首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Calculation of stationary distributions of the most important plasma parameters (particle energy, density, field-aligned and transversal pressure) is performed for a model magnetotail plasma sheet which is formed by convecting plasma mantle particles injected into the closed geomagnetic field line tubes. Computations have been done for two convection models: (i) a model of completely adiabatic particle motion with conservation of the first two invariants and (ii) a model with a strong pitch-angle diffusion which maintains isotropy. It is found that in both cases the heating and compression of the plasma are somewhat more effective than is necessary to account for the observed gradients of magnetic field in the magnetospheric tail. A leakage of accelerated particles through the dawn and dusk edges of the plasma sheet is proposed as a possible mechanism for maintenance of stationary convection in the magnetotail. The question of the dependence of the stationary magnetotail parameters on the solar wind state is discussed briefly.  相似文献   

2.
3.
Auroral, magnetic variation and pulsation data from the dense network in the nearmidnight portion of the auroral zone are used together with the measurements of suprathermal particles and electromagnetic fields by the IMP-8 and ISEE-1 spacecraft within the plasma sheet to study the characteristics of activity during two magnetically quiet periods on 3 March 1976 and 23 March 1979. Contrary to existing beliefs, we found clear signatures of numerous (5–10 events per hour) transient events, characterized by plasma flows, energetic particle bursts and EB field variations. A close association of these events in the plasma sheet with the local auroral flares (LAFs) in the conjugate sector of the auroral zone is established for many events. We conclude that LAF (local auroral arc activation with associated Pi pulsations but extremely weak magnetic bays) have the same plasma sheet manifestations (apparently, the same physics) as the individual substorm intensifications during strong substorm expansion events, which differ from the studied quiet periods mainly by the strength and number of these intensifications. These transient phenomena seem to play an important role in the energetics of the quiet time magnetotail.  相似文献   

4.
Magnetospheric substorm in the magnetotail region is studied numerically by means of a three-dimensional MHD code. The analytic solution for the quiet magnetotail is emloyed as an initial configuration. The localized solar wind is modeled to enter the simulation domain through the boundaries located in the magnetotail lobe region. As a result of the interaction between the solar wind and the magnetosphere, the magnetic field lines are stretched, and the plasma sheet becomes thinner and thinner. When the current-driven resistivity is generated, magnetic reconnection is triggered by this resistivity. The resulting plasma jetting is found to be super-magnetosonic. Although the plasmoid formation and its tailward motion is not quite clear as in the two-dimensional simulation, which is mainly because of the numerical model chosen for the present simulation, the rarification of the plasmas near thex-point is observed. Field-aligned currents are observed in the late expansive stage of the magnetospheric substorm. These field-aligned currents flow from the tail toward the ionosphere on the dawn side and from the ionosphere toward the tail on the dusk side, namely in the same sence of the region 1 current. As the field-aligned currents develop, it is found that the cross-tail current in the Earthside midnight section of the magneticx-point is reduced.  相似文献   

5.
Through a synthesis of magnetometer, plasma, energetic particle and electric field data from the ISEE satellite pair, we describe the characteristics of the initial (11 December 1977) magnetotail plasma vortex event reported by Hones et al. (1978). The event is associated with a hot (β ~ 1) compressional hydromagnetic wave and apparent vortical motion is seen because at two points in the flow cycle the flow is field-aligned. The behaviour of the energetic ions receives special study : when combined with the thermal flow measurements energy dispersion is evident in the field-aligned flow, while the large pitch angle energetic ions reveal the presence of gradients. We argue that these gradients are wave-induced and use the data to determine the perpendicular wave wavelength together with the speed and direction of transverse wave propagation.  相似文献   

6.
An interpretation of the stable trapping boundaries of energetic electrons and protons during quiet periods is given basing on a realistic magnetospheric magnetic field model. Particle losses are explained in terms of an ionospheric and drift loss cone filling due to a non-adiabatic pitch-angle scattering in the nightside magnetotail current sheet. The proposed mechanism is shown to provide a good agreement of the observed and calculated positions of the energetic particle trapping boundaries, as well as their energy dependence. The obtained results can be applied as a tool for investigating the magnetospheric magnetic field structure using the particle data of low-altitude satellites.  相似文献   

7.
Low-energy particle trajectories in an idealized magnetotail magnetic field are investigated to determine the accessibility of magnetosheath protons and electrons to the plasma sheet along the flanks of the tail magnetopause. The drift motion of the positively (negatively) charged particles incident on the dawn (dusk) magnetotail flank causes such particles to penetrate deeper into the magnetotail. For certain combinations of particle energy, incident velocity vector and initial penetration point on the tail magnetopause, the incident particles can become trapped in the plasma sheet, after which their net drift motion then provides a current capable of supporting the entire observed magnetotail field. The results further indicate that the bulk of the solar wind plasma just outside the distant tail boundary, which streams preferentially in a direction along the magnetopause away from the Earth at velocities around 400 km s?1, can be caught up in the tail if the initial penetration point is within about 2RE, of the quasi-neutral sheet. It is suggested that a large fraction of the magnetotail plasma is composed of former solar wind particles which have penetrated the magnetospheric boundary at the tail flanks.  相似文献   

8.
A system of multi-fluid MHD-equations is used to compare adiabatic and non-adiabatic transport of the energetic particles in the magnetospheric plasma sheet. A “slow-flow” approximation is considered to study large-scale transport of the anisotropic plasma consisting of energetic electrons and protons. Non-adiabatic transport of the energetic plasma is caused by scattering of the particles in the presence of both wave turbulence and arbitrary time-varying electric fields penetrating from the solar wind into the magnetosphere. The plasma components are devided into particle populations defined by their given initial effective values of the magnetic moment per particle. The spatial scales are also given to estimate the non-uniformity of the geomagnetic field along the chosen mean path of a particle. The latters are used to integrate approximately the system of MHD-equations along each of these paths. The behaviour of the magnetic moment mentioned above and of the parameter which characterizes the pitch-angle distribution of the particles are studied self-consistently in dependence on the intensity of non-adiabatic scattering of the particles. It is shown that, in the inner magnetosphere, this scattering influences the particles in the same manner as pitch-angle diffusion does. It reduces the pitch-angle anisotropy in the plasa. The state of the plasma may be unstable in the current sheet of the magnetotail. If the initial state of the plasma does not correspond to the equilibrium one, then, in this case, scattering influences the particles so as to remove the plasma further from the equilibrium state. The coefficient of the particle diffusion across the geomagnetic field lines is evaluated. This is done by employing the Langevin approach to take the stochastic electric forces acting on the energetic particles in the turbulent plasma into account. The behaviour of the energy density of electrostatic fluctuations in the magnetosphere is estimated.  相似文献   

9.
A family of exact analytic solutions of the time-independent Vlasov-Maxwell equations is presented. The solutions describe two-dimensional equilibrium current sheet with magnetic field structures resembling that produced by the tearing instability. In particular, the solutions presented here do not restrict the field in the magnetic island to small magnitude. It is shown that as the scale length of the magnetic island increases, the thickness of the current sheet increases while the average current and the average magnetic energy decrease. The tearing structures described by the solutions may exist in the magnetotail current sheet, the magnetopause current layer and the field-aligned auroral sheet current.  相似文献   

10.
Energetic charged particles, which are often observed in solar active regions, may be also produced in interplanetary space due to the decoupling of ions and electrons in plasma. The Hall term in general Ohm's law is generally thought to be responsible for the decoupling of electrons and ions in plasma during magnetic reconnection. In this paper, a Hall MHD model is developed to study energetic charged particle events produced during fluctuations in the interplanetary magnetic field intensity. Two energetic charged particle events are used to test this model. It is concluded that the Hall effect does not only play the important role in the process of magnetic reconnection, but also in energetic charged particle events produced during fluctuations in the interplanetary magnetic field intensity.  相似文献   

11.
The configuration of the magnetotail magnetic field has been calculated for a situation where a disruption of a portion of the tail current system develops. The decrease of the current in a localized region of the magnetotail leads to a collapse of the magnetic field in that vicinity. The calculated configuration of the field resembles what is predicted by reconnection models with the field lines moving toward the neutral sheet and then connecting and either moving toward or away from the earth. Associated with this changing magnetic field there is an induced electric field which will then influence the motion of the plasma in the magnetotail via E × B drifts.When the current from Xsm = ?20 to ?40 RE in the tail is decreasing with a tune-constant of 0.5 h the electric field produced, which is primarily westward, has a maximum value of 0.83 mV m?1 and produces plasma sheet thinning velocities of 0.3 km s?1. Higher velocities result for more rapid rates of current decrease, and they agree well with experimental observations. The plasma flows in the sunward direction are, however, much smaller than what has been observed. This is due in part to the inability of the magnetic field model to adequately represent the magnetic field in the immediate vicinity of the neutral sheet. Use of an improved model would give better agreement with the observations.The calculations show that the induced electric field of a time-dependent magnetic field is able to explain certain observed features of the plasma sheet motions. Also, this agreement suggests that the assumption that there is no charge separation contribution to the electric field may be reasonable during situations of large scale and rapid current disruptions in the magnetotail.  相似文献   

12.
太阳米波和分米波的射电观测是对太阳爆发过程中耀斑和日冕物质抛射现象研究的重要观测手段。米波和分米波的太阳射电暴以相干等离子体辐射为主导,表现出在时域和频域的多样性和复杂性。其中Ⅱ型射电暴是激波在日冕中运动引起电磁波辐射的结果。在Ⅱ型射电暴方面,首先对米波Ⅱ型射电暴的激波起源问题和米波Ⅱ型射电暴与行星际Ⅱ型射电暴的关系问题进行了讨论;其次,结合Lin-Forbes太阳爆发理论模型对Ⅱ型射电暴的开始时间和起始频率进行讨论:最后,对Ⅱ型射电暴信号中包含的两种射电精细结构,Herringbone结构(即鱼骨结构)和与激波相关的Ⅲ型射电暴也分别进行了讨论。Ⅲ型射电暴是高能电子束在日冕中运动产生电磁波辐射的结果。在Ⅲ型射电暴方面,首先介绍了利用Ⅲ型射电暴对日冕磁场位形和等离子体密度进行研究的具体方法;其次,对利用Ⅲ型射电暴测量日冕温度的最新理论进行介绍;最后,对Ⅲ型射电暴和Ⅱ型射电暴的时间关系、Ⅲ型射电暴和粒子加速以及Ⅲ型射电暴信号中包含的射电精细结构(例如斑马纹、纤维爆发及尖峰辐射)等问题进行讨论并介绍有关的最新研究进展。  相似文献   

13.
The behaviour of energetic electrons in the distant magnetosphere near the midnight meridian during polar substorms has been studied for the period March 5th–April 4th, 1965, using data from two end window Geiger counters flown on the IMP 2 satellite (apogee 15.8 Earth radii) and magnetic records from a chain of auroral zone stations around the world at magnetic latitudes equivalent to L = 7.4 ± 2.0.

When the satellite was in the distant radiation zone or in the plasma sheet which extends down the Earth's magnetic tail, sudden decreases in the horizontal magnetic field component at ground stations near the midnight meridian (negative magnetic bays) were followed by sudden increases in 40 keV electron fluxes (electron islands) at the satellite. When the satellite was at high latitudes in the magnetic tail ‘bays’ often were not followed by ‘islands.’ When the satellite was near the centre of the plasma sheet, energetic electron fluxes were observed even during magnetically quiet periods. The time delay between the sharp onset of magnetic bays in the auroral zone and the corresponding rapid increase in energetic electron intensity at the satellite, typically some tens of minutes, was least when the satellite was close to the Earth and increased with its increasing radial distance from the Earth. The delay was also a function of distance of the satellite from the centre of the plasma sheet, and of the magnitude of the intensity increase (smaller delays for larger intensity increases). We deduce that the disturbance producing the magnetic bays and associated particle acceleration originates fairly deep in the magnetosphere and propagates outward to higher L values, and down the plasma sheet in the Earth's magnetic tail on the dark side of the Earth. It is unlikely that the accelerated electrons are themselves drifting away from the Earth, because the apparent velocity with which the islands move away from the Earth decreases with increasing distance from the Earth.

It is suggested that the polar substorm and the associated particle acceleration are part of an impulsive ejection mechanism of magnetospheric energy into the ionosphere, rather than an impulsive injection mechanism of solar wind energy into the magnetosphere.  相似文献   


14.
We have studied the solar wind-magnetosphere interaction using a 3-D electromagnetic particle code. The results for an unmagnetized solar wind plasma streaming past a dipole magnetic field show the formation of a magnetopause and a magnetotail, the penetration of energetic particles into cusps and radiation belt and dawn-dusk asymmetries. The effects of interplanetary magnetic field (IMF) have been investigated in a similar way as done by MHD simulations. The simulation results with a southward IMF show the shrunk magnetosphere with great particle entry into the cusps and nightside magnetosphere. This is a signature of a magnetic reconnection at the dayside magnetopause. After a quasi-stable state is established with an unmagnetized solar wind we switched on a solar wind with an northward IMF. In this case the significant changes take place in the magnetotail. The waving motion was seen in the magnetotail and its length was shortened. This phenomena are consistent with the reconnections which occur at the high latitude magnetopause. In our simulations kinetic effects will determine the self-consistent anomalous resistivity in the magnetopause that causes reconnections.Deceased January 24, 1993; R. Bunemanet al. 1993.  相似文献   

15.
《Planetary and Space Science》2007,55(14):2164-2172
Both the MARSIS ionospheric sounder and the charged particle instrument package ASPERA-3 are experiments on board the Mars Express spacecraft. Joint observations have shown that events of intense ionospheric electron density enhancements occur in the lower ionosphere of magnetic cusp regions, and that these enhancements are not associated with precipitation of charged particles above a few hundred electron volts (<300 eV). To account for the enhancement by particle precipitation, electron fluxes are required with mean energy between 1 and 10 keV. No ionizing radiation, neither energetic particles nor X-rays, could be identified, which could produce the observed density enhancement only in the spatially limited cusp regions. Actually, no increase in ionizing radiation, localized or not, was observed during these events. It is argued that the process causing the increase in density is controlled mainly by convection of ionosphere plasma driven by the interaction between the solar wind and crustal magnetic field lines leading to excitation of two-stream plasma waves in the cusp ionosphere. The result is to heat the plasma, reduce the electron–ion recombination coefficient and thereby increase the equilibrium electron density.  相似文献   

16.
A self-consistent calculation of the magnetic field and plasma distribution in the magnetotail has been undertaken for static conditions. We find the best agreement with experimental observations by satellite in the tail for an isotropic particle pitch angle distribution, a slow decrease of magnetic field intensity as a function of distance from the Earth |x|−0.3, and a northward field in the equatorial plane of about 1 gamma at the position of the lunar orbit. Knowing the field and plasma distribution we calculate the sources of the electrical current and find that the magnetic field in the tail can be supported entirely by solar wind drifting into the curved and diminishing magnetic field of the magnetotail. Furthermore the plasma present in the tail at any one instant is swept out in a very short time due to its large curvature drift velocity; the constant plasma sheet is maintained by constant renewal of entering solar wind plasma.  相似文献   

17.
Energetic ion (E ? 290 keV) and electron (Ee ? 220 keV) burst intensities were simultaneously monitored at various regions of the plasma sheet and magnetosheath by the CPME JHU/APL instruments on board the IMP-7 and 8 s/c during an extended period from day 250, 1975 to day 250, 1976 when the two spacecraft were closely trailing each other in crossing the geomagnetotail. The energy spectra of the energetic particle populations of different regions in the magnetotail were also computed and monitored simultaneously at the positions of the two spacecraft. The results indicate that the energetic particle intensities are higher and the energy spectra in general considerably softer inside the plasma sheet than the adjacent magnetosheath. The spectral index γ of a power law fit in the computed energy spectrum inside the plasma sheet occasionally exceeds γ > 10 for the ions and γ > 6 for the electrons. Furthermore simultaneous monitoring of particle intensities in the vicinity of the neutral sheet and the high latitude plasma sheet shows higher intensities in the former region. The observations suggest that the energetic particles escape to the magnetosheath from their source inside the plasma sheet by a rigidity dependent process. A dawn-dusk asymmetry in the particle acceleration and escape processes is implied in the observations and discussed in detail.  相似文献   

18.
The mean electromotive force perpendicular to the mean current (Rädler effect) by random hydromagnetic waves in a collisionless plasma is derived. The results are applied to the field-aligned currents in the Earth's magnetotail. It is shown that the Rädler-effect electric field is large enough to give the observed value of the field-aligned currents and can be identified as a possible source for the field-aligned currents.  相似文献   

19.
We use the specific scintillations of jovian decametric radio sources (modulation lanes), which are produced by plasma inhomogeneities in the vicinity of that planet, to probe the inner magnetosphere of Jupiter. The positions and frequency drift of 1762 lanes have been measured on the DAM spectra from archives. A special 3D algorithm is used for space localization of field-aligned magnetospheric inhomogeneities by the frequency drift of modulation lanes. As a result, the main regions of the lane formation are found: the Io plasma torus; the magnetic shell of the Gossamer Ring at Thebe and Amalthea orbits; and the region above the magnetic anomaly in the northern magnetosphere. It is shown that modulation lanes reveal the depleted magnetic tubes in practically unvisited, innermost regions of the jovian magnetosphere. The local and probably temporal plasma enhancement is found at the magnetic shell of Thebe satellite. Hence, the modulation lanes are a valuable instrument for remote sensing of those parts of jovian magnetosphere, which are not studied yet in situ.  相似文献   

20.
Initially, inhomogeneous plasma jets, ejected by active galactic nuclei and associated with gamma-ray bursts, are thermalized by the formation of internal shocks. Jet subpopulations can hereby collide at Lorentz factors of a few. As the resulting relativistic shock expands into the upstream plasma, a significant fraction of the upstream ions is reflected. These ions, together with downstream ions that leak through the shock, form relativistic beams of ions that outrun the shock. The thermalization of these beams via the two-stream instability is thought to contribute significantly to plasma heating and particle acceleration by the shock. Here, the capability of a two-stream instability to generate relativistic field-aligned and cross-field electron flow, is examined for a magnetized plasma by means of a particle-in-cell (PIC) simulation. The electrons interact with the developing quasi-electrostatic waves and oblique magnetic fields. The simulation results bring forward evidence that such waves, by their non-linear interactions with the plasma, produce a highly relativistic field-aligned electron flow and electron energies, which could contribute to the radio synchrotron emissions from astrophysical jets, to ultrarelativistic leptonic subpopulations propagating with the jet and to the halo particles surrounding the accretion disc of the black hole.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号