermal emission. Much of the data do show signs of asymmetries due to wakes either on the ansae or the portion of the rings which occult the planet. As in previous work, we use our Monte Carlo radiative transfer code including idealized wakes [Dunn, D.E., Molnar, L.A., Fix, J.D., 2002. Icarus 160, 132-160; Dunn, D.E., Molnar, L.A., Niehof, J.T., de Pater, I., Lissauer, J.L., 2004. Icarus 171, 183-198] to model the relative contributions of the scattered and thermal radiation emanating from the rings and compare the results to that seen in the data. Although the models do give satisfactory fits to all of our data, we find that no single model can simulate the data at all different |B| and λ. We find that one model works best for moderate and low |B| and another one at higher |B|. The main difference between these models is the ratio of the wake width to their separation. We similarly find that the 2 cm data require higher density wakes than the longer wavelength data, perhaps caused by a preponderance of somewhat smaller ring material in the wakes. We further find evidence for an increase in the physical temperature of the rings with increasing |B|. Continuous observations are required to determine whether the above results regarding variations in wake parameters with |B| and λ are indeed caused by these parameters, or instead by changes over time.  相似文献   

18.
We report new radar observations of E-class Asteroid 64 Angelina and M-class Asteroid 69 Hesperia obtained with the Arecibo Observatory S-band radar (2480 MHz, 12.6 cm). Our measurements of Angelina’s radar bandwidth are consistent with reported diameters and poles. We find Angelina’s circular polarization ratio to be 0.8 ± 0.1, tied with 434 Hungaria for the highest value observed for main-belt asteroids and consistent with the high values observed for all E-class asteroids (Benner, L.A.M., Ostro, S.J., Magri, C., Nolan, M.C., Howell, E.S., Giorgini, J.D., Jurgens, R.F., Margot, J.L., Taylor, P.A., Busch, M.W., Shepard, M.K. [2008]. Icarus 198, 294-304; Shepard, M.K., Kressler, K.M., Clark, B.E., Ockert-Bell, M.E., Nolan, M.C., Howell, E.S., Magri, C., Giorgini, J.D., Benner, L.A.M., Ostro, S.J. [2008b]. Icarus 195, 220-225). Our radar observations of 69 Hesperia, combined with lightcurve-based shape models, lead to a diameter estimate, Deff = 110 ± 15 km, approximately 20% smaller than the reported IRAS value. We estimate Hesperia to have a radar albedo of , consistent with a high-metal content. We therefore add 69 Hesperia to the Mm-class (high metal M) (Shepard, M.K., Clark, B.E., Ockert-Bell, M., Nolan, M.C., Howell, E.S., Magri, C., Giorgini, J.D., Benner, L.A.M., Ostro, S.J., Harris, A.W., Warner, B.D., Stephens, R.D., Mueller, M. [2010]. Icarus 208, 221-237), bringing the total number of Mm-class objects to eight; this is 40% of all M-class asteroids observed by radar to date.  相似文献   

19.
Io’s sublimation-driven atmosphere is modeled using the direct simulation Monte Carlo (DSMC) method. These rarefied gas dynamics simulations improve upon earlier models by using a three-dimensional domain encompassing the entire planet computed in parallel. The effects of plasma heating, planetary rotation, inhomogeneous surface frost, molecular residence time of SO2 on the exposed (non-volatile) rocky surface, and surface temperature distribution are investigated. Circumplanetary flow is predicted to develop from the warm dayside toward the cooler nightside. Io’s rotation leads to a highly asymmetric frost surface temperature distribution (due to the frost’s high thermal inertia) which results in circumplanetary flow that is not axi-symmetric about the subsolar point. The non-equilibrium thermal structure of the atmosphere, specifically vibrational and rotational temperatures, is also examined. Plasma heating is found to significantly inflate the atmosphere on both the dayside and nightside. The plasma energy flux causes high temperatures at high altitudes but plasma energy depletion through the dense gas column above the warmest frost permits gas temperatures cooler than the surface at low altitudes. A frost map (Douté, S., Schmitt, B., Lopes-Gautier, R., Carlson, R., Soderblom, L., Shirley, J., and the Galileo NIMS Team [2001]. Icarus 149, 107-132) is used to control the sublimated flux of SO2 which can result in inhomogeneous column densities that vary by nearly a factor of four for the same surface temperature. A short residence time for SO2 molecules on the “rock” component is found to smooth lateral atmospheric inhomogeneities caused by variations in the surface frost distribution, creating an atmosphere that looks nearly identical to one with uniform frost coverage. A longer residence time is found to agree better with mid-infrared observations (Spencer, J.R., Lellouch, E., Richter, M.J., López-Valverde, M.A., Jessup, K.L, Greathouse, T.K., Flaud, J. [2005]. Icarus 176, 283-304) and reproduce the observed anti-jovian/sub-jovian column density asymmetry. The computed peak dayside column density for Io assuming a surface frost temperature of 115 K agrees with those suggested by Lyman-α observations (Feaga, L.M., McGrath, M., Feldman, P.D. [2009]. Icarus 201, 570-584). On the other hand, the peak dayside column density at 120 K is a factor of five larger and is higher than the upper range of observations (Jessup, K.L., Spencer, J.R., Ballester, G.E., Howell, R.R., Roesler, F., Vigel, M., Yelle, R. [2004]. Icarus 169, 197-215; Spencer et al., 2005).  相似文献   

20.
BVI photometry of Triton and Proteus was derived from HST images taken in 1997. The VEGAMAG photometric technique was used. Triton was found to be brighter by a few percent than observations of the 1970's and 1980's, as expected due to the increasingly greater exposure of the bright south polar region. The leading side was also found to be brighter than the trailing side by 0.09 mag in all filters—50% larger than reported by Franz [Franz, O.G., 1981. Icarus 45, 602-606]. Contrary to our previous results [Pascu, D., et al., 1998. Bull. Am. Astron. Soc. 30, 1101], we found no episodic reddening. Our previous conclusions were based on an inaccurate early version of the Charge Transfer Efficiency (CTE) correction. The present result limits the start of the reddening event reported by Hicks and Buratti [Hicks, M.D., Buratti, B.J., 2004. Icarus 171, 210-218]. Our (B-V) result of 0.70±0.01 supports the global blueing described by Buratti et al. [Buratti, B.J., Goguen, J.D., Gibson, J., Mosher, J., 1994. Icarus 110, 303-314]. Our observations of July 1997 agree with the Voyager results and are among the bluest colors seen. We found Proteus somewhat brighter than earlier studies, but in good agreement with the recent value given by Karkoschka [Karkoschka, E., 2003. Icarus 162, 400-407]. A leading/trailing brightness asymmetry was detected for Proteus, with the leading side 0.1 mag brighter. The unique differences in action of the endogenic and exogenic processes on Triton and Proteus provides an opportunity to separate the endogenic and exogenic effects on Triton.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号