首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A. Aitta 《Icarus》2012,218(2):967-974
The mass and radius of our closest neighbour Venus are only slightly smaller than those of the Earth indicating a similarity in composition. However, the lack of self-sustained internal magnetic field in Venus points to a difference in the core structure. The theory of tricritical phenomena has recently been used to study solidification at the high pressures and temperatures of the Earth, revealing how the Earth’s core works. This theoretical approach is here applied to Venus. While keeping Venus’ mantle density similar to the Earth’s, one obtains the gravitational acceleration g inside Venus, its moment of inertia factor, the size, pressure and density of its core, together with the planet’s temperature profile. Mainly due to the temperature difference between the core–mantle boundary and surface being 21% smaller than on the Earth, and the 11.5% smaller gravitational acceleration, Venus’ Rayleigh number Ra parameterizing mantle convection is only 54% of the Earth’s, offering a possible explanation for the present lack of plate tectonics on Venus. The theory as discussed predicts that Venus is molten at the centre, with temperature about 5200 K, and has 8 mol.% impurities there, slightly more impurities than in the Earth’s inner core boundary fluid. These impurities are likely to be a combination of MgO and MgSiO3.  相似文献   

2.
Enceladus exhibits a strong hemispheric dichotomy of tectonism and heat flux, with geologically young, heavily tectonized terrains and a high heat flux in the South Polar Terrain (SPT) and relatively ancient terrains with presumably lower heat fluxes over the rest of the satellite. To understand the convective pattern and its relationship with surface tectonics, we present three-dimensional numerical models of convection in Enceladus’ ice shell including basal heating and tidal heating. Our thermal boundary conditions exhibit no north–south asymmetries, but because the tectonism at the SPT may weaken the ice there, we impose a mechanically weak lithosphere within the SPT. The weakening is parameterized by adopting a reduced viscosity contrast within the SPT. Without such a weak zone, convection (if any) resides in stagnant-lid mode and exhibits no hemispheric dichotomy. In the presence of such an SPT weak zone, however, we find vigorous convection in the ice underneath the SPT, with convective plumes rising close to the surface. In contrast, only stagnant lid convection, or no convection at all, occurs elsewhere over the satellite. Away from the SPT, the heat flux in our models is small (5–10 mW m?2) and the surface strains are small enough to imply surface ages >109 years. Within the SPT, however, our models yield peak heat fluxes of ~70–200 mW m?2, implying heat flows integrated across the SPT of up to 5 GW, similar to that inferred from Cassini thermal observations. The surface strains in our models are high enough near the south pole to cause intense tectonism and imply surface ages of ~106–107 years, consistent with age estimates of the SPT.  相似文献   

3.
In the present study, the temperature- and pressure-dependent transport and thermal properties, i.e., viscosity, phonon thermal conductivity, thermal expansivity and heat capacities, as well as electronic and radiative thermal conductivities, have been derived for the mantles of super-Earths. These properties are necessary to understand the interior dynamics and the thermal evolution of those planets. We assume that the mantles consist of MgSiO3 perovskite (pv), but we discuss the effects of the post-perovskite transition, and we elaborate on an addition of periclase MgO and incorporated Fe. However, MgO is found to only significantly influence the phonon thermal conductivity – the viscosities, heat capacities and thermal expansivities of pv and MgO remain comparable. We use the Keane theory of solids, which takes into account the behavior of solid matter at the infinite pressure limit, adopt the Keane equations of state, and adjust for pv and MgO by comparison with experimental high-pressure and high-temperature data. We find the theory of the infinite pressure limit of Keane to be in excellent agreement with recent ab initio studies and experiments. To calculate the melting curve, we further use the Lindemann–Stacey scaling law and fit it to available experimental data. The best data fitting melting temperature for pv reaches 5700 K at 135 GPa and increases to 20,000 K at 1.1 TPa, corresponding to the core-mantle boundary of a 10 Earth mass super-Earth (10MEarth). We find the pv adiabatic temperature (with a potential temperature of 1700 K) to reach 2570 K at 135 GPa and 5000 K at 1.1 TPa. To calculate the pressure-and temperature-dependent viscosity, we use the semi-empirical homologous temperature scaling to relate enthalpy change, and hence viscosity, to the melting temperature. We find that the resulting activation volume of pv decreases from 2.8 cm3/mol at 25 GPa to 1.4 cm3/mol at 1.1 TPa-resulting in a viscosity increase by ~15 orders of magnitude through the adiabatic mantle of a 10MEarth planet. Furthermore, the thermal expansivity (of pv and MgO) decreases by a factor of eight, and the total thermal conductivity (phonon, radiative and electronic) of an Earth-like pv/MgO composite increases by a factor of seven through an adiabatic mantle of a 10MEarth super-Earth. At higher temperatures, i.e., for super-adiabatic temperature profiles, the electronic and radiative thermal conductivities strongly increase and dominate the conductive heat transport. All findings indicate an increase of heat transfer solely by conduction in the lower mantles of super-Earths. Thus our results disagree with Earth-biased full-mantle convection assumptions made by previous models for super-Earths, and additionally raise questions about the differentiation of massive rocky exoplanets and their ability to generate magnetic fields or sustain plate tectonics.  相似文献   

4.
Electromagnetic (EM) investigation depths are larger on Venus than Earth due to the dearth of water in rocks, in spite of higher temperatures. Whistlers detected by Venus Express proved that lightning is present, so the Schumann resonances ~10–40 Hz may provide a global source of electromagnetic energy that penetrates ~10–100 km. Electrical conductivity will be sensitive at these depths to temperature structure and hence thermal lithospheric thickness. Using 1D analytic and 2D numerical models, we demonstrate that the Schumann resonances—transverse EM waves in the ground-ionosphere waveguide—remain sensitive at all altitudes to the properties of the boundaries. This is in marked contrast to other EM methods in which sensitivity to the ground falls off sharply with altitude. We develop a 1D analytical model for aerial EM sounding that treats the electrical properties of the subsurface (thermal gradient, water content, and presence of conductive crust) and ionosphere, and the effects of both random errors and biases that can influence the measurements. We initially consider specified 1D lithospheric thicknesses 100–500 km, but we turn to 2D convection models with Newtonian temperature-dependent viscosity to provide representative vertical and lateral temperature variations. We invert for the conductivity-depth structure and then temperature gradient. For a dry Venus, we find that the error on temperature gradient obtained from any single local measurement is ~100%—perhaps enough to distinguish “thick” vs. “thin” lithospheres. When averaging over thousands of kilometers, however, the standard deviation of the recovered thermal gradient is within the natural variability of the convection models, <25%. A “wet” interior (hundreds of ppm H2O) limits EM sounding depths using the Schumann resonances to <20 km, and errors are too large to estimate lithospheric properties. A 30-km conductive crust has little influence on the dry-interior models because the Schumann penetration depths are significantly larger. We conclude that EM sounding of the interior of Venus is feasible from a 55-km high balloon. Lithospheric thickness can be measured if the upper-mantle water content is low. If H2O at hundreds of ppm is present, the deeper, temperature-sensitive structure is screened, but the “wet” nature of the upper mantle, as well as structure of the upper crust, is revealed.  相似文献   

5.
B.J. Travis  J. Palguta  G. Schubert 《Icarus》2012,218(2):1006-1019
A whole-moon numerical model of Europa is developed to simulate its thermal history. The thermal evolution covers three phases: (i) an initial, roughly 0.5 Gyr-long period of radiogenic heating and differentiation, (ii) a long period from 0.5 Gyr to 4 Gyr with continuing radiogenic heating but no tidal dissipative heating (TDH), and (iii) a final period covering the last 0.5 Gyr until the present, during which TDH is active. Hydrothermal plumes develop after the initial period of heating and differentiation and transport heat and salt from Europa’s silicate mantle to its ice shell. We find that, even without TDH, vigorous hydrothermal convection in the rocky mantle can sustain flow in an ocean layer throughout Europa’s history. When TDH becomes active, the ice shell melts quickly to a thickness of about 20 km, leaving an ocean 80 km or more deep. Parameterized convection in the ice shell is non-uniform spatially, changes over time, and is tied to the deeper ocean–mantle dynamics. We also find that the dynamics are affected by salt concentrations. An initially non-uniform salt distribution retards plume penetration, but is homogenized over time by turbulent diffusion and time-dependent flow driven by initial thermal gradients. After homogenization, the uniformly distributed salt concentrations are no longer a major factor in controlling plume transport. Salt transport leads to the formation of a heterogeneous brine layer and salt inclusions at the bottom of the ice shell; the presence of salt in the ice shell could strongly influence convection in that layer.  相似文献   

6.
We present a study of water vapour in the Venus troposphere obtained by modelling specific water vapour absorption bands within the 1.18 μm window. We compare the results with the normal technique of obtaining the abundance by matching the peak of the 1.18 μm window. Ground-based infrared imaging spectroscopy of the night side of Venus was obtained with the Anglo-Australian Telescope and IRIS2 instrument with a spectral resolving power of R  2400. The spectra have been fitted with modelled spectra simulated using the radiative transfer model VSTAR. We find a best fit abundance of 31 ppmv (?6 +9 ppmv), which is in agreement with recent results by Bézard et al. (Bézard, B., Fedorova, A., Bertaux, J.-L., Rodin, A., Korablev, O. [2011]. Icarus, 216, 173–183) using VEX/SPICAV (R  1700) and contrary to prior results by Bézard et al. (Bézard, B., de Bergh, C., Crisp, D., Maillard, J.P. [1990]. Nature, 345, 508–511) of 44 ppmv (±9 ppmv) using VEX/VIRTIS-M (R  200) data analyses. Comparison studies are made between water vapour abundances determined from the peak of the 1.18 μm window and abundances determined from different water vapour absorption features within the near infrared window. We find that water vapour abundances determined over the peak of the 1. 18 μm window results in plots with less scatter than those of the individual water vapour features and that analyses conducted over some individual water vapour features are more sensitive to variation in water vapour than those over the peak of the 1. 18 μm window. No evidence for horizontal spatial variations across the night side of the disk are found within the limits of our data with the exception of a possible small decrease in water vapour from the equator to the north pole. We present spectral ratios that show water vapour absorption from within the lowest 4 km of the Venus atmosphere only, and discuss the possible existence of a decreasing water vapour concentration towards the surface.  相似文献   

7.
We report temperatures in Venus’ upper mesosphere/lower thermosphere, deduced from reanalyzing very high resolution infrared spectroscopy of CO2 emission lines acquired in 1990 and 1991. Kinetic temperatures at ~110 km altitude (0.15 Pa) are derived from the Doppler width of fully-resolved single line profiles measured near 10.4 μm wavelength using the NASA GSFC Infrared Heterodyne Spectrometer (IRHS) at the NASA IRTF on Mauna Kea, HI, close to Venus inferior conjunction and two Venus solstices. Measured temperatures range from ~200 to 240 K with uncertainty typically less than 10 K. Temperatures retrieved from similar measurement in 2009 using the Cologne Tuneable Heterodyne Infrared Spectrometer (THIS) at the NOAO McMath Telescope at Kitt Peak, AZ are 10–20 K lower. Temperatures retrieved more recently from the SOIR instrument on Venus EXpress are consistent with these results when the geometry of observation is accounted for. It is difficult to compare ground-based sub-mm retrievals extrapolated to 110 km due to their much larger field of view, which includes the night side regions not accessible to infrared heterodyne observations. Temperature variability appears to be high on day-to-day as well as longer timescales. Observed short term and long term variability may be attributed to atmospheric dynamics, diurnal variability and changes over solar activity and seasons. The Venus International Reference Atmosphere (VIRA) model predicts cooler temperatures at the sampled altitudes in the lower thermosphere/upper mesosphere and is not consistent with these measurements.  相似文献   

8.
The eruptive plumes and large heat flow (~15 GW) observed by Cassini in the South Polar Region of Enceladus may be expressions of hydrothermal activity inside Enceladus. We hypothesize that a subsurface ocean is the heat reservoir for thermal anomalies on the surface and the source of heat and chemicals necessary for the plumes. The ocean is believed to contain dissolved gases, mostly CO2 and is found to be relatively warm (~0 °C). Regular tidal forces open cracks in the icy crust above the ocean. Ocean water fills these fissures. There, the conditions are met for the upward movement of water and the dissolved gases to exsolve and form bubbles, lowering the bulk density of the water column and making the pressure at its bottom less than that at the top of the ocean. This pressure difference drives ocean water into and up the conduits toward the surface. This transportation mechanism supports the thermal anomalies and delivers heat and chemicals to the chambers from which the plumes erupt. Water enters these chambers and there its bubbles pop and loft an aerosol mist into the ullage. The exiting plume gas entrains some of these small droplets. Thus, nonvolatile chemical species in ocean water can be present in the plume particles. A CO2 equivalent-gas molar fraction of ~4 × 10?4 for the ocean is sufficient to support the circulation. A source of heat is needed to keep the ocean warm at ~0 °C (about two degrees above its freezing point). The source of heat is unknown, but our hypothesis is not dependent on any particular mechanism for producing the heat.  相似文献   

9.
A series of observations of the venusian hydrogen corona made by SPICAV on Venus Express are analyzed to estimate the amount of hydrogen in the exosphere of Venus. These observations were made between November 2006 and July 2007 at altitudes from 1000 km to 8000 km on the dayside. The Lyman-α brightness profiles derived are reproduced by the sum of a cold hydrogen population dominant below ~2000 km and a hot hydrogen population dominant above ~4000 km. The temperature (~300 K) and hydrogen density at 250 km (~105 cm?3) derived for the cold populations, near noon, are in good agreement with previous observations. Strong dawn–dusk exospheric asymmetry is observed from this set of observations, with a larger exobase density on the dawn side than on the dusk side, consistent with asymmetry previously observed in the venusian thermosphere, but with a lower dawn/dusk contrast. The hot hydrogen density derived is very sensitive to the sky background estimate, but is well constrained near 5000 km. The density of the hot population is reproduced by the exospheric model from Hodges (Hodges, R.R. [1999]. J. Geophys. Res. 104, 8463–8471) in which the hot population is produced by neutral–ions interactions in the thermosphere of Venus.  相似文献   

10.
Observations of Venus using the ultraviolet filter of the Venus Monitoring Camera (VMC) on ESA’s Venus Express Spacecraft (VEX) provide the best opportunity for study of the spatial and temporal distribution of the venusian unknown ultraviolet absorber since the Pioneer Venus (PV) mission. We compare the results of two sets of 125 radiative transfer models of the upper atmosphere of Venus to each pixel in a subset of VMC UV channel images. We use a quantitative best fit criterion based upon the notion that the distribution of the unknown absorber should be independent of the illumination and observing geometry. We use the product of the cosines of the incidence and emission angles and search for absorber distributions that are uncorrelated with this geometric parameter, finding that two models can describe the vertical distribution of the unknown absorber. One model is a well-mixed vertical profile above a pressure level of roughly 120 mb (~63 km). This is consistent with the altitude of photochemical formation of sulfuric acid. The second model describes it as a thin layer of pure UV absorber at a pressure level roughly around 24 mb (~71 km) and this altitude is consistent with the top of upper cloud deck. We find that the average abundance of unknown absorber in the equatorial region is 0.21 ± 0.04 optical depth and it decreases in the polar region to 0.08 ± 0.05 optical depth at 365 nm.  相似文献   

11.
Numerical models of mantle convection that include the ‘basalt barrier’ mechanism are explored for Venus. The ‘basalt barrier’ mechanism is due to the positive buoyancy of subducted basaltic crust between the mantle depths of 660 and 750 km. The inclusion of this mechanism in models of Earth’s evolution has been shown to cause episodic mantle layering early in Earth history and we explore whether it can also operate on Venus. The models presented here include a moderately mobile lithosphere, which is not representative of the current state of Venus, but this allows us to exclude the effects of episodic lithosphere mobility and thus to isolate the effect of the basalt barrier. This is a step in a systematic approach to models with a mostly-static lithosphere. We find the basalt barrier does yield episodically layered mantle convection in some Venus models. The likelihood of episodic layering is increased by Venus high surface temperature and by its less mobile or immobile lithosphere. Surprisingly, secondary differences from Earth, including the lower gravity, density and mantle depth also promote episodic layering. The models suggest that mantle layering and overturns may still be likely to occur in Venus. The breakdown of mantle layering and consequent mantle overturns would lead to dramatic episodes of volcanism, formation of large amounts of crust, and tectonic activity on the planet’s surface, as has been inferred to have happened on Venus around 500 Ma ago from surface morphology and cratering. These results thus suggest that a transient layering of the mantle by the ‘basalt barrier’ mechanism and mantle overturns may be part of the explanation for Venus’s recent resurfacing.  相似文献   

12.
Observations of the dayside of Venus performed by the high spectral resolution channel (–H) of the Visible and Infrared Thermal Imaging Spectrometer (VIRTIS) on board the ESA Venus Express mission have been used to measure the altitude of the cloud tops and the water vapor abundance around this level with a spatial resolution ranging from 100 to 10 km. CO2 and H2O bands between 2.48 and 2.60 μm are analyzed to determine the cloud top altitude and water vapor abundance near this level. At low latitudes (±40°) mean water vapor abundance is equal to 3 ± 1 ppm and the corresponding cloud top altitude at 2.5 μm is equal to 69.5 ± 2 km. Poleward from middle latitudes the cloud top altitude gradually decreases down to 64 km, while the average H2O abundance reaches its maximum of 5 ppm at 80° of latitude with a large scatter from 1 to 15 ppm. The calculated mass percentage of the sulfuric acid solution in cloud droplets of mode 2 (~1 μm) particles is in the range 75–83%, being in even more narrow interval of 80–83% in low latitudes. No systematic correlation of the dark UV markings with the cloud top altitude or water vapor has been observed.  相似文献   

13.
The equilibrium suggested as a buffer for CO2 in the Venus atmosphere, CaCO3 + SiO2 = CaSiO3 + CO2, cannot act as a buffer at the Venus surface/troposphere – the pressure–temperature slope of the equilibrium and that of the atmosphere (dry adiabat with significant greenhouse heating) do not provide buffering capacity (if indeed CaCO3 were present). Instead, perturbations to T or P(CO2) can produce catastrophic expansion or collapse of the atmosphere. This instability can be generalized to all devolatilization reactions that produce a radiatively active gas in a planetary atmosphere dominated by such gases, and gives a simple thermochemical criterion for whether a reaction could buffer such an atmosphere. Simple decarbonation reactions fail this criterion, suggesting that the abundance of CO2 in a CO2-dominated atmosphere cannot be buffered by chemical reactions with the surface; a similar conclusion holds for the abundance of H2O in an H2O-dominated (steam) atmosphere. Buffering of minor gases is more likely; a mineral buffer equilibrium for SO2 proposed for Venus, FeS2 + CO2 = Fe3O4 + SO2 + CO, passes the thermochemical criterion, as does a reaction involving Ca sulfate. These inferences can be generalized to atmospheres in ‘moist’ adiabatic equilibria, and to extrasolar Venus-like planets, and will help in interpreting the compositions of their atmospheres.  相似文献   

14.
Between November 23 and 28, 2007, the Cologne Tuneable Heterodyne Infrared Spectrometer THIS was installed at the McMath-Pierce Solar Telescope (Kitt Peak, Arizona, USA) to determine zonal wind velocities and to estimate the subsolar-to-antisolar flow. We investigate dynamics in the upper atmosphere of Venus by measuring the Doppler shift of fully-resolved non-LTE CO2 emission lines at 959.3917 cm?1 (10.423 μm), which probe a narrow altitude region in Venus’ atmosphere around 110 ± 10 km (~1 μbar). The results show no significant zonal wind velocity at the equator. An increase with latitude up to 43 ± 13 m/s at a latitude of 33°N was observed. This confirms the deduction of a minor influence of Venus superrotation at an altitude of 110 km from previous measurements in May 2007 (Sornig et al., 2008). The specific observing geometry enables estimating the maximum cross terminator velocity of the subsolar-to-antisolar flow at 72 ± 47 m/s.  相似文献   

15.
The observation of gullies on Mars raised questions about the presence of liquid water in the recent past. In some regions like Hale and Bond crater, gullies occur in one crater (Hale) but do not in another crater nearby (Bond). These regional differences have been interpreted as an argument for a formation of the gullies related to groundwater. The formation of gullies on Earth depends on rainfall and/or melting of snow as well as on several parameters such as the presence of steep slopes and sufficient amounts of fines and debris. We investigated the Hale/Bond region for differences in crater wall morphology and texture, slopes, and thermal properties to determine whether the gully formation is dependent on factors such as steep slope angles and availability of fine-grained material. Morphologically there exist two kinds of gullies in the Hale crater: Gullies on the south- and east-facing crater slopes have a pristine appearance with deep channels eroded into the talus material and well-preserved aprons. Gully-like features on the north- and west-facing slopes are degraded and superposed by craters, indicating that they are old in comparison to the pristine ones. However, their formation process is unclear and might be due to debris flows, surface runoff or dry mass wasting processes or a combination of these processes. The crater walls of Bond do not show gullies. Their morphology is most likely consistent with a degraded mantle deposit. Slope measurements reveal that the gullies in Hale crater occur on slopes between ~20° and ~30° in contrast to the slopes without gullies in Bond that are between ~10° and ~20° steep. Mean thermal inertia values on slopes with younger gullies are ~175 J m?2 K?1 s?1/2 corresponding to higher amounts of fine-grained material. At slopes with older gully-like features mean thermal inertia values are ~315 J m?2 K?1 s?1/2 corresponding to higher amounts of bedrock or possibly indurated grain sizes. Mean thermal inertia values of the Bond crater walls are ~230 J m?2 K?1 s?1/2 indicating more consolidated terrain possibly due to the cementation of the dissected mantle material. From our investigation we conclude that the occurrence of gullies in the Hale/Bond region most likely depends on the distribution of unconsolidated material and steep slopes. The regional and local gully distribution on Mars likely varies due to differences in topography and surface material properties. Their proposed clustered distribution on Mars is not an argument for a groundwater formation mechanism of the gullies.  相似文献   

16.
Hubble Space Telescope/Wide Field and Planetary Camera 2 (HST/WFPC2) images of Io obtained between 1995 and 2007 between 0.24 and 0.42 μm led to the detection of the Pele plume in reflected sunlight in 1995 and 1999; imaging of the Pele plume via absorption of jovian light in 1996 and 1999; detection of the Prometheus-type Pillan plume in reflected sunlight in 1997; and detection of the 2007 Pele-type Tvashtar plume eruption in reflected sunlight and via absorption of jovian light. Based on a detailed analysis of these observations we characterize and compare the gas and dust properties of each of the detected plumes. In each case, the brightness of the plumes in reflected sunlight is less at 0.26 μm than at 0.33 μm. Mie scattering analysis of the wavelength dependence of each plume’s reflectance signature suggests that range of particle sizes within the plumes is quite narrow. Assuming a normal distribution of particle sizes, the range of mean particle sizes is ~0.035–0.12 μm for the 1997 Pillan eruption, ~0.05–0.08 μm for the 1999 Pele and 2007 Tvasthar plumes, and ~0.05–0.11 μm for the 1995 Pele plume, and in each case the standard deviation in the particle size distribution is <15%. The Mie analysis also suggests that the 2007 Tvashtar eruption released ~109 g of sulfur dust, the 1999 Pele eruption released ~109 g of SO2 dust, the 1997 Pillan eruption released ~1010 g of SO2 dust, and the 1995 Pele plume may have released ~1010 g of SO2 dust. Analysis of the plume absorption signatures recorded in the F255W filter bandpass (0.24–0.28 μm) indicates that the opacity of the 2007 Tvashtar plume was 2× that of the 1996 and 1999 Pele plume eruptions. While the sulfur dust density estimated for the Tvashtar from the reflected sunlight data could have produced 61% of the observed plume opacity, <10% of the 1999 Pele F255W plume opacity could have resulted from the SO2 dust detected in the eruption. Accounting for the remaining F255W opacity level of the Pele and Tvasthar plumes based on SO2 and S2 gas absorption, the SO2 and S2 gas density inferred for each plume is almost equivalent corresponding to ~2–6 × 1016 cm?2 and 3–5 × 1015 cm?2, respectively, producing SO2 and S2 gas resurfacing rates ~0.04–0.2 cm yr?1 and 0.007–0.01 cm yr?1; and SO2 and S2 gas masses ~1–4 × 1010 g and ~2–3 × 109 g; for a total dust to gas ratio in the plumes ~10?1–10?2. The 2007 Tvashtar plume was detected by HST at ~380 ± 40 km in both reflected sunlight and absorbed jovian light; in 1999, the detected Pele plume altitude was 500 km in absorbed jovian light, but in reflected sunlight the detected height was ~2× lower. Thus, for the 1999 Pele plume, similar to the 1979 Voyager Pele plume observations, the most efficient dust reflections occurred in the region closest to the plume vent. The 0.33–0.42 μm brightness of the 1997 Pillan plume was 10–20× greater than the Pele or Tvashtar plumes, exceeding by a factor of 3 the average brightness levels observed within 200 km of 1979 Loki eruption vent. But, the 0.26 μm brightness of the 1997 Pillan plume in reflected sunlight was significantly lower than would be predicted by the dust scattering model. Presuming that the 0.26 μm brightness of the 1997 Pillan plume was attenuated by the eruption plume’s gas component, then an SO2 gas density ~3–6 × 1018 cm?2 is inferred from the data (for S2/SO2 ratios ?4%), comparable to the 0.3–2 × 1018 cm?2 SO2 density detected at Loki in 1979 (Pearl, J.C. et al. [1979]. Nature 280, 755; Lellouch et al., 1992), and producing an SO2 gas mass ~3–8 × 1011 g and an SO2 resurfacing rate ~8–23 cm yr?1. These results confirm the connection between high (?1017 cm?2) SO2 gas content and plumes that scatter strongly at nearly blue wavelengths, and it validates the occurrence of high density SO2 gas eruptions on Io. Noting that the SO2 gas content inferred from a spectrum of the 2003 Pillan plume was significantly lower ~2 × 1016 cm?2 (Jessup, K.L., Spencer, J., Yelle, R. [2007]. Icarus 192, 24–40); and that the Pillan caldera was flooded with fresh SO2 frost/slush just prior to the 1997 Pillan plume eruption (Geissler, P., McEwen, A., Phillips, C., Keszthelyi, L., Spencer, J. [2004a]. Icarus 169, 29–64; Phillips, C.B. [2000]. Voyager and Galileo SSI Views of Volcanic Resurfacing on Io and the Search for Geologic Activity at Europa. Ph.D. Thesis, Univ. of Ariz., Tucson); we propose that the density of SO2 gas released by this volcano is directly linked to the local SO2 frost abundance at the time of eruption.  相似文献   

17.
Vladimir Krasnopolsky 《Icarus》2012,219(1):244-249
To search for DCl in the Venus atmosphere, a spectrum near the D35Cl (1–0) R4 line at 2141.54 cm?1 was observed using the CSHELL spectrograph at NASA IRTF. Least square fitting to the spectrum by a synthetic spectrum results in a DCl mixing ratio of 17.8 ± 6.8 ppb. Comparing to the HCl abundance of 400 ± 30 ppb (Krasnopolsky [2010a] Icarus, 208, 314–322), the DCl/HCl ratio is equal to 280 ± 110 times the terrestrial D/H = 1.56 × 10?4. This ratio is similar to that of HDO/H2O = 240 ± 25 times the terrestrial HDO/H2O from the VEX/SOIR occultations at 70–110 km. Photochemistry in the Venus mesosphere converts H from HCl to that in H2O with a rate of 1.9 × 109 cm?2 s?1 (Krasnopolsky [2012] Icarus, 218, 230–246). The conversion involves photolysis of HCl; therefore, the photochemistry tends to enrich D/H in HCl and deplete in H2O. Formation of the sulfuric acid clouds may affect HDO/H2O as well. The enriched HCl moves down by mixing to the lower atmosphere where thermodynamic equilibriums for H2 and HCl near the surface correspond to D/H = 0.71 and 0.74 times that in H2O, respectively. Time to establish these equilibriums is estimated at ~3 years and comparable to the mixing time in the lower atmosphere. Therefore, the enriched HCl from the mesosphere gives D back to H2O near the surface. Comparison of chemical and mixing times favors a constant HDO/H2O up to ~100 km and DCl/HCl equal to D/H in H2O times 0.74.Ammonia is an abundant form of nitrogen in the reducing environments. Thermodynamic equilibriums with N2 and NO near the surface of Venus give its mixing ratio of 10?14 and 6 × 10?7, respectively. A spectrum of Venus near the NH3 line at 4481.11 cm?1 was observed at NASA IRTF and resulted in a two-sigma upper limit of 6 ppb for NH3 above the Venus clouds. This is an improvement of the previous upper limit by a factor of 5. If ammonia exists at the ppb level or less in the lower atmosphere, it quickly dissociates in the mesosphere and weakly affects its photochemistry.  相似文献   

18.
The dynamics of Venus’ mesosphere (60–100 km altitude) was investigated using data acquired by the radio-occultation experiment VeRa on board Venus Express. VeRa provides vertical profiles of density, temperature and pressure between 40 and 90 km of altitude with a vertical resolution of few hundred meters of both the Northern and Southern hemisphere. Pressure and temperature vertical profiles were used to derive zonal winds by applying an approximation of the Navier–Stokes equation, the cyclostrophic balance, which applies well on slowly rotating planets with fast zonal winds, like Venus and Titan. The main features of the retrieved winds are a midlatitude jet with a maximum speed up to 140 ± 15 m s?1 which extends between 20°S and 50°S latitude at 70 km altitude and a decrease of wind speed with increasing height above the jet. Cyclostrophic winds show satisfactory agreement with the cloud-tracked winds derived from the Venus Monitoring Camera (VMC/VEx) UV images, although a disagreement is observed at the equator and near the pole due to the breakdown of the cyclostrophic approximation. Knowledge of both temperature and wind fields allowed us to study the stability of the atmosphere with respect to convection and turbulence. The Richardson number Ri was evaluated from zonal field of measured temperatures and thermal winds. The atmosphere is characterised by a low value of Richardson number from ~45 km up to ~60 km altitude at all latitudes that corresponds to the lower and middle cloud layer indicating an almost adiabatic atmosphere. A high value of Richardson number was found in the region of the midlatitude jet indicating a highly stable atmosphere. The necessary condition for barotropic instability was verified: it is satisfied on the poleward side of the midlatitude jet, indicating the possible presence of wave instability.  相似文献   

19.
《Planetary and Space Science》2007,55(12):1741-1756
The dynamics of Venus’ mesosphere (70–110 km) is characterized by the superposition of two different wind regimes: (1) Venus’ retrograde superrotation; (2) a sub-solar to anti-solar (SS–AS) flow pattern, driven by solar EUV heating on the sunlit hemisphere. Here, we report on new ground-based velocity measurements in the lower part of the mesosphere. We took advantage of two essentially symmetric Venus elongations in 2001 and 2002 to perform high-resolution Doppler spectroscopy (R=120,000) in 12C16O2 visible lines of the 5ν3 band and in a few solar Fraunhofer lines near 8700 Å. These measurements, mapped over several points on Venus’ illuminated hemisphere, probe the region of cloud tops. More precisely, the solar Fraunhofer lines sample levels a few kilometers below the UV features (i.e. near ∼67 km), while the CO2 lines probe an altitude higher by about 7 km. The wind field over Venus’ disk is retrieved with an rms uncertainty of 15–25 m s−1 on individual measurements. Kinematical fit to a one- or two-component circulation model indicates the dominance of the zonal retrograde flow with a mean equatorial velocity of ∼75 m s−1, exhibiting very strong day-to-day variations (±65 m s−1). Results are very consistent for the two kinds of lines, suggesting a negligible vertical wind shear over 67–74 km. The SS–AS flow is not detected in single-day observations, but combining the results from all data suggests that this component may invade the lower mesosphere with a ∼40 m s−1 velocity.  相似文献   

20.
Venus Express measurements of the vertical profiles of SO and SO2 in the middle atmosphere of Venus provide an opportunity to revisit the sulfur chemistry above the middle cloud tops (~58 km). A one dimensional photochemistry-diffusion model is used to simulate the behavior of the whole chemical system including oxygen-, hydrogen-, chlorine-, sulfur-, and nitrogen-bearing species. A sulfur source is required to explain the SO2 inversion layer above 80 km. The evaporation of the aerosols composed of sulfuric acid (model A) or polysulfur (model B) above 90 km could provide the sulfur source. Measurements of SO3 and SO (a1Δ  X3Σ-) emission at 1.7 μm may be the key to distinguish between the two models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号