首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The global circulation of the Venus atmosphere is characterized at cloud level by a zonal super rotation studied over the years with data from a battery of spacecrafts: orbiters, balloons and probes. Among them, the Galileo spacecraft monitored the Venus atmosphere in a flyby in February 1990 in its route toward Jupiter. Since the flyby was almost equatorial, published analysis of zonal winds obtained from displacements of cloud elements on images obtained by the SSI camera [Belton, M.J.S., and 20 colleagues, 1991. Science 253, 1531-1536] stop at latitudes 50° north and south. In this paper we present new results on Venus winds based on a reanalysis of an extended set of images obtained at two wavelengths, 418 nm (violet) and 986 nm (near infrared), that sense different altitude levels in the upper cloud. Our main result is that we have been able to extend the zonal wind profile up to the polar latitudes: 70° N and 70° S at 418 nm and 70° N at 986 nm. Binned and smoothed profiles are given in tabular form. We show that the zonal winds drop in their velocity poleward of latitudes 45° N and 50° S where an intense meridional wind shear develops at the two cloud levels. Our data confirm the magnitude of this shear, retrieved previously from radio occultation data, but disagrees with it in the latitudinal location of the sheared region. The new wind data can be used to recalibrate the zonal winds retrieved from the previous measurements of the temperature field and the cyclostrophic balance assumption. The meridional profiles of the zonal winds at the two cloud levels are used to assess the vertical wind shear in the upper cloud layer as a function of latitude and locate the most unstable region.  相似文献   

2.
Eighty-seven measurements of the thermal structure in the atmosphere of Venus between the altitudes of about 40 and 85 km were derived from Pioneer Venus Orbiter radio occultation data taken during four occultation seasons from December 1978 to October 1981. These measurements cover latitudes from ?68 to 88° and solar zenith angles of 8 to 166°. The results indicate that the characteristics of the thermal structure in both the troposphere and stratosphere regions are dependent predominantly on the latitude and only weakly on solar illumination conditions. In particular, the circumpolar collar cloud region in the northern hemisphere (latitude 55 to 77°) displays the most dramatic changes in structure, including the appearance of a large inversion, having an average magnitude of about 18°K and a maximum of about 33°K. Also in this region, the tropopause altitude rises by about 4.8 km above its value at low latitudes, the tropopause temperature drops by about 60°K, and the pressure at the tropopause decreases by an average of about 240 mbar. These changes in the collar region are correlated with observations of increased turbulence and greater amplitude of thermal waves in the region, which is located where the persistent circulation pattern in the Venus atmosphere changes from zonally symmetric retrograde rotation to a hemispherical circumpolar vortex. It was shown that the large zonal winds associated with this circulation pattern are not likely to produce distortions in the atmosphere of a magnitude that could lead to temperature errors of the order of the mesosphere inversions observed in the collar region, but under certain circumstances zonal wind distortion could cause errors of 3–4°K.  相似文献   

3.
The Community Atmosphere Model (CAM), a 3-dimensional Earth-based climate model, has been modified to simulate the dynamics of the Venus atmosphere. The most current finite volume version of CAM is used with Earth-related processes removed, parameters appropriate for Venus introduced, and some basic physics approximations adopted. A simplified Newtonian cooling approximation has been used for the radiation scheme. We use a high resolution (1° by 1° in latitude and longitude) to take account of small-scale dynamical processes that might be important on Venus. A Rayleigh friction approach is used at the lower boundary to represent surface drag, and a similar approach is implemented in the uppermost few model levels providing a ‘sponge layer’ to prevent wave reflection from the upper boundary. The simulations generate superrotation with wind velocities comparable to those measured in the Venus atmosphere by probes and around 50-60% of those measured by cloud tracking. At cloud heights and above the atmosphere is always superrotating with mid-latitude zonal jets that wax and wane on an approximate 10 year cycle. However, below the clouds, the zonal winds vary periodically on a decadal timescale between superrotation and subrotation. Both subrotating and superrotating mid-latitude jets are found in the approximate 40-60 km altitude range. The growth and decay of the sub-cloud level jets also occur on the decadal timescale. Though subrotating zonal winds are found below the clouds, the total angular momentum of the atmosphere is always in the sense of superrotation. The global relative angular momentum of the atmosphere oscillates with an amplitude of about 5% on the approximate 10 year timescale. Symmetric instability in the near surface equatorial atmosphere might be the source of the decadal oscillation in the atmospheric state. Analyses of angular momentum transport show that all the jets are built up by poleward transport by a meridional circulation while angular momentum is redistributed to lower latitudes primarily by transient eddies. Possible changes in the structure of Venus’ cloud level mid-latitude jets measured by Mariner 10, Pioneer Venus, and Venus Express suggest that a cyclic variation similar to that found in the model might occur in the real Venus atmosphere, although no subrotating winds below the cloud level have been observed to date. Venus’ atmosphere must be observed over multi-year timescales and below the clouds if we are to understand its dynamics.  相似文献   

4.
R.S. Lindzen  H. Teitelbaum 《Icarus》1984,57(3):356-361
The altitude variation of the zonal wind velocity in the Venus atmosphere above the cloud layer is deduced from the structure of the wavenumber 2 solar tide. Results show that the amplitude of the zonal wind increases with respect to altitude near the equator, but decreases for latitudes greater than 30°. Thus, the zonal wind becomes concentrated at lower latitudes by 100 km altitude.  相似文献   

5.
The dynamics of Venus’ mesosphere (60–100 km altitude) was investigated using data acquired by the radio-occultation experiment VeRa on board Venus Express. VeRa provides vertical profiles of density, temperature and pressure between 40 and 90 km of altitude with a vertical resolution of few hundred meters of both the Northern and Southern hemisphere. Pressure and temperature vertical profiles were used to derive zonal winds by applying an approximation of the Navier–Stokes equation, the cyclostrophic balance, which applies well on slowly rotating planets with fast zonal winds, like Venus and Titan. The main features of the retrieved winds are a midlatitude jet with a maximum speed up to 140 ± 15 m s?1 which extends between 20°S and 50°S latitude at 70 km altitude and a decrease of wind speed with increasing height above the jet. Cyclostrophic winds show satisfactory agreement with the cloud-tracked winds derived from the Venus Monitoring Camera (VMC/VEx) UV images, although a disagreement is observed at the equator and near the pole due to the breakdown of the cyclostrophic approximation. Knowledge of both temperature and wind fields allowed us to study the stability of the atmosphere with respect to convection and turbulence. The Richardson number Ri was evaluated from zonal field of measured temperatures and thermal winds. The atmosphere is characterised by a low value of Richardson number from ~45 km up to ~60 km altitude at all latitudes that corresponds to the lower and middle cloud layer indicating an almost adiabatic atmosphere. A high value of Richardson number was found in the region of the midlatitude jet indicating a highly stable atmosphere. The necessary condition for barotropic instability was verified: it is satisfied on the poleward side of the midlatitude jet, indicating the possible presence of wave instability.  相似文献   

6.
Curt Covey  Gerald Schubert 《Icarus》1981,47(1):130-138
Ultraviolet albedo contrasts in the Venus atmosphere are probably large-scale atmospheric waves propagating slowly with respect to the rapid cloud-top zonal winds. Using a simple theoretical model and profiles of mean wind and thermal structure based on Pioneer Venus data, we find planetary-scale gravity waves with phase velocities matching the speeds of the uv markings. We propose an upward-propagating wave and waves trapped at cloud levels as candidates to explain the observed uv features.  相似文献   

7.
《Planetary and Space Science》2006,54(13-14):1415-1424
The forthcoming observations by Venus Express provide an ideal opportunity to comprehensively study the atmosphere of Venus for the first time since Pioneer Venus (1978–1992), and for the first time ever in detail at polar latitudes. This article reviews some of our current knowledge from space and ground-based observations about the upper atmosphere of Venus, such as its thermal structure, the global distribution of gases and dynamics. We discuss the processes most likely responsible for phenomena such as the cold nightside cryosphere, the cloud top superrotation and waves, and highlight outstanding scientific challenges for Venus Express measurements. In particular, we describe an experiment to measure atmospheric drag using the on-board accelerometers.  相似文献   

8.
J.E. Ainsworth  J.R. Herman 《Icarus》1977,30(2):314-319
An examination of the effect of assumptions in the interpretation of the Venera wind data is made as a rebuttal to the suggestion by A.T. Young that the 140 m/sec Venera 8 horizontal wind at 45 km may be either spurious or anomalous. The Venera measurements of wind speed along with the Mariner measurements of a lower region of strong turbulence are evidence for a wide band of variable high-speed retrograde horizontal winds which girdle Venus at the equator. In the prevalent interpretation of the Mariner 10 uv photographs, the region of the top of the visible cloud is characterized by variable high-speed retrograde horizontal winds which orbit Venus with an average period of 4 Earth days, and by many features indicating vertical convection. This interpretation, together with the possibility of atmospheric corotation due to frictional coupling, suggests that the Venera-Mariner band of winds at 45 km extends well beyond the top of the visible cloud, and that the upper region of strong turbulence detected by the Mariners may result in part from vertical convection currents carried along by high-speed horizontal winds. In an alternate interpretation of the Mariner 10 uv photographs Young suggests that the predominant motions may be traveling wavelike disturbances with a 4-day period rather than bulk motion of the atmosphere. For this case the upper region of strong turbulence is interpreted as due mostly to vertical wind shear resulting from a rapid decrease in wind speed within a relatively short distance above the Venera-Mariner band of high-speed winds.  相似文献   

9.
Cloud motions were obtained from a number of images acquired in reflected solar ultraviolet light during spring and fall of 1979 from the Pioneer Venus Orbiter Cloud Photopolarimeter (OCPP) to determine the zonal mean circulation of the atmosphere of Venus at the cloud top level. The meridional profile of the zonal component of motion is somewhat different from that previously obtained from Mariner 10 and preliminary Pioneer Venus observations, although the equatorial magnitude is about the same (?94 m/sec). The mean meridional motion is toward the south pole south of about 5° south latitude, and toward the north pole north of this latitude, with peak mean magnitudes of about 7 m/sec polewards of 20° north and 40° south latitudes in the respective hemispheres. From the few measurements obtained at higher latitudes the magnitude of the mean meridional component appears to decrease although it is still directed toward the respective poles. Due to the evolution of the cloud patterns over the duration of the images from which the cloud velocities are obtained, the uncertainties in the mean zonal and meridional components may be as large as 5–10 and 2–4 m/sec, respectively. Preliminary estimates of meridional momentum transport show that the mean circulation dominates the eddy circulation transport completely, in agreement with the estimates obtained from Mariner 10 data, although the uncertainties in both the mean and eddy circulation transports are large. The momentum transports are polewards and their peak magnitudes occur at latitudes between 20° and 40° in both the hemispheres.  相似文献   

10.
The most significant aspect of the general circulation of the atmosphere of Venus is its retrograde super-rotation. A complete characterization of this dynamical phenomenon is crucial for understanding its driving mechanisms. Here we report on ground-based Doppler velocimetry measurements of the zonal winds, based on high resolution spectra from the UV–Visual Echelle Spectrograph (UVES) instrument at ESO’s Very Large Telescope. Under the assumption of predominantly zonal flow, this method allows the simultaneous direct measurement of the zonal velocity across a range of latitudes and local times in the day side. The technique, based on long slit spectroscopy combined with the high spatial resolution provided by the VLT, has provided the first ground-based characterization of the latitudinal profile of zonal wind in the atmosphere of Venus, the first zonal wind field map in the visible, as well as new constraints on wind variations with local time. We measured mean zonal wind amplitudes between 106 ± 21 and 127 ± 14 m/s at latitudes between 18°N and 34°S, with the zonal wind being approximately uniform in 2.6°-wide latitude bands (0.3 arcsec at disk center). The zonal wind profile retrieved is consistent with previous spacecraft measurements based on cloud tracking, but with non-negligible variability in local time (longitude) and in latitude. Near 50° the presence of moderate jets is apparent in both hemispheres, with the southern jet being stronger by ~10 m/s. Small scale wind variations with local time are also present at low and mid-latitudes.  相似文献   

11.
We present new wind measurements in Venus’ lower mesosphere from visible spectroscopy during the 2007 worldwide coordinated ground campaign in support of ESA's Venus Express mission. These observations consisted of high-resolution spectra of Fraunhofer lines in the entire visible range (0.37-1.05 μm) to measure the winds near 68 km using the Doppler shift of solar radiation scattered by clouds toward the observer's direction. The observations included various points of the dayside hemisphere at a phase angle of ∼109°. We took advantage of two symmetrical elongations in July and September 2007 at Canada-France-Hawaii's 3.6-m telescope. Kinematical fits to the Doppler winds provide a mean equatorial velocity of (104±10) m s−1 for the zonal retrograde flow. This velocity agrees quite well with the mean value obtained by tracking the UV markings from several spacecraft.  相似文献   

12.
Imaging of Uranus in 2003 with the Keck 10-m telescope reveals banded zonal structure and dozens of discrete cloud features at J and H bands; several features in the northern hemisphere are also detectable at K′. By tracking features over four days, we extend the zonal wind profile well into the northern hemisphere. We report the first measurements of wind velocities at latitudes −13°, +19°, and northward of +43°, the first direct wind measurements near the equator, and the highest wind velocity seen yet on Uranus (+218 m/s). At northern mid-latitudes (+20° to +40°), the winds appear to have accelerated when compared to earlier HST and Keck observations; southern wind speeds (−20° to −43°) have not changed since Voyager measurements in 1986. The equator of Uranus exhibits a subtle wave structure, indicated by diffuse patches roughly every 30° in longitude. The largest discrete cloud features on Uranus show complex structure extending over tens of degrees, reminiscent of activity seen around Neptune's Great Dark Spot during the Voyager encounter with that planet. There is no sign of a northern “polar collar” as is seen in the south, but a number of discrete features seen at the “expected” latitudes may signal the early stages of development of a northern collar.  相似文献   

13.
《Planetary and Space Science》2007,55(12):1701-1711
The Venus Express mission will focus on a global investigation of the Venus atmosphere and plasma environment, while additionally measuring some surface properties from orbit. The instruments PFS and SPICAV inherited from the Mars Express mission and VIRTIS from Rosetta form a powerful spectrometric and spectro-imaging payload suite. Venus Monitoring Camera (VMC)—a miniature wide-angle camera with 17.5° field of view—was specifically designed and built to complement these experiments and provide imaging context for the whole mission. VMC will take images of Venus in four narrow band filters (365, 513, 965, and 1000 nm) all sharing one CCD. Spatial resolution on the cloud tops will range from 0.2 km/px at pericentre to 45 km/px at apocentre when the full Venus disc will be in the field of view. VMC will fulfill the following science goals: (1) study of the distribution and nature of the unknown UV absorber; (2) determination of the wind field at the cloud tops (70 km) by tracking the UV features; (3) thermal mapping of the surface in the 1 μm transparency “window” on the night side; (4) determination of the global wind field in the main cloud deck (50 km) by tracking near-IR features; (5) study of the lapse rate and H2O content in the lower 6–10 km; (6) mapping O2 night-glow and its variability.  相似文献   

14.
An improved cloud tracking method for deriving wind velocities from successive planetary images was developed. The new method incorporates into the traditional cross-correlation method an algorithm that corrects for erroneous cloud motion vectors by re-determining the most plausible correlation peak among all of the local maxima on the correlation surface by comparing each vector with its neighboring vectors. The newly developed method was applied to the Venusian violet images obtained by the Solid State Imaging system (SSI) onboard the Galileo spacecraft during its Venus flyby. Although the results may be biased by the choice of spatial scale of atmospheric features, the cloud tracking is the most practical mean of estimating the wind velocities with extensive spatial and temporal coverage. The two-dimensional distribution of the horizontal wind vector field over 5 days was obtained. It was found from these wind maps that the solar-fixed component in 1990 was similar to that in 1982 obtained by the Pioneer Venus orbiter. The deviation of the instantaneous zonal wind field from the solar-fixed component shows a distinct wavenumber-1 structure in the equatorial region. On the assumption that this structure is a manifestation of an equatorial Kelvin wave, the phase relationship between the zonal wind and the cloud brightness suggests a short photochemical lifetime of the violet absorber. The momentum deposition by this Kelvin wave, which is subject to radiative damping, would induce a westward mean-wind acceleration of ~0.3 m s?1 per Earth day.  相似文献   

15.
We present a new method of measuring the Venus winds by Doppler velocimetry on the full visible spectrum of solar light scattered by the clouds. In January 2003, we carried out observations to measure the winds of Venus, using the EMILIE high-resolution, cross-dispersed spectrograph and its associated calibrating instrument the Absolute Astronomical Accelerometer (AAA), at Observatoire de Haute-Provence, France. The motivation of this type of measurements is that it measures the actual velocity of cloud particles, while the other method (track of cloud features) may be sensitive to the deformation of the clouds. During observations, Venus was near maximum western elongation, at a phase angle near 90°. The EMILIE-AAA system allows us to measure accurately the Doppler shift induced in the reflected solar spectrum by the radial component of the motion of the clouds of Venus. We present the measurements and compare them with a forward simulation of a solid super-rotation of the atmosphere of Venus. Taking into account the Doppler shift relative to the Sun and that relative to the Earth, the theoretical total Doppler shift induced in the solar spectra is easily computed as a function of the velocity of the reflecting target. A first forward simulation is computed, with a wind model considering a purely horizontal and zonal wind. The magnitude of the wind is assumed to depend on cos(latitude), as for a solid-body rotation. The comparison with the measurements at various points on the illuminated semi-disc allowed us to determine an equatorial velocity of 66, 75, 91 and 85 m/s on 4 consecutive mornings, consistent with previous ultraviolet cloud tracking wind measurements, showing that wave propagation is not a major factor in the apparent motion of the cloud marks. Further, we discuss the effect of the finite angular size of the Sun and its rapid equatorial rotation (that we call the Young effect). It mainly affects measurements taken near the terminator, where the largest discrepancies are found. These discrepancies are alleviated when the Young effect is taken into account in the model but then the retrieved Venus equatorial velocity is reduced to only 48±3 m/s. This is well below classical ultraviolet markings velocities, but the altitude at which the visible photons are scattered (66 km) that we use is 5 km below the UV markings, confirming the vertical gradient of the horizontal winds shown by previous in-situ measurements.  相似文献   

16.
Possible interrelationships of different observations have been studied to clear up some obvious inconsistencies and develop a coherent picture of the kinematics of the Venus atmosphere. There is a wind shear in the vicinity of 60 km with vertical dimensions on the order of a scale height. The kinematical model has negligible surface winds, speeds increasing with altitude to approximately 45 km, a layer of high-speed retrograde zonal winds extending from approximately 45 to 60 km, a wind shear between 60 and 65 km, and slow atmospheric motions above this. Spacecraft data show that the region of high-speed winds is thicker on the day side of the planet than on the night side.  相似文献   

17.
Since the discovery of ultraviolet markings on Venus, their observations have been a powerful tool to study the morphology, motions and dynamical state at the cloud top level. Here we present the results of investigation of the cloud top morphology performed by the Venus Monitoring Camera (VMC) during more than 3 years of the Venus Express mission. The camera acquires images in four narrow-band filters centered at 365, 513, 965 and 1010 nm with spatial resolution from 50 km at apocentre to a few hundred of meters at pericentre. The VMC experiment provides a significant improvement in the Venus imaging as compared to the capabilities of the earlier missions. The camera discovered new cloud features like bright “lace clouds” and cloud columns at the low latitudes, dark polar oval and narrow circular and spiral “grooves” in the polar regions, different types of waves at the high latitudes. The VMC observations revealed detailed structure of the sub-solar region and the afternoon convective wake, the bow-shape features and convective cells, the mid-latitude transition region and the “polar cap”. The polar orbit of the satellite enables for the first time nadir viewing of the Southern polar regions and an opportunity to zoom in on the planet. The experiment returned numerous images of the Venus limb and documented global and local brightening events. VMC provided almost continuous monitoring of the planet with high temporal resolution that allowed one to follow changes in the cloud morphology at various scales.We present the in-flight performance of the instrument and focus in particular on the data from the ultraviolet channel, centered at the characteristic wavelength of the unknown UV absorber that yields the highest contrasts on the cloud top. Low latitudes are dominated by relatively dark clouds that have mottled and fragmented appearance clearly indicating convective activity in the sub-solar region. At ~50° latitude this pattern gives way to streaky clouds suggesting that horizontal, almost laminar, flow prevails here. Poleward from about 60°S the planet is covered by almost featureless bright polar hood sometimes crossed by dark narrow (~300 km) spiral or circular structures. This global cloud pattern can change on time scales of a few days resulting in global and local “brightening events” when the bright haze can extend far into low latitudes and/or increase its brightness by 30%. Close-up snapshots reveal plenty of morphological details like convective cells, cloud streaks, cumulus-like columns, wave trains. Different kinds of small scale waves are frequently observed at the cloud top. The wave activity is mainly observed in the 65–80° latitude band and is in particular concentrated in the region of Ishtar Terra that suggests their possible orographic origin. The VMC observations have important implications for the problems of the unknown UV absorber, microphysical processes, dynamics and radiative energy balance at the cloud tops. They are only briefly discussed in the paper, but each of them will be the subject of a dedicated study.  相似文献   

18.
The Venus Express (VEX) mission has been in orbit to Venus for more than 4 years now. The Visible and Infrared Thermal Imaging Spectrometer (VIRTIS) instrument onboard VEX observes Venus in two channels (visible and infrared) obtaining spectra and multi-wavelength images of the planet that can be used to sample the atmosphere at different altitudes. Day-side images in the ultraviolet range (380 nm) are used to study the dynamics of the upper cloud at 66–72 km while night-side images in the near infrared (1.74 μm) map the opacity of the lower cloud deck at 44–48 km. Here we present a long-term analysis of the global atmospheric dynamics at these levels using a large selection of orbits from the VIRTIS-M dataset covering 860 Earth days that extends our previous work (Sánchez-Lavega, A. et al. [2008]. Geophys. Res. Lett. 35, L13204) and allows studying the variability of the global circulation at the two altitude levels. The atmospheric superrotation is evident with equatorial to mid-latitudes westward velocities of 100 and 60 m s?1 in the upper and lower cloud layers. These zonal velocities are almost constant in latitude from the equator to 50°S. From 50°S to 90°S the zonal winds at both cloud layers decrease steadily to zero at the pole. Individual cloud tracked winds have errors of 3–10 m s?1 with a mean of 5 m s?1 and the standard deviations for a given latitude of our zonal and meridional winds are 9 m s?1. The zonal winds in the upper cloud change with the local time in a way that can be interpreted in terms of a solar tide. The zonal winds in the lower cloud are stable at mid-latitudes to the tropics and present variability at subpolar latitudes apparently linked to the activity of the South polar vortex. While the upper cloud presents a net meridional motion consistent with the upper branch of a Hadley cell with peak velocity v = 10 m s?1 at 50°S, the lower cloud meridional motions are less organized with some cloud features moving with intense northwards and southwards motions up to v = ±15 m s?1 but, on average, with almost null global meridional motions at all latitudes. We also examine the long-term behavior of the winds at these two vertical layers by comparing our extended wind tracked data with results from previous missions.  相似文献   

19.
《Icarus》1987,69(2):202-220
A primitive equation wave-mean flow interaction model, designed by J. R. Holton and used originally to study Earth's middle atmosphere, has been adapted to Venus in order to clarify our understanding of the interaction between the semidiurnal tide and the thermally driven mean meridional circulation near the cloud top level. With or without the tide the model produces midlatitude jets whose structure is insensitive to vertical shear of the background angular velocity above and below the cloud top level, but it is sensitive to background angular velocity at the cloud top level. When this background angular velocity is close to that of Venus, the latitudes and speeds of these jets are similar to the latitudes and speeds of jets at the Venus cloud top level as inferred from observed temperatures and the cyclostrophic balance condition. In agreement with the hypothesis of Fels and Lindzen, the model tide accelerates the equatorial zonal wind near the cloud top level and decelerates it at higher levels. The tidal vertical wavelength, maximum amplitude, dissipative decay length, and zonal flow accelerations are sensitive functions of background angular velocity, in agreement with elementary gravity wave theory. In the equatorial cloud top region, tidal acceleration is comparable in magnitude to the decelerative effects of vertical advection and the model's Rayleigh friction damping. For sufficiently rapid initial zonal flow near the cloud top level, the area-weighted global mean cloud top level zonal wind increases with time over a 50-day model run as a result of tidal acceleration. Agreement between the model tide and the observed tide, or the tide determined in the more detailed calculations of Pechmann and Ingersoll, is best when the background angular velocity at the jet level is about 30% larger than that observed.  相似文献   

20.
European Venus Explorer (EVE): an in-situ mission to Venus   总被引:1,自引:0,他引:1  
The European Venus Explorer (EVE) mission was proposed to the European Space Agency in 2007, as an M-class mission under the Cosmic Vision Programme. Although it has not been chosen in the 2007 selection round for programmatic reasons, the EVE mission may serve as a useful reference point for future missions, so it is described here. It consists of one balloon platform floating at an altitude of 50–60 km, one descent probe provided by Russia, and an orbiter with a polar orbit which will relay data from the balloon and descent probe, and perform science observations. The balloon type preferred for scientific goals is one which oscillates in altitude through the cloud deck. To achieve this flight profile, the balloon envelope contains a phase change fluid, which results in a flight profile which oscillates in height. The nominal balloon lifetime is 7 days—enough for one full circumnavigation of the planet. The descent probe’s fall through the atmosphere takes 60 min, followed by 30 min of operation on the surface. The key measurement objectives of EVE are: (1) in situ measurement from the balloon of noble gas abundances and stable isotope ratios, to study the record of the evolution of Venus; (2) in situ balloon-borne measurement of cloud particle and gas composition, and their spatial variation, to understand the complex cloud-level chemistry; (3) in situ measurements of environmental parameters and winds (from tracking of the balloon) for one rotation around the planet, to understand atmospheric dynamics and radiative balance in this crucial region. The portfolio of key measurements is complemented by the Russian descent probe, which enables the investigation of the deep atmosphere and surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号