首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Analysis of carbon and oxygen isotopic compositions of large benthic foraminifera tests (Marginopora vertebralis) that lived in the Great Australian Bight during the late Pleistocene, reveal that the tests are enriched by 1 to 3‰ in both 18O and 13C relative to modern specimens from the same region. The intolerance of M. vertebralis for cool waters negates lower ocean water temperature as an explanation for such high δ18O values. The oxygen isotopic compositions are thus interpreted to reflect tests secreted in hypersaline waters of up to 56 ppt salinity, concentrated from seawater by evaporation. M. vertebralis thrives today in waters of similar salinity at Shark Bay, Western Australia. The Pleistocene sedimentary assemblage supports an interpretation that environments broadly similar to those in outer modern-day Shark Bay were wide spread across the Great Australian Bight during portions of marine isotope stages 2, 3 and 4. The high δ13C values of the Pleistocene M. vertebralis are interpreted to reflect enhanced photosynthetic activity that depletes dissolved carbonate in 12C in such shallow, saline settings. These hypersaline environments formed during periods of lower sea-level when shallow-waters (< 20 m depth) extended from the shoreline over ~ 100 km across what is currently a relatively deep shelf. This study indicates that shelf bathymetry was a critical determinant of past environments of deposition across the Great Australian Bight.  相似文献   

2.
Brachiopod shells are widely used as an archive to reconstruct elemental and isotopic composition of seawater. Studies, focused on oxygen and carbon isotopes over the last decades, are increasingly extending to the emerging calcium isotope system. To date, only little attention has been paid to test the reliability of fossil brachiopods on their modern counterparts.In this context, the present study investigates two modern brachiopods, Terebratulina septentrionalis (eastern Canada, 5–30 m depth, 7.1 °C seasonal temperature variation, two-layer shell) and Gryphus vitreus (northern Mediterranean, 200 m depth, constant all-year round temperature, three-layer shell). Both species were sampled along the ontogenetic growth direction and calcium, oxygen, and carbon isotopes as well as elemental concentration were measured. Calcium isotopes were analyzed on TIMS. The elemental composition was analyzed by LA-ICP-MS and ICP-AES.The results indicate an intra-specimen δ44/40Ca variation ranging from 0.16 to 0.33‰, pointing to a fairly homogenous distribution of calcium isotopes in brachiopod shells. However, in the light of the suggested 0.7‰ increase in calcium isotopes over the Phanerozoic such intra-specimen variations constrain ocean reconstruction. δ44/40Ca values of T. septentrionalis do not seem to be affected by growth rate. Calcium isotopic values of G. vitreus are heavy in the central part of the shell and trend towards lighter values in peripheral areas approaching the maximum isotopic composition of T. septentrionalis. The maximum inter-species δ44/40Ca difference of 0.62‰ between T. septentrionalis and G. vitreus indicates that care should be taken when using different taxa, species with different strontium content or brachiopods with specialized shell structure, such as G. vitreus, for ocean water reconstruction in terms of Ca isotopic composition. T. septentrionalis may record Ca isotopic fractionation related to seasonal seawater temperature variations in its shell but this is difficult to resolve at the current analytical precision. Average δ18O-derived temperatures of the two investigated species are close to on-site measured temperatures.  相似文献   

3.
A high resolution analysis of benthic foraminifera as well as of aeolian terrigenous proxies extracted from a 37 m-long marine core located off the Mauritanian margin spanning the last ~ 1.2 Ma, documents the possible link between major continental environmental changes with a shift in the isotopic signature of deep waters around 1.0–0.9 Ma, within the so-called Mid-Pleistocene Transition (MPT) time period. The increase in the oxygen isotopic composition of deep waters, as seen through the benthic foraminifera δ18O values, is consistent with the growth of larger ice sheets known to have occurred during this transition. Deep-water mass δ13C changes, also estimated from benthic foraminifera, show a strong depletion for the same time interval. This drastic change in δ13C values is concomitant with a worldwide 0.3‰ decrease observed in the major deep oceanic waters for the MPT time period. The phase relationship between aeolian terrigeneous signal increase and this δ13C decrease in our record, as well as in other paleorecords, supports the hypothesis of a global aridification amongst others processes to explain the deep-water masses isotopic signature changes during the MPT. In any case, the isotopic shifts imply major changes in the end-member δ18O and δ13C values of deep waters.  相似文献   

4.
《Applied Geochemistry》2006,21(4):643-655
The groundwater B concentration in the alluvial aquifer of the upper Cecina River basin in Tuscany, Italy, often exceeds the limit of 1 mg L−1 set by the European Union for drinking water. On the basis of hydrogeological and geochemical observations, the main source of the B contamination of groundwater has been attributed to past releases into streams of exhausted, B-rich geothermal waters and/or mud derived from boric acid manufacturing in Larderello. The releases were discontinued 25–30 years ago.This study confirms that the B dissolved in groundwater is anthropogenic. In fact, the δ11B values of groundwater B match the range −12.2‰ to −13.3‰ of the Turkish B mineral (colemanite) processed in boric acid manufacturing, in the course of which no significant isotopic effects have been observed. This isotopic tracing of the Cecina alluvial aquifer occurs just below the confluence of the Possera Creek, which carries the B releases from Larderello. Strontium isotope ratios support this conclusion.At about 18 km from the Possera Creek confluence, the groundwater δ11B drops to much more negative values (−22‰ to −27‰), which are believed to be produced by adsorption–desorption interactions between dissolved B and the aquifer matrix. The δ11B of B fixed in well bottom sediments shows a similar variation. At present, desorption is prevailing over adsorption because the releases of B-rich water have ceased. A theoretical model is suggested to explain the isotopic trends observed.Thus, B isotopes appear to be a powerful tool for identifying the origin of B contamination in natural waters, although isotopic effects associated with adsorption–desorption processes may complicate the picture, to some extent.  相似文献   

5.
The Southern Alps are an ideal locality for studying patterns of isotopic fractionation associated with orographic precipitation. We have evaluated whether altitudinal change is reflected in the stable hydrogen isotopic composition (δ2H) of stream water, plant stem water and leaf wax lipids (n-alkanes) from living plants and soils, as well as in soil temperature. Samples were collected along an altitudinal transect from the windward side of the Southern Alps to Lake Hawea in the rain shadow. The results indicate that δ2H values of stem water overlap with stream water, demonstrating a gradual decrease with elevation that complied with modeled Rayleigh distillation, reflecting an isotopic lapse rate of −18.0 (± 1.1, 1σ)‰/km. Leaf and soil n-alkanes shared similar δ2H values and were 2H depleted relative to stem/stream waters. The values for soil n-alkanes indicated an isotopic lapse rate of −21.8 (± 2.0, 1σ)‰/km, consistent with precipitation data and long term observations. MBT/CBT derived soil temperature values based on the relative distribution of microbial tetraether lipids were similar to midsummer temperature observations, displaying an elevational decrease rate of −5.6 (± 1.5, 1σ) °C/km, consistent with regional and global observations.The results indicate that sedimentary lipid δ2H and microbial tetraether temperature estimates captured altitudinal trends in the isotopic composition of precipitation and mean temperature and further support their application in the reconstruction of past climate and surface uplift histories. However, notable differences in isotopic composition and temperature estimates between in situ soils and those with downslope transport of material emphasize the importance of facies analysis when interpreting past systems.  相似文献   

6.
《Applied Geochemistry》2005,20(8):1496-1517
Chloride concentrations were as high as 230 mg/L in water from the surface discharge of long-screened production wells in Pleasant Valley, Calif., about 100 km NW of Los Angeles. Wells with the higher Cl concentrations were near faults that bound the valley. Depending on well construction, high-Clwater from different sources may enter a well at different depths. For example, Cl concentration in the upper part of some wells completed in overlying aquifers influenced by irrigation return were as high as 220 mg/L, and Cl concentrations in water sampled within wells at depths greater than 450 m were as high as 500 mg/L. These high-Cl waters mix within the well during pumping and produce the water sampled at the surface discharge. Changes in the major ion, minor ion, trace element, and δ34S and δ13C isotopic composition of water in wells with depth were consistent with changes resulting from SO4 reduction, precipitation of calcite, and cation exchange. The chemical and isotopic composition of high-Cl water from deep wells trends towards the composition of oil-field production water from the study area. Chloride concentrations in oil-field production water present at depths 150 m beneath freshwater aquifers were 2200 mg/L, and Cl concentrations in underlying marine rock were as high as 4400 mg/L. High-Cl concentrations in water from deeper parts of wells were associated with dissolved organic C composed primarily of hydrophobic neutral compounds believed to be similar to those associated with petroleum in underlying deposits. These compounds would not be apparent using traditional sampling techniques and would not be detected using analytical methods intended to measure contamination.  相似文献   

7.
New isotopic and chemical data on the sodium bicarbonate water and associated gases from the Razdolnoe Spa located in the coastal zone of Primorsky Kray of the Russian Far East, together with previous stable isotope data (δ18O, δD, δ13C), allow elucidation of the origin and evolution of the groundwater and gases from the spa. The water is characterized by low temperature (12 °C), TDS – 2.5–6.0 g/L, high contents of B (∼5 mg/L) and F (4.5 mg/L) and low contents of Cl and SO4. Water isotopic composition indicates its essentially meteoric origin which may comply with an older groundwater that was recharged under different (colder) climatic conditions. Major components of bubbling gases are CH4 (68 vol%), N2 (28%) and CO2 (4%). The obtained values δ13C and δD for CO2 and CH4 definitely indicate the marine microbial origin of methane. Thus the high methane content in the waters relates to the biochemical processes and presence of a dispersed organic matter in the host rocks. Based on the regional hydrogeology and the geological structure of the Razdolnoe Spa, Mesozoic fractured rocks containing Na–HCO3 mineral water and gases are reservoir rocks, a chemical composition of water and gases originates in different environmental conditions.  相似文献   

8.
《Quaternary Science Reviews》2003,22(5-7):555-567
Petrographical and geochemical parameters of stalagmites from the B7 cave in Iserlohn–Letmathe (Northern Rhenish Massif, NW Germany) record Late- and postglacial climate changes (temperature and/or precipitation). Fabrics and microfacies of the stalagmite profiles lead to a differentiation of four hierarchies of rhythms. Clastic layers in the stalagmites are caused by flooding events and are time markers. Twenty-four TIMS Th/U-age-dates provide a time calibration of stalagmite growth phases. One stalagmite reveals an early growth period between 17.6 and 16.7 ka BP. Between 9.6 and 5.5 ka BP (Atlantic episode of the Holocene) the growth rate of the stalagmites was higher than before and after this time, with dominant light-porous microfacial laminae and high δ18O and δ13C values representing partly kinetic fractionation effects. This part of the Holocene is interpreted as a mainly warm episode with frequent interruptions of dripping. Within the past 4 ka the profiles with predominant dark compact facies reveal low isotopic values which may be interpreted as a temperature proxy record. The stalagmite records resemble records from an Irish stalagmite. Correlation with the Δ14C record from European tree rings suggests that colder periods in the North Atlantic were accompanied by drier winters in central Europe.  相似文献   

9.
The Diyadin Geothermal area, located in the eastern part of Anatolia (Turkey) where there has been recent volcanic activity, is favorable for the formation of geothermal systems. Indeed, the Diyadin geothermal system is located in an active geodynamic zone, where strike-slip faults and tensional cracks have developed due to N–S regional compression. The area is characterized by closely spaced thermal and mineralized springs, with temperatures in the range 30–64 °C, and flowrates 0.5–10 L/s. Thermal spring waters are mainly of Ca(Na)-HCO3 and Ca(Mg)-SO4 types, with high salinity, while cold groundwater is mostly of Ca(Na, Mg)-HCO3 type, with lower salinity. High contents of some minor elements in thermal waters, such as F, B, Li, Rb, Sr and Cs probably derive from enhanced water–rock interaction.Thermal water samples collected from Diyadin are far from chemical equilibrium as the waters flow upward from reservoirs towards spring vents and possibly mix with cooler waters. The temperatures of the deep geothermal reservoirs are estimated to be between 92 and 156 °C in Diyadin field, based on quartz geothermometry, while slightly lower estimates are obtained using chalcedony geothermometers. The isotopic composition of thermal water (δ18O, δ2H, δ3H) indicates their deep-circulating meteoric origin. The waters are likely to have originated from the percolation of rainwater along fractures and faults to the deep hot reservoir. Subsequent heating by conduction due to the presence of an intrusive cupola associated with the Tendurek volcano, is followed by the ascent of deep waters to the surface along faults and fractures that act as hydrothermal conduits.Modeling of the geothermal fluids indicates that the fluid is oversaturated with calcite, aragonite and dolomite, which matches travertine precipitation in the discharge area. Likewise, the fluid is oversaturated with respect to quartz, and chalcedony indicating the possibility of siliceous precipitation near the discharge areas. A conceptual hydro-geochemical model of the Diyadin thermal waters based on the isotope and chemical analytical results, has been constructed.  相似文献   

10.
The Neoproterozoic magnetite–apatite–hematite–pyrolusite–jaspilite deposits in the Bafq mining district (BMD) contain more than 1.7 Gt ores with an average grade of 50 wt.% Fe and 0.01 to 7.78 wt.% P and were probably formed between 635 and 547 Ma in a riftogenic felsic submarine exhalative sequence of the Esfordi Formation. The ore zones occur in proximal zone of magnetite-rich albitized rhyolite (keratophyres), interdistal zone of rhyolitic tuff–tuffaceous sediments and distal zone of pyrolusite–jaspilite. These sequences are covered by the diamictites and cap carbonates. The BIFs are linked to the altered rhyolites–rhyodacites, jaspilites and diamictites and contain magnetite, hematite and apatite. The presence of Spriggina, Dickinsonia, Medusites and Persimedusites chahgazensis (Sennewald and Krüger, 1979; Hahn and, Pflug; McCall, 2006) in the Kushk shale member of the Esfordi Formation conforms to the Australian fauna of the Ediacaran period (635–540). This relative age is supported by some reliable Pb isotopic data (635–547 Ma) on galena, monazite and apatite (Huckriede et al., 1962; Torab, 2008; Stosch et al., 2011). The most frequent structures–textures in the ore zones include felsic autobrecciation, massive, colloidal, banded, detrital and glaciogenic. The BIFs are highlighted by high values of LREE fractionation and no significant Eu and Ce anomalies. The ores show high values of Fe2O3 (14–60%), and SiO2 (4–34%), and low contents of Al (3.32%), Cr (21.48 ppm), Co (42.82 ppm), Ni (125 ppm), V (868 ppm), and Ti (0.13%) similar to those of the Ediacaran–Rapitan BIFs. The cap carbonates show depletion in δ13C, with a range from − 0.43 to − 6.6 per mil and then return to near excursion of about + 2.97‰ in the Lower Cambrian carbonates. These are followed by δ18O values, which range from − 6.64 to − 11.86‰. The presence of jaspilites, diamictites, C and O isotopic signatures, REE patterns, and immobile element relationships highlights a glaciogenic BIF. Importantly, the glaciogenic structures–textures and jaspilites do not support the misconception of the previously proposed magmatic–carbonatitic and metasomatic–hydrothermal IOCG–Kiruna ore deposits.  相似文献   

11.
The Great Falls-Lewistown Coal Field (GFLCF) in central Montana contains over 400 abandoned underground coal mines, many of which are discharging acidic water with serious environmental consequences. Areas of the mines that are completely submerged by groundwater have circum-neutral pH and relatively low concentrations of metals, whereas areas that are only partially flooded or freely draining have acidic pH (< 3) and high concentrations of metals. The pH of the mine drains either decreases or increases after discharging to the surface, depending on the initial ratio of acidity (mainly Al and Fe2+) to alkalinity (mainly HCO3?). In acidic, Fe-rich waters, oxidation of Fe2+ after exposure to air is microbially catalyzed and follows zero-order kinetics, with computed rate constants falling in the range of 0.97 to 1.25 mmol L? 1 h? 1. In contrast, Fe2+ oxidation in near-neutral pH waters appears to be first-order with respect to Fe2+ concentration, although insufficient data were collected to constrain the rate law expression. Rates of Fe2+ oxidation in the field are dependent on temperature such that lower Fe2+ concentrations were measured in down-gradient waters during the day, and higher concentrations at night. Diel cycles in dissolved concentrations of Zn and other trace metals (Mn, Ni) were also noted for down-gradient waters that were net alkaline, but not in the acidic drains.The coal seams of the GFLCF and overlying Cretaceous sandstones form a perched aquifer that lies ~ 50 m above the regional water table situated in the underlying Madison Limestone. The δD and δ18O values of flooded mine waters suggest local derivation from meteoric water that has been partially evaporated in agricultural soils overlying the coal mines. The S and O isotopic composition of dissolved sulfate in the low pH mine drains is consistent with oxidation of biogenic pyrite in coal under aerated conditions. A clear distinction exists between the isotopic composition of sulfate in the acid mine waters and sulfate in the adjacent sedimentary aquifers, making it theoretically possible to determine if acid drainage from the coal mines has leaked into the underlying Madison aquifer.  相似文献   

12.
《Applied Geochemistry》2005,20(6):1099-1105
Fluorite is one of the secondary minerals precipitated in pore spaces at the future nuclear waste repository site at Yucca Mountain, Nevada. The authors have conducted (U–Th)/He dating of this fluorite in an attempt to constrain the temperature and timing of paleo-fluid flux into the site. Repeated analysis of colourless fluorite yielded a weighted average age of 9.7 ± 0.15 Ma (2σ), younger than previously determined sanidine 40Ar/39 Ar ages (12.8 Ma) for deposition of the tuff.Laboratory He-diffusion experiments conducted on the Yucca fluorite yield a preliminary He closure temperature (Tc) of 90 ± 10 °C (cooling rate of 10 °C/Ma) and previous studies have determined that the fluorite precipitated from warm fluids (65–80 °C) at depths of <400 m. However, minerals can experience partial He loss at temperatures well below the Tc and therefore the (U–Th)/He age of 9.7 Ma is interpreted to be a cooling age. This result implies that the last period of elevated temperature fluid circulation through the Yucca site was approximately 9.7 Ma ago.It was observed that the purple coloured outer portion of the fluorite nodule yielded non-reproducible and invariably older ages than colourless fluorite. Several possible reasons are suggested.  相似文献   

13.
Oxygen isotope compositions of phosphate in tooth enamel from large mammals (i.e. horse and red deer) were measured to quantify past mean annual air temperatures and seasonal variations between 145 ka and 33 ka in eastern France. The method is based on interdependent relationships between the δ18O of apatite phosphate, environmental waters and air temperatures. Horse (Equus caballus germanicus) and red deer (Cervus elaphus) remains have δ18O values that range from 14.2‰ to 17.2‰, indicating mean air temperatures between 7°C and 13°C. Oxygen isotope time series obtained from two of the six horse teeth show a sinusoidal-like signal that could have been forced by temperature variations of seasonal origin. Intra-tooth oxygen isotope variations reveal that at 145 ka, winters were colder (? 7 ± 2°C) than at present (3 ± 1°C) while summer temperatures were similar. Winter temperatures mark a well-developed West–East thermal gradient in France of about ? 9°C, much stronger than the ?4°C difference recorded presently. Negative winter temperatures were likely responsible for the extent and duration of the snow cover, thus limiting the food resources available for large ungulates with repercussions for Neanderthal predators.  相似文献   

14.
Although the effects of biodegradation on the composition and physical properties of crude oil have been well studied, effects of in-reservoir petroleum biodegradation on molecular and isotopic compositions of crude oils are not yet clearly understood. The Alberta Basin, in western Canada, is one of the world’s largest petroleum accumulations and constitutes an ideal example of a natural suite of sequentially biodegraded oils. The basin hosts moderately to severely biodegraded petroleum, regionally distributed and in single, more or less continuous, oil columns. In this study, a series of oil samples from the Alberta heavy oil and oil sands provinces, with varying degrees of biodegradation, were analyzed to assess the impact of progressive biodegradation on the molecular and C, H, N, and S isotopic compositions of oils. The results of the molecular characterization of the hydrocarbon fraction of the studied oils show that the oils have suffered biodegradation levels from 2 to 10+ (toward the Alberta–Saskatchewan border) on the Peters and Moldowan scale of biodegradation (abbreviated PM 2 to PM 10) and from tens to hundreds on the Manco scale. Within single reservoirs, increasing biodegradation was observed from top to bottom of the oil columns at all sites studied. The whole oil stable isotopic compositions of the samples varied in the ranges δ13C = −31.2‰ to −29.0‰, δ2H = −147‰ to −133‰, δ15N = 0.3–4.7‰ and δ34S = 0.4–6.4‰. The maximum differences between δ values of samples (Δ) within single oil columns were Δ13C = 1.4‰, Δ2H = 7‰, Δ15N = 1.7‰ and Δ34S = 1.0‰. Regional variations in the isotopic compositions of oil samples from different wells (averaged values from top to bottom) were 1.2‰ for δ13C, 12‰ for δ2H, 4.1‰ for δ15N and 5.5‰ for δ34S and hence generally significantly larger variations were seen than variations observed within single oil columns, especially for N and S. It appears that even severe levels of biodegradation do not cause observable systematic variations in carbon, nitrogen or sulfur isotope composition of whole oils. This indicates that sulfur and nitrogen isotopic compositions may be used in very degraded oils as indicators for oil charge from different source rock facies.  相似文献   

15.
The ΣREE and shale-normalized (PAAS) REESN values of modern brachiopods (biogenic low-Mg calcite: bLMC) represented by several species from high- to low latitudes, from shallow- to deep waters and from warm- and cold-water environments, define three distinct average ‘seawater’ trends. The warm- and cold-water brachiopods define two indistinguishable (p < 0.050) groups that mimic open-ocean seawater REE chemistry, exhibiting the typical LREE enrichment with a slightly positive to negative Ce anomaly followed by an otherwise invariant series. Other recent brachiopods from an essentially siliciclastic seabed environment are distinct in both ΣREE and REESN trends from the previous two populations, showing a slight enrichment in the MREEs and an increasing trend in the HREEs. Other groups of modern brachiopods are characterized by elevated REESN trends relative to the ‘normal’ groups as well as by complexity of the series trends. The most characteristic feature is the decrease in the HREEs in these brachiopods from areas of unusual productivity (i.e., such as upwelling currents, fluvial input and aerosol dust deposition). Preserved brachiopods from the Eocene and Silurian exhibit REESN trends and Ce anomalies similar to that of the ‘open-ocean’ modern brachiopods, although, their enriched ΣREE concentrations suggest precipitation of bLMC influenced by extrinsic environmental conditions.Preservation of the bLMC was tested by comparing the ΣREE and REESN trends of preserved Eocene brachiopods to those of Oligocene brachiopods that were altered in an open diagenetic system in the presence of phreatic meteoric-water. The altered bLMC is enriched by approximately one order of magnitude in both ΣREE and REESN trends relative to that in bLMC of their preserved counterparts. Similarly, the ΣREE and REESN of preserved Silurian brachiopod bLMC were compared to those of their enclosing altered lime mudstone, which exhibits features of partly closed system, phreatic meteoric-water diagenesis. Despite these differences in the diagenetic alteration systems and processes, the ΣREEs and REESN trends of the bLMC of altered brachiopods and of originally mixed mineralogy lime mudstones (now diagenetic low-Mg calcite) are enriched by about one order of magnitude relative to those observed in the coeval and preserved bLMC.In contrast to the changes in ΣREE and REESN of carbonates exposed to phreatic meteoric-water diagenesis, are the REE compositions of late burial calcite cements precipitated in diagenetically open systems from burial fluids. The ΣREE and REESN trends of the burial cements mimic those of their host lime mudstone, with all showing slight LREE enrichment and slight HREE depletion, exhibiting a ‘chevron’ pattern of the REESN trends. The overall enrichment or depletion of the cement REESN trends relative to that of their respective host rock material reflects not only the openness of the diagenetic system, but also strong differences in the elemental and REE compositions of the burial fluids. Evaluation of the (Ce/Ce*)SN and La = (Pr/Pr*)SN anomalies suggests precipitation of the burial calcite cements essentially in equilibrium with their source fluids.  相似文献   

16.
《Journal of Structural Geology》2001,23(6-7):1031-1042
The Eastern Highlands shear zone in Cape Breton Island is a crustal scale thrust. It is characterized by an amphibolite-facies deformation zone ∼5 km wide formed deep in the crust that is overprinted by a greenschist-facies mylonite zone ∼1 km wide that formed at a more shallow level. Hornblende 40Ar/39Ar plateau ages on the hanging wall decrease towards the centre of the shear zone. In the older zone (over 7.8 km from the centre), the ages are between ∼565 and ∼545 Ma; in the younger zone (within 4.5 km of the centre), they are between ∼425 and ∼415 Ma; and in the transitional zone in between, they decrease abruptly from ∼545 to ∼425 Ma. Pressures of crystallization of plutons in the hanging wall, based on the Al-in-hornblende barometer and corresponding to depth of emplacement, increase towards the centre of the shear zone and indicate a differential uplift of up to ∼28 km associated with movement along the shear zone. The age pattern is interpreted to have resulted from the differential uplift. The pressure data show that rocks exposed in the younger zone were buried deep in the crust and did not cool through the hornblende Ar blocking temperature (∼500°C) until differential uplift occurred. The 40Ar/39Ar ages in the zone (∼425–415 Ma) thus date shear zone movement or the last stage of it. In contrast, rocks in the older zone were more shallowly buried before differential uplift and cooled through the blocking temperature soon after the emplacement of ∼565–555 Ma plutons in the area, long before shear zone movement. The transitional zone corresponds to the Ar partial retention zone before differential uplift. The 40Ar/39Ar age pattern thus reflects a Neoproterozoic to Silurian cooling profile that was exposed as a result of differential uplift related to movement along the shear zone. A similar K–Ar age pattern has been reported for the Alpine fault in New Zealand. It is suggested that such isotopic age patterns can be used to help constrain the ages, kinematics, displacements and depth of penetration of shear zones.  相似文献   

17.
In this paper we report the Sr isotope signatures, and Sr, Al and Na concentrations of 30 surface waters (lakes/ponds and rivers/creeks) and 19 soil sample extracts from the island of Bornholm (Denmark) and present a categorized 87Sr/86Sr value distribution map that may serve as a base for provenance studies, including archaeological migration and authenticity proof for particular food products. The Sr isotopic compositions of surface waters range from 87Sr/86Sr = 0.7097–0.7281 (average 0.7175 ± 0.0049; 1σ), whereas 0.1 M HNO3, 0.05 M HNO3, and 0.01 M CaCl2 soil extracts range from 87Sr/86Sr = 0.7095–0.7197 and define somewhat lower but statistically indistinguishable averages of 0.7125 ± 0.003 (1s). These compositions are lower than the values expected from the Precambrian granitoid basement (87Sr/86Sr = 0.758–0.944), and from the overlying, mainly clastic Paleozoic sediments. Combined Sr isotope composition vs. Sr, Na and Al concentration relationships of soil extracts imply that lowering of the isotopic composition of leachable Sr on Bornholm results as a consequence of significant admixture to this fraction of Sr deposited as marine salts (aerosols), and that rainwater only has a minor influence on the Sr budget of the surface waters. Positively correlated Al/Na and [1/Sr] vs. 87Sr/86Sr relationships in soil extracts and surface waters indicate that the surface run-off on Bornholm is characterized by two predominant sources, namely marine aerosols (sea salts) with high Sr and low 87Sr/86Sr values, and a source with lower [Sr] delivering radiogenic Sr to the surface waters, which we equate with Sr leached from the products of mineral weathering (soils).A feasibility study for using Sr isotopic compositions of surface waters and soil extracts as a proxy for bioavailable Sr signatures was performed with a few samples collected in the vicinity of the eleventh century AD Ndr. Grødbygård cemetery site in SW Bornholm, from where Sr isotope compositions of modern fauna samples and tooth enamel of humans buried in the cemetery have been reported. Waters and soil extracts studied herein from around this site range from 87Sr/86Sr = 0.7104–0.7166 and correspond to Sr compositions extracted from snail shells in this area which span a range of 87Sr/86Sr = 0.7095–0.7160. Some human tooth enamel is characterized by more radiogenic values (87Sr/86Sr up to 0.718) which points to a possible provenance of these humans from the granite–gneiss terrain in the north of the island and/or to immigration of these humans in their childhood from other places (for example from mainland Sweden) to Bornholm. If the total compositional range of 87Sr/86Sr = 0.709–0.718 (n = 44) recorded in human enamel from the Ndr. Grødbygård site is considered representative for the variation of bioavailable Sr on Bornholm, then our soil leachate and surface water data entirely covers this range. We therefore propose that the combination of Sr isotope analyses of surface waters and soil leachates are an easy, fast and relatively cost efficient way to characterize a local bioavailable 87Sr/86Sr signature, and consequently propose that the overall average of 87Sr/86Sr = 0.7153 ± 0.0048 (1σ; n = 50) can be taken as a band for bioavailable Sr fractions suitable to discriminate between local and non-local signatures in provenance studies in the field of archaeology and for food and plant authenticity control in agricultural applications.  相似文献   

18.
146Sm–142Nd and 147Sm–143Nd systematics were investigated in garnet inclusions in diamonds from Finsch (S. Africa) and Hadean zircons from Jack Hills (W. Australia) to assess the potential of these systems as recorders of early Earth evolution. The study of Finsch inclusions was conducted on a composite sample of 50 peridotitic pyropes with a Nd model age of 3.3 Ga. Analysis of the Jack Hills zircons was performed on 790 grains with ion microprobe 207Pb/206Pb spot ages from 3.95 to 4.19 Ga. Finsch pyropes yield 100 × ?142Nd = ? 6 ± 12 ppm, ?143Nd = ? 32.5, and 147Sm/144Nd = 0.1150. These results do not confirm previous claims for a 30 ppm 142Nd excess in South African cratonic mantle. The lack of a 142Nd anomaly in these inclusions suggests that isotopic heterogeneities created by early mantle differentiation were remixed at a very fine scale prior to isolation of the South African lithosphere. Alternatively, this result may indicate that only a fraction of the mantle experienced depletion during the first 400 Myr of its history. Analysis of the Jack Hills zircon composite yielded 100 × ?142Nd = 8 ± 10 ppm, ?143Nd = 45 ± 1, and 147Sm/144Nd = 0.5891. Back-calculation of this present-day ?143Nd yields an unrealistic estimate for the initial ?143Nd of ? 160 ?-units, clearly indicating post-crystallization disturbance of the 147Sm–143Nd system. Examination of 146,147Sm–142,143Nd data reveals that the Nd budget of the Jack Hills sample is dominated by non-radiogenic Nd, possibly contained in recrystallized zircon rims or secondary subsurface minerals. This secondary material is characterized by highly discordant U–Pb ages. Although the mass fraction of altered zircon is unlikely to exceed 5–10% of total sample, its high LREE content precludes a reliable evaluation of 146Sm–142Nd systematics in Jack Hills zircons.  相似文献   

19.
The Nanhuan manganese deposits in the southeastern Yangtze Platform occur in the black shale series in the lower part of the Datangpo Formation. In order to constrain the genesis of the deposits, a detailed study was undertaken that involved field observations, major and trace element analyses, organic carbon analyses, and isotope analyses (C, O, S). The major findings are as follows. (1) The ore-bearing rock series, morphology of the ore bodies, and characteristics of ores in several deposits are similar. The ore minerals are rhodochrosite and manganocalcite. The gangue minerals are mainly quartz, feldspar, dolomite, and illite. Minor apatite and bastnaesite occur in the manganese ores. (2) The ores are enriched in Ca and Mg, whereas they are depleted in Si, Al, K, and Ti compared to wall rocks. The ores normalized to average Post-Archean Australian shale (PAAS) are enriched in Co, Mo, and Sr. The chondrite-normalized rare earth element (REE) patterns for ores and wall rocks are between those of typical hydrogenous and hydrothermal type manganese deposits. Additionally, the ores have positive Ce anomalies with an average Ce/Ce* of 1.23 and positive Eu anomalies with an average Eu/Eu* of 1.18 (normalized to PAAS). (3) The average content of organic carbon is 2.21% in the samples, and the average organic carbon isotopic value (δ13CV-PDB) is − 33.44‰. The average inorganic carbon isotopic value (δ13CV-PDB) of carbonates in Gucheng is − 3.07‰, while the values are similar in the other deposits with an average of − 8.36‰. The oxygen isotopic compositions (δ18OV-PDB) are similar in different deposits with an average of − 7.72‰. (4) The sulfur isotopic values (δ34SV-CDT) of pyrite are very high and range from + 37.9‰ to + 62.6‰ (average of 52.7‰), which suggests that the pyrite was formed in restricted basins where sulfate replenishment was limited. The sulfate concentrations in the restricted basins were extremely low and enriched in δ34S, which resulted in the very high δ34S values for the pyrite that formed in the manganese deposits. Therefore, a terrigenous weathering origin for manganese can be excluded; otherwise, the sulfate would have been introduced into the basins together with terrigenous manganese, which would have decreased the δ34S values of pyrites. The manganese, which originated from hydrothermal processes, was enriched in the restricted and anoxic basins, and then, it was oxidized to manganese oxyhydroxide in the overlying oxic waters whereby the products precipitated into the sediments. The manganese oxyhydroxide in the sediment was then reduced to Mn2 + and released to the pore waters during the process of diagenesis. Some organic carbon was oxidized to CO32 , which made the depletion of 13C in manganese carbonates. Therefore, we suggest that the Nanhuan manganese deposits are hydrothermal–sedimentary/diagenetic type deposits.  相似文献   

20.
The linkage between the iron and the carbon cycles is of paramount importance to understand and quantify the effect of increased CO2 concentrations in natural waters on the mobility of iron and associated trace elements. In this context, we have quantified the thermodynamic stability of mixed Fe(III) hydroxo-carbonate complexes and their effect on the solubility of Fe(III) oxihydroxides. We present the results of carefully performed solubility measurements of 2-line ferrihydrite in the slightly acidic to neutral–alkaline pH ranges (3.8–8.7) under constant pCO2 varying between (0.982–98.154 kPa) at 25 °C.The outcome of the work indicates the predominance of two Fe(III) hydroxo carbonate complexes FeOHCO3 and Fe(CO3)33−, with formation constants log*β°1,1,1 = 10.76 ± 0.38 and log β°1,0,3 = 24.24 ± 0.42, respectively.The solubility constant for the ferrihydrite used in this study was determined in acid conditions (pH: 1.8–3.2) in the absence of CO2 and at T = (25 ± 1) °C, as log*Ks,0 = 1.19 ± 0.41.The relative stability of the Fe(III)-carbonate complexes in alkaline pH conditions has implications for the solubility of Fe(III) in CO2-rich environments and the subsequent mobilisation of associated trace metals that will be explored in subsequent papers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号