首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
E.A. Cloutis  P. Hudon  T. Hiroi  M.J. Gaffey 《Icarus》2012,217(1):389-407
Powdered samples of a suite of 14 CR and CR-like chondrites, ranging from petrologic grade 1 to 3, were spectrally characterized over the 0.3–2.5 μm interval as part of a larger study of carbonaceous chondrite reflectance spectra. Spectral analysis was complicated by absorption bands due to Fe oxyhydroxides near 0.9 μm, resulting from terrestrial weathering. This absorption feature masks expected absorption bands due to constituent silicates in this region. In spite of this interference, most of the CR spectra exhibit absorption bands attributable to silicates, in particular an absorption feature due to Fe2+-bearing phyllosilicates near 1.1 μm. Mafic silicate absorption bands are weak to nonexistent due to a number of factors, including low Fe content, low degree of silicate crystallinity in some cases, and presence of fine-grained, finely dispersed opaques. With increasing aqueous alteration, phyllosilicate: mafic silicate ratios increase, resulting in more resolvable phyllosilicate absorption bands in the 1.1 μm region. In the most phyllosilicate-rich CR chondrite, GRO 95577 (CR1), an additional possible phyllosilicate absorption band is seen at 2.38 μm. In contrast to CM spectra, CR spectra generally do not exhibit an absorption band in the 0.65–0.7 μm region, which is attributable to Fe3+–Fe2+ charge transfers, suggesting that CR phyllosilicates are not as Fe3+-rich as CM phyllosilicates. CR2 and CR3 spectra are uniformly red-sloped, likely due to the presence of abundant Fe–Ni metal. Absolute reflectance seems to decrease with increasing degree of aqueous alteration, perhaps due to the formation of fine-grained opaques from pre-existing metal. Overall, CR spectra are characterized by widely varying reflectance (4–21% maximum reflectance), weak silicate absorption bands in the 0.9–1.3 μm region, overall red slopes, and the lack of an Fe3+–Fe2+ charge transfer absorption band in the 0.65–0.7 μm region.  相似文献   

2.
E.A. Cloutis  P. Hudon  T. Hiroi 《Icarus》2011,216(1):309-346
We have examined the spectral reflectance properties and available modal mineralogies of 39 CM carbonaceous chondrites to determine their range of spectral variability and to diagnose their spectral features. We have also reviewed the published literature on CM mineralogy and subclassification, surveyed the published spectral literature and added new measurements of CM chondrites and relevant end members and mineral mixtures, and measured 11 parameters and searched pair-wise for correlations between all quantities. CM spectra are characterized by overall slopes that can range from modestly blue-sloped to red-sloped, with brighter spectra being generally more red-sloped. Spectral slopes, as measured by the 2.4:0.56 μm and 2.4 μm:visible region peak reflectance ratios, range from 0.90 to 2.32, and 0.81 to 2.24, respectively, with values <1 indicating blue-sloped spectra. Matrix-enriched CM spectra can be even more blue-sloped than bulk samples, with ratios as low as 0.85. There is no apparent correlation between spectral slope and grain size for CM chondrite spectra - both fine-grained powders and chips can exhibit blue-sloped spectra. Maximum reflectance across the 0.3-2.5 μm interval ranges from 2.9% to 20.0%, and from 2.8% to 14.0% at 0.56 μm. Matrix-enriched CM spectra can be darker than bulk samples, with maximum reflectance as low as 2.1%. CM spectra exhibit nearly ubiquitous absorption bands near 0.7, 0.9, and 1.1 μm, with depths up to 12%, and, less commonly, absorption bands in other wavelength regions (e.g., 0.4-0.5, 0.65, 2.2 μm). The depths of the 0.7, 0.9, and 1.1 μm absorption features vary largely in tandem, suggesting a single cause, specifically serpentine-group phyllosilicates. The generally high Fe content, high phyllosilicate abundance relative to mafic silicates, and dual Fe valence state in CM phyllosilicates, all suggest that the phyllosilicates will exhibit strong absorption bands in the 0.7 μm region (due to Fe3+-Fe2+ charge transfers), and the 0.9-1.2 μm region (due to Fe2+ crystal field transitions), and generally dominate over mafic silicates. CM petrologic subtypes exhibit a positive correlation between degree of aqueous alteration and depth of the 0.7 μm absorption band. This is consistent with the decrease in fine-grained opaques that accompanies aqueous alteration. There is no consistent relationship between degree of aqueous alteration and evidence for a 0.65 μm region saponite-group phyllosilicate absorption band. Spectra of different subsamples of a single CM can show large variations in absolute reflectance and overall slope. This is probably due to petrologic variations that likely exist within a single CM chondrite, as duplicate spectra for a single subsample show much less spectral variability. When the full suite of available CM spectra is considered, few clear spectral-compositional trends emerge. This indicates that multiple compositional and physical factors affect absolute reflectance, absorption band depths, and absorption band wavelength positions. Asteroids with reflectance spectra that exhibit absorption features consistent with CM spectra (i.e., absorption bands near 0.7 and 0.9 μm) include members from multiple taxonomic groups. This suggests that on CM parent bodies, aqueous alteration resulted in the consistent production of serpentine-group phyllosilicates, however resulting absolute reflectances and spectral shapes seen in CM reflectance spectra are highly variable, accounting for the presence of phyllosilicate features in reflectance spectra of asteroids across diverse taxonomic groups.  相似文献   

3.
E.A. Cloutis  T. Hiroi 《Icarus》2011,212(1):180-209
Existing reflectance spectra of CI chondrites (18 spectra of 3 CIs) have been augmented with new (18 spectra of 2 CIs) reflectance spectra to ascertain the spectral variability of this meteorite class and provide insights into their spectral properties as a function of grain size, composition, particle packing, and viewing geometry. Particle packing and viewing geometry effects have not previously been examined for CI chondrites. The current analysis is focused on the 0.3-2.5 μm interval, as this region is available for the largest number of CI spectra. Reflectance spectra of powdered CI1 chondrites are uniformly dark (<10% maximum reflectance) but otherwise exhibit a high degree of spectral variability. Overall spectral slopes range from red (increasing reflectance with increasing wavelength) to blue (decreasing reflectance with increasing wavelength). A number of the CI spectra exhibit weak (<5% deep) absorption bands that can be attributed to both phyllosilicates and magnetite. Very weak absorption bands attributable to other CI phases, such as carbonates, sulfates, and organic matter may be present in one or a few spectra, but their identification is not robust. We found that darker spectra are generally correlated with bluer spectral slopes: a behavior most consistent with an increasing abundance of fine-grained magnetite and/or insoluble organic material (IOM), as no other CI opaque phase appears able to produce concurrent darkening and bluing. Magnetite can also explain the presence of an absorption feature near 1 μm in some CI spectra. The most blue-sloped spectra are generally associated with the larger grain size samples. For incidence and emission angles <60°, increasing phase angle results in darker and redder spectra, particularly below ∼1 μm. At high incidence angles (60°), increasing emission angle results in brighter and redder spectra. More densely packed samples and underdense (fluffed) samples show lower overall reflectance than normally packed and flat-surface powdered samples. Some B-class asteroids exhibit selected spectral properties consistent with CI chondrites, although perfect spectral matches have not been found. Because many CI chondrite spectra exhibit absorption features that can be related to specific mineral phases, the search for CI parent bodies can fruitfully be conducted using such parameters.  相似文献   

4.
Metamorphic CK carbonaceous chondrites display matrix textures that are best explained by a transient thermal event with temperatures in the 550–950 K range and durations in the order of days to years, longer than what is commonly admitted for shock events but shorter than what is required for nuclide decay. We propose that radiative heating of small carbonaceous meteoroids with perihelia close to the Sun could account for the petrological features observed in CK chondrites. Numerical thermal modeling, using favorable known NEOs orbital parameters (perihelion distances between 0.07 and 0.15 AU) and physical properties of CV and CK chondrites (albedo in the range 0.01–0.1, 25% porosity, thermal diffusivity of 0.5–1.5 W m?1 K?1), shows that radiative heating can heat carbonaceous meteoroids in the meter size range to core temperatures up to 1050 K, consistent with the metamorphic temperatures estimated for CK chondrites. Sizes of known CV and CK chondrites indicate that all these objects were small meteoroids (radii from a few cm to 2.5 m) prior to their atmospheric entry. Simulations of dynamic orbits for NEO objects suggest that there are numerous such bodies with suitable orbits and properties, even if they are only a small percentage of all NEOs. Radiative heating would be a secondary process (superimposed on parent-body processes) affecting meteoroids formed by the disruption of an initially homogeneous CV3-type parent body. Different petrologic types can be accounted for depending on the sizes and heliocentric distances of the objects in such a swarm.  相似文献   

5.
Chemical analyses of soil samples performed at different landing sites on Mars suggest the presence of sulfate minerals. These minerals are also thought to be present in the globally mixed Martian bright soils covering large areas of the planet. However, remote soil spectra have so far provided only tentative identification of sulfates regarding mineral types and abundances. This paper concentrates on the detectability of four Ca- and Mg-sulfates (anhydrite, gypsum, kieserite, hexahydrite) in the 4–5 μm range of Martian remote soil spectra. This spectral range is important for sulfate detection as most fine-grained sulfates exhibit significant absorption bands between 4 and 5 μm, independent of the texture of the host soils (e.g., loose powdered or cemented soils). Furthermore, this is the spectral range for which the Planetary Fourier Spectrometer (PFS) and Observatoire pour la Minéralogie, l’Eau, les Glaces, et l’Activité (OMEGA) instruments onboard ESA/Mars Express mission provide high spectral and spatial resolution data. Laboratory near- and mid-IR reflectance spectra of the pure sulfates and their mixtures with a terrestrial Martian soil analog were acquired. The results show that even the smallest amount of admixed sulfate (∼5 wt%) generates significant absorption features in the portion of the 4–5 μm range not covered by the saturated Martian atmospheric CO2 absorption band between 4.2 and 4.4 μm. Model calculations of the influence of emitted surface radiation on the detectability of sulfate features show that the depth of the features decreases strongly with increasing surface temperature of an observed area resulting in the fact that all sulfates are spectrally hidden at surface temperatures around 270 K even at ∼14 or ∼25 wt% sulfate content in the soils. Sulfates become increasingly detectable depending on the sulfate content if the surface temperature is below 260 K. The outcome of this work helps to constrain the conditions needed for remote detection of sulfates within Martian bright soils in the 4–5 μm range.  相似文献   

6.
The highly hydrated, petrologic type 1 CM and CI carbonaceous chondrites likely derived from primitive, water‐rich asteroids, two of which are the targets for JAXA's Hayabusa2 and NASA's OSIRIS‐REx missions. We have collected visible and near‐infrared (VNIR) and mid infrared (MIR) reflectance spectra from well‐characterized CM1/2, CM1, and CI1 chondrites and identified trends related to their mineralogy and degree of secondary processing. The spectral slope between 0.65 and 1.05 μm decreases with increasing total phyllosilicate abundance and increasing magnetite abundance, both of which are associated with more extensive aqueous alteration. Furthermore, features at ~3 μm shift from centers near 2.80 μm in the intermediately altered CM1/2 chondrites to near 2.73 μm in the highly altered CM1 chondrites. The Christiansen features (CF) and the transparency features shift to shorter wavelengths as the phyllosilicate composition of the meteorites becomes more Mg‐rich, which occurs as aqueous alteration proceeds. Spectra also show a feature near 6 μm, which is related to the presence of phyllosilicates, but is not a reliable parameter for estimating the degree of aqueous alteration. The observed trends can be used to estimate the surface mineralogy and the degree of aqueous alteration in remote observations of asteroids. For example, (1) Ceres has a sharp feature near 2.72 μm, which is similar in both position and shape to the same feature in the spectra of the highly altered CM1 MIL 05137, suggesting abundant Mg‐rich phyllosilicates on the surface. Notably, both OSIRIS‐REx and Hayabusa2 have onboard instruments which cover the VNIR and MIR wavelength ranges, so the results presented here will help in corroborating initial results from Bennu and Ryugu.  相似文献   

7.
We present near-infrared spectra of 23 B-type asteroids obtained with the NICS camera-spectrograph at the 3.56 m Telescopio Nazionale Galileo. We also compile additional visible and near-infrared spectra of another 22 B-type asteroids from the literature. A total of 45 B-types are analyzed. No significant trends in orbital properties of our sample were detected when compared with all known B-types and all known asteroids. The reflectance spectra of the asteroids in the 0.8–2.5 μm range show a continuous shape variation, from a monotonic negative (blue) slope to a positive (red) slope. This continuous spectral trend is filling the gap between the two main groups of B-types published by Clark et al. ([2010]. J. Geophys. Res., 115, 6005–6027). We found no clear correlations between the spectral slope and the asteroids’ sizes or heliocentric distances. We apply a clustering technique to reduce the volume of data to six optimized “average spectra” or “centroids”, representative of the whole sample. These centroids are then compared against meteorite spectra from the RELAB database. We found carbonaceous chondrites as the best meteorite analogs for the six centroids. There is a progressive change in analogs that correlates with the spectral slope: from CM2 chondrites (water-rich, aqueously altered) for the reddest centroid, to CK4 chondrites (dry, heated/thermally altered) for the bluest one.  相似文献   

8.
Phase reddening is an effect that produces an increase of the spectral slope and variations in the strength of the absorption bands as the phase angle increases. In order to understand its effect on spectroscopic observations of asteroids, we have analyzed the visible and near-infrared spectra (0.45–2.5 μm) of 12 near-Earth asteroids observed at different phase angles. All these asteroids are classified as either S-complex or Q-type asteroids. In addition, we have acquired laboratory spectra of three different types of ordinary chondrites at phase angles ranging from 13° to 120°. We have found that both, asteroid and meteorite spectra show an increase in band depths with increasing phase angle. In the case of the asteroids the Band I depth increases in the range of ~2° < g < 70° and the Band II depth increases in the range of ~2° < g < 55°. Using this information we have derived equations that can be used to correct the effect of phase reddening in the band depths. Of the three meteorite samples, the (olivine-rich) LL6 ordinary chondrite is the most affected by phase reddening. The studied ordinary chondrites have their maximum spectral contrast of Band I depths at a phase angle of ~60°, followed by a decrease between 60° and 120° phase angle. The Band II depths of these samples have their maximum spectral contrast at phase angles of 30–60° which then gradually decreases to 120° phase angle. The spectral slope of the ordinary chondrites spectra shows a significant increase with increasing phase angle for g > 30°. Variations in band centers and band area ratio (BAR) values were also found, however they seems to have no significant impact on the mineralogical analysis. Our study showed that the increase in spectral slope caused by phase reddening is comparable to certain degree of space weathering. In particular, an increase in phase angle in the range of 30–120° will produce a reddening of the reflectance spectra equivalent to exposure times of ~0.1 × 106–1.3 × 106 years at about 1 AU from the Sun. This increase in spectral slope due to phase reddening is also comparable to the effects caused by the addition of different fractions of SMFe. Furthermore, we found that under some circumstances phase reddening could lead to an ambiguous taxonomic classification of asteroids.  相似文献   

9.
《Planetary and Space Science》2007,55(10):1328-1345
The planetary fourier spectrometer (PFS) for the Mars express mission (MEX) is an infrared spectrometer operating in the wavelength range from 1.2 to 45 μm by means of two spectral channels, called SWC (short wavelength channel) and LWC (long wavelength channel), covering, respectively, 1.2–5.5 and 5.5–45 μm.The middle-spring Martian north polar cap (Ls∼40°) has been observed by PFS/MEX in illuminated conditions during orbit 452. The SWC spectra are here used to study the cap composition in terms of CO2 ice, H2O ice and dust content. Significant spectral variation is noted in the cap interior, and regions of varying CO2 ice grain sizes, water frost abundance, CO2 ice cover and dust contamination can be distinguished. In addition, we correlate the infrared spectra with an image acquired during the same orbit by the OMEGA imaging spectrometer and with the altimetry from MOLA data. Many of the spectra variations correlate with heterogeneities noted in the image, although significant spectral variations are not discernible in the visible. The data have been divided into five regions with different latitude ranges and strong similarities in the spectra, and then averaged. Bi-directional reflectance models have been run with the appropriate lighting geometry and used to fit the observed data, allowing for CO2 ice and H2O ice grain sizes, dust and H2O ice contaminations in the form of intimate granular mixtures and spatial mixtures.A wide annulus of dusty water ice surrounds the recessing CO2 seasonal cap. The inner cap exhibits a layered structure with a thin CO2 layer with varying concentrations of dark dust, on top of an H2O ice underneath ground. In the best-fits, the ices beneath the top layer have been considered as spatial mixtures. The results are still very good everywhere in the spectral range, except where the CO2 ice absorption coefficients are such that even a thin layer is enough to totally absorb the incoming radiation (i.e. the band is saturated). This only happens around 3800 cm−1, inside the strong 2.7-μm CO2 ice absorption band. The effect of finite snow depth has been investigated through a layered albedo model. The thickness of the CO2 ice deposits increases with latitude, ranging from 0.5–1 g cm−2 within region II to 60–80 g cm−2 within the highest-latitude (up to 84°N) region V.Region I is at the cap edge and extends from 65°N to 72°N latitude. No CO2 ice is present in this region, which consists of relatively large grains of water ice (20 μm), highly contaminated by dust (0.15 wt%). The adjacent region II is a narrow region [76–79°N] right at the edge of the north residual polar cap. This region is very distinct in the OMEGA image, where it appears to surround the whole residual cap. The CO2 ice features are barely visible in these spectra, except for the strong saturated 2.7 μm band. It basically consists of a thin layer of 5-mm CO2 ice on top of an H2O ice layer with the same composition as region I. A third interesting region III is found all along the shoulder of the residual cap [79–81°N]. It extends over 1.5 km in altitude and over only 2° of latitude and consists of CO2 ice with a large dust content. It is an admixture of CO2 ice (3–4 mm), with several tens of ppm by mass of water ice and more than 2 ppt by mass of dust. The surface temperatures have been retrieved from the LWC spectra for each observation. We found an increase in the surface temperature in this region, indicating a spatial mixture of cold CO2 ice and warmer dust/H2O ice. Region IV is close to the top of the residual cap [81–84°N]; it is much brighter than region III, with a dust content 10 times lower than the latter. The CO2 grain size is 3 mm and strong CO2 ice features are present in the data, indicating a thicker CO2 ice layer than in region II (1–2 g cm−2). The final region V is right at the top of the residual cap (⩾84°N). It is “pure” CO2 ice (no dust) of 5 mm grain sizes, with 30 ppm by weight of water ice. The CO2 ice features are very pronounced and the 2.7 μm band is saturated. The optical thickness is close to the semi-infinite limit (30–40 g cm−2). Assuming a snowpack density of 0.5 g cm−3, we get a minimum thickness of 1–2 cm for the top-layer of regions II and III, 4–10 cm for region IV, and ⩾60–80 cm thickness for region V. These values are in close agreement with several recent results for the south seasonal polar cap.These results should provide new, useful constraints in models of the Martian climate system and volatile cycles.  相似文献   

10.
11.
Abstract— Reflectance spectra from 0.44 to 1.65 μm were obtained for three K asteroids. These objects all have spectra consistent with olivine‐dominated assemblages whose absorption bands have been suppressed by opaques. The two observed Eos family members (221 Eos and 653 Berenike) are spectral analogs to the CO3 chondrite Warrenton. The other observed object (599 Luisa) is a spectral analog for CV3 chondrite Mokoia. These asteroids are all located near meteorite‐supplying resonances with the Eos family cut by the 9:4 resonance and Luisa is found near the 5:2 resonance. However, K asteroids have been identified throughout the main belt so it is difficult to rule out other possible parent bodies for the CO3 and CV3 chondrites.  相似文献   

12.
We investigated the petrologic, geochemical, and spectral parameters that relate to the type and degree of aqueous alteration in nine CM chondrites and one CI (Ivuna) carbonaceous chondrite. Our underlying hypothesis is that the position and shape of the 3 μm band is diagnostic of phyllosilicate mineralogy. We measured reflectance spectra of the chondrites under dry conditions (elevated temperatures) and vacuum (10?8 to 10?7 torr) to minimize adsorbed water and mimic the space environment, for subsequent comparison with reflectance spectra of asteroids. We have identified three spectral CM groups in addition to Ivuna. “Group 1,” the least altered group as determined from various alteration indices, is characterized by 3 μm band centers at longer wavelengths, and is consistent with cronstedtite (Fe‐serpentine). “Group 3,” the most altered group, is characterized by 3 μm band centers at shorter wavelengths and is consistent with antigorite (serpentine). “Group 2” is an intermediate group between group 1 and 3. Ivuna exhibits a unique spectrum that is distinct from the CM meteorites and is consistent with lizardite and chrysotile (serpentine). The petrologic and geochemical parameters, which were determined using electron microprobe analyses and microscopic observations, are found to be consistent with the three spectral groups. These results indicate that the distinct parent body aqueous alteration environments experienced by these carbonaceous chondrites can be distinguished using reflectance spectroscopy. High‐quality ground‐based telescopic observations of Main Belt asteroids can be expected to reveal not just whether an asteroid is hydrated, but also details of the alteration state.  相似文献   

13.
We present a study of water vapour in the Venus troposphere obtained by modelling specific water vapour absorption bands within the 1.18 μm window. We compare the results with the normal technique of obtaining the abundance by matching the peak of the 1.18 μm window. Ground-based infrared imaging spectroscopy of the night side of Venus was obtained with the Anglo-Australian Telescope and IRIS2 instrument with a spectral resolving power of R  2400. The spectra have been fitted with modelled spectra simulated using the radiative transfer model VSTAR. We find a best fit abundance of 31 ppmv (?6 +9 ppmv), which is in agreement with recent results by Bézard et al. (Bézard, B., Fedorova, A., Bertaux, J.-L., Rodin, A., Korablev, O. [2011]. Icarus, 216, 173–183) using VEX/SPICAV (R  1700) and contrary to prior results by Bézard et al. (Bézard, B., de Bergh, C., Crisp, D., Maillard, J.P. [1990]. Nature, 345, 508–511) of 44 ppmv (±9 ppmv) using VEX/VIRTIS-M (R  200) data analyses. Comparison studies are made between water vapour abundances determined from the peak of the 1.18 μm window and abundances determined from different water vapour absorption features within the near infrared window. We find that water vapour abundances determined over the peak of the 1. 18 μm window results in plots with less scatter than those of the individual water vapour features and that analyses conducted over some individual water vapour features are more sensitive to variation in water vapour than those over the peak of the 1. 18 μm window. No evidence for horizontal spatial variations across the night side of the disk are found within the limits of our data with the exception of a possible small decrease in water vapour from the equator to the north pole. We present spectral ratios that show water vapour absorption from within the lowest 4 km of the Venus atmosphere only, and discuss the possible existence of a decreasing water vapour concentration towards the surface.  相似文献   

14.
Most phyllosilicates on Mars appear to be associated with ancient terrains. As such, they may have experienced shock heating produced by impacts and could have been significantly altered or melted. We characterized the effects of high temperatures on the mid-to-far-infrared (mid-to-far-IR) emission (100–1400 cm?1; 7.1–100 μm) and near-infrared (NIR) reflectance (1.2–2.5 μm) spectra of phyllosilicates by measuring experimentally calcined (100–900 °C) phyllosilicates and also two zeolites. Correlated differential scanning calorimetry (DSC) measurements were also performed on each sample to provide insight into the thermal activities of the phyllosilicates and natural zeolites. Our results indicate that all phyllosilicates exhibit characteristic degradations in both NIR and mid-to-far-IR spectral properties between 400 and 800 °C, mainly attributable to the dehydroxylation and recrystallization processes as temperature increases. Spectral features of natural zeolites persist to higher temperatures compared to features of phyllosilicates during heating treatments. The thermal behaviors of phyllosilicate infrared (IR) properties are greatly influenced by the compositions of the octahedral cations: (1) changes in both the NIR and mid-to-far-IR spectra of phyllosilicates tend to occur at lower temperatures (300–400 °C) in the Fe3+-rich samples as compared to the Al3+-rich types (400–600 °C); (2) Mg2+-trioctahedral phyllosilicates hectorite, saponite, and sepiolite all display major mid-to-far-IR spectral changes at 700 °C, corresponding to the formation of enstatite; (3) phyllosilicates that have minor replacement of Mg2+ for Al3+ in octahedral positions (e.g. cheto-type montmorillonite and palygorskite) show an absorption band at ~920 cm?1 that becomes strong at 900 °C. Inconsistency between spectral behaviors in the mid-to-far-IR and NIR regions is also discussed for phyllosilicates. Results from this study have provided suggestive evidence for the scenario that some phyllosilicates could lose all original spectral features in mid-to-far-IR region while maintaining their characteristic hydration bands in NIR region in the same temperature range.  相似文献   

15.
Titan’s optical and near-IR spectra result primarily from the scattering of sunlight by haze and its absorption by methane. With a column abundance of 92 km amagat (11 times that of Earth), Titan’s atmosphere is optically thick and only ~10% of the incident solar radiation reaches the surface, compared to 57% on Earth. Such a formidable atmosphere obstructs investigations of the moon’s lower troposphere and surface, which are highly sensitive to the radiative transfer treatment of methane absorption and haze scattering. The absorption and scattering characteristics of Titan’s atmosphere have been constrained by the Huygens Probe Descent Imager/Spectral Radiometer (DISR) experiment for conditions at the probe landing site (Tomasko, M.G., Bézard, B., Doose, L., Engel, S., Karkoschka, E. [2008a]. Planet. Space Sci. 56, 624–247; Tomasko, M.G. et al. [2008b]. Planet. Space Sci. 56, 669–707). Cassini’s Visual and Infrared Mapping Spectrometer (VIMS) data indicate that the rest of the atmosphere (except for the polar regions) can be understood with small perturbations in the high haze structure determined at the landing site (Penteado, P.F., Griffith, C.A., Tomasko, M.G., Engel, S., See, C., Doose, L., Baines, K.H., Brown, R.H., Buratti, B.J., Clark, R., Nicholson, P., Sotin, C. [2010]. Icarus 206, 352–365). However the in situ measurements were analyzed with a doubling and adding radiative transfer calculation that differs considerably from the discrete ordinates codes used to interpret remote data from Cassini and ground-based measurements. In addition, the calibration of the VIMS data with respect to the DISR data has not yet been tested. Here, VIMS data of the probe landing site are analyzed with the DISR radiative transfer method and the faster discrete ordinates radiative transfer calculation; both models are consistent (to within 0.3%) and reproduce the scattering and absorption characteristics derived from in situ measurements. Constraints on the atmospheric opacity at wavelengths outside those measured by DISR, that is from 1.6 to 5.0 μm, are derived using clouds as diffuse reflectors in order to derive Titan’s surface albedo to within a few percent error and cloud altitudes to within 5 km error. VIMS spectra of Titan at 2.6–3.2 μm indicate not only spectral features due to CH4 and CH3D (Rannou, P., Cours, T., Le Mouélic, S., Rodriguez, S., Sotin, C., Drossart, P., Brown, R. [2010]. Icarus 208, 850–867), but also a fairly uniform absorption of unknown source, equivalent to the effects of a darkening of the haze to a single scattering albedo of 0.63 ± 0.05. Titan’s 4.8 μm spectrum point to a haze optical depth of 0.2 at that wavelength. Cloud spectra at 2 μm indicate that the far wings of the Voigt profile extend 460 cm?1 from methane line centers. This paper releases the doubling and adding radiative transfer code developed by the DISR team, so that future studies of Titan’s atmosphere and surface are consistent with the findings by the Huygens Probe. We derive the surface albedo at eight spectral regions of the 8 × 12 km2 area surrounding the Huygens landing site. Within the 0.4–1.6 μm spectral region our surface albedos match DISR measurements, indicating that DISR and VIMS measurements are consistently calibrated. These values together with albedos at longer 1.9–5.0 μm wavelengths, not sampled by DISR, resemble a dark version of the spectrum of Ganymede’s icy leading hemisphere. The eight surface albedos of the landing site are consistent with, but not deterministic of, exposed water ice with dark impurities.  相似文献   

16.
Driss Takir  Joshua P. Emery 《Icarus》2012,219(2):641-654
This paper examines the distribution and the abundance of hydrated minerals (any mineral that contains H2O or OH) on outer Main Belt asteroids spanning the 2.5 < a < 4.0 AU region. The hypothesis we are testing is whether planetesimals that accreted closer to the Sun experienced a higher degree of aqueous alteration. We would expect then to see a gradual decline of the abundance of hydrated minerals among the outer Main Belt asteroids with increasing heliocentric distance (2.5 < a < 4.0 AU). We measured spectra (0.8–2.5 μm and 1.9–4.1 μm) of 28 outer Main Belt asteroids using the SpeX spectrograph/imager at the NASA Infrared Telescope Facility (IRTF). We identified four groups on the basis of the shape and the band center of the 3-μm feature. The first group, which we call “sharp”, exhibits a sharp 3-μm feature, attributed to hydrated minerals (phyllosilicates). Most asteroids in this group are located in the 2.5 < a < 3.3 AU region. The second group, which we call “Ceres-like”, consists of 10 Hygiea and 324 Bamberga. Like Asteroid Ceres, these asteroids exhibit a 3-μm feature with a band center of 3.05 ± 0.01 μm that is superimposed on a broader absorption feature from ~2.8 to 3.7 μm. The third group, which we call “Europa-like”, includes 52 Europa, 31 Euphrosyne, and 451 Patientia. Objects in this group exhibit a 3-μm feature with a band center of 3.15 ± 0.01 μm. Both the Ceres-like and Europa-like groups are concentrated in the 2.5 < a < 3.3 AU region. The fourth group, which we call “rounded”, is concentrated in the 3.4 < a < 4.0 AU region. Asteroids in this group are characterized by a rounded 3-μm feature, attributed to H2O ice. A similar rounded 3-μm feature was also identified in 24 Themis and 65 Cybele. Unlike the sharp group, the rounded group did not experience aqueous alteration. Of the asteroids observed in this study, 140 Siwa, a P-type, is the only one that does not exhibit a 3-μm feature. These results are important to constrain the nature and the degree of aqueous alteration in outer Main Belt asteroids.  相似文献   

17.
M-type asteroids, as defined in the Tholen taxonomy (Tholen, D.J. [1984]. Asteroid Taxonomy from Cluster Analysis of Photometry. Ph.D. Dissertation, University of Arizona, Tucson), are medium albedo bodies supposed to have a metallic composition and to be the progenitors both of differentiated iron–nickel meteorites and enstatite chondrites. We carried out a spectroscopic survey in the visible and near infrared wavelength range (0.4–2.5 μm) of 30 asteroids chosen from the population of asteroids initially classified as Tholen M-types, aiming to investigate their surface composition. The data were obtained during several observing runs during the years 2004–2007 at the TNG, NTT, and IRTF telescopes. We computed the spectral slopes in several wavelength ranges for each observed asteroid, and we searched for diagnostic spectral features. We confirm a large variety of spectral behaviors for these objects as their spectra are extended into the near infrared, including the identification of weak absorption bands, mainly of the 0.9 μm band tentatively attributed to orthopyroxene, and of the 0.43 μm band that may be associated to chlorites and Mg-rich serpentines or pyroxene minerals such us pigeonite or augite. A comparison with previously published data indicates that the surfaces of several asteroids belonging to the M-class may vary significantly.We attempt to constrain the asteroid surface compositions of our sample by looking for meteorite spectral analogs in the RELAB database and by modeling with geographical mixtures of selected meteorites/minerals. We confirm that iron meteorites, pallasites, and enstatite chondrites are the best matches to most objects in our sample, as suggested for M-type asteroids. For 22 Kalliope, we demonstrate that a synthetic mixture obtained enriching a pallasite meteorite with small amounts (1–2%) of silicates well reproduce the spectral behavior including the observed 0.9 μm feature.The presence of subtle absorption features on several asteroids confirms that not all objects defined by the Tholen M-class have a pure metallic composition.A statistical analysis of spectral slope distribution vs. orbital parameters shows that our sample originally defined as Tholen M-types tend to be dark in albedo and red in slope for increasing value of the semi-major axis. However, we note that our sample is statistically limited by our number of objects (30) and slightly varying results are found for different subsets. If confirmed, the albedo and slope trends could be due to a difference in composition of objects belonging to the outer main belt, or alternatively to a combination of surface composition, grain size and space weathering effects.  相似文献   

18.
We performed ion irradiation of mineral samples with 50 keV He+, aimed to investigate ion irradiation effects on diagnostic spectral features. Reflectance spectra of samples in 0.375–2.5 μm are measured before and after ion irradiation. Silicates, including Luobusha olivine, plagioclase and basaltic glass, have shown reddening and darkening of reflectance spectra at the VIS–NIR range. Olivine is more sensitive to ion irradiation than plagioclase and basaltic glass. Irradiated Panzhihua ilmenite exhibits higher reflectance and stronger absorption features, which is totally different from lunar soil and analog silicate materials in other experiments. Using continuum removal and MGM fit, we extracted and compared absorption features of olivine spectra before and after irradiation. Ion irradiation can induce band strength decrease of olivine but negligible band centers shift. We estimate band centers shift caused by ion irradiation are quite limited, even less than variations due to chemical composition in silicates. It provides one possible explanation for no systematic shift in band positions in lunar soil. Irradiated Luobusha olivine spectrum matches spectra of olivine-dominated asteroids. Our results suggest space weathering should be new clues to explain the subtle difference between A-type asteroid spectra and laboratory spectra of olivine.  相似文献   

19.
Spectra of Asteroid 9969 Braille in the 1.25-2.6 μm region returned by the Deep Space 1 (DS1) Mission show a ∼10% absorption band centered at 2 μm, and a reflectance peak at 1.6 μm. Analysis of these features suggest that the composition of Braille is roughly equal parts pyroxene and olivine. Its spectrum between 0.4 and 2.5 μm suggests that it is most closely related to the Q taxonomic type of asteroid. The spectrum also closely matches that of the ordinary chondrites, the most common type of terrestrial meteorite. The geometric albedo of Braille is unusually high (pv=0.34), which is also consistent with its placement within the rarer classes of stony asteroids, and which suggests it has a relatively fresh, unweathered surface, perhaps due to a recent collision.  相似文献   

20.
Observations of the dayside of Venus performed by the high spectral resolution channel (–H) of the Visible and Infrared Thermal Imaging Spectrometer (VIRTIS) on board the ESA Venus Express mission have been used to measure the altitude of the cloud tops and the water vapor abundance around this level with a spatial resolution ranging from 100 to 10 km. CO2 and H2O bands between 2.48 and 2.60 μm are analyzed to determine the cloud top altitude and water vapor abundance near this level. At low latitudes (±40°) mean water vapor abundance is equal to 3 ± 1 ppm and the corresponding cloud top altitude at 2.5 μm is equal to 69.5 ± 2 km. Poleward from middle latitudes the cloud top altitude gradually decreases down to 64 km, while the average H2O abundance reaches its maximum of 5 ppm at 80° of latitude with a large scatter from 1 to 15 ppm. The calculated mass percentage of the sulfuric acid solution in cloud droplets of mode 2 (~1 μm) particles is in the range 75–83%, being in even more narrow interval of 80–83% in low latitudes. No systematic correlation of the dark UV markings with the cloud top altitude or water vapor has been observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号