首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Hungarias are a stable asteroid group orbiting between Mars and the main asteroid belt, with high inclinations (16–30°), low eccentricities (e < 0.18), and a narrow range of semi-major axes (1.78–2.06 AU). In order to explore the significance of thermally-induced Yarkovsky drift on the population, we conducted three orbital simulations of a 1000-particle grid in Hungaria aei space. The three simulations included asteroid radii of 0.2, 1.0, and 5.0 km, respectively, with run times of 200 Myr. The results show that mean motion resonances—martian ones in particular—play a significant role in the destabilization of asteroids in the region. We conclude that either the initial Hungaria population was enormous, or, more likely, Hungarias must be replenished through collisional or dynamical means. To test the latter possibility, we conducted three more simulations of the same radii, this time in nearby Mars-crossing space. We find that certain Mars crossers can be trapped in martian resonances, and by a combination of chaotic diffusion and the Yarkovsky effect, can be stabilized by them. Therefore, some Hungarias (around 5% of non-family members with absolute magnitudes H < 15.5 and 10% for H < 17) may represent previously transient Mars crossers that have been adopted in this manner.  相似文献   

2.
《New Astronomy》2007,12(7):590-596
We assume that the helium-I lines emitted by the massive binary system η Carinae are formed in the acceleration zone of the less-massive secondary star. We calculate the Doppler shift of the lines as a function of orbital phase and of several parameters of the binary system. We find that a good fit is obtained if the helium lines are formed in the region where the secondary wind speed is vzone = 430 km s−1. The acceptable binary eccentricity is in the range 0.90  e  0.95, and the inclination angle (the angle between a line perpendicular to the orbital plane and the line of sight) is in the range 40°  i  55°. Lower values of e require higher values of i, and vice versa. The binary system is oriented such that the secondary star is in our direction (closer to us) during periastron passage. The orbital motion can account in part to the Doppler shift of the peak in X-ray emission.  相似文献   

3.
Resolution of Voyager 1 and 2 images of the mid-sized, icy saturnian satellites was generally not much better than 1 km per line pair, except for a few, isolated higher resolution images. Therefore, analyses of impact crater distributions were generally limited to diameters (D) of tens of kilometers. Even with the limitation, however, these analyses demonstrated that studying impact crater distributions could expand understanding of the geology of the saturnian satellites and impact cratering in the outer Solar System. Thus to gain further insight into Saturn’s mid-sized satellites and impact cratering in the outer Solar System, we have compiled cratering records of these satellites using higher resolution CassiniISS images. Images from Cassini of the satellites range in resolution from tens m/pixel to hundreds m/pixel. These high-resolution images provide a look at the impact cratering records of these satellites never seen before, expanding the observable craters down to diameters of hundreds of meters. The diameters and locations of all observable craters are recorded for regions of Mimas, Tethys, Dione, Rhea, Iapetus, and Phoebe. These impact crater data are then analyzed and compared using cumulative, differential and relative (R) size-frequency distributions. Results indicate that the heavily cratered terrains on Rhea and Iapetus have similar distributions implying one common impactor population bombarded these two satellites. The distributions for Mimas and Dione, however, are different from Rhea and Iapetus, but are similar to one another, possibly implying another impactor population common to those two satellites. The difference between these two populations is a relative increase of craters with diameters between 10 and 30 km and a relative deficiency of craters with diameters between 30 and 80 km for Mimas and Dione compared with Rhea and Iapetus. This may support the result from Voyager images of two distinct impactor populations. One population was suggested to have a greater number of large impactors, most likely heliocentric comets (Saturn Population I in the Voyager literature), and the other a relative deficiency of large impactors and a greater number of small impactors, most likely planetocentric debris (Saturn Population II). Meanwhile, Tethys’ impact crater size-frequency distribution, which has some similarity to the distributions of Mimas, Dione, Rhea, and Iapetus, may be transitional between the two populations. Furthermore, when the impact crater distributions from these older cratered terrains are compared to younger ones like Dione’s smooth plains, the distributions have some similarities and differences. Therefore, it is uncertain whether the size-frequency distribution of the impactor population(s) changed over time. Finally, we find that Phoebe has a unique impact crater distribution. Phoebe appears to be lacking craters in a narrow diameter range around 1 km. The explanation for this confined “dip” at D = 1 km is not yet clear, but may have something to do with the interaction of Saturn’s irregular satellites or the capture of Phoebe.  相似文献   

4.
Estimates of tidal damping times of the orbital eccentricities of Saturn's inner satellites place constraints on some satellite rigidities and dissipation functions Q. These constraints favor rock-like rather than ice-like properties for Mimas and probably Dione. Photometric and other observational data are consistent with relatively higher densities for these two satellites, but require lower densities for Tethys, Enceladus, and Rhea. This leads to a nonmonotonic density distribution for Saturn's inner satellites, apparently determined by different mass fractions of rocky materials. In spite of the consequences of tidal dissipation for the orbital eccentricity decay and implications for satellite compositions, tidal heating is not an important contributor to the thermal history of any Saturnian satellite.  相似文献   

5.
Tidal evolution of Mimas, Enceladus, and Dione   总被引:2,自引:0,他引:2  
Jennifer Meyer  Jack Wisdom 《Icarus》2008,193(1):213-223
The tidal evolution through several resonances involving Mimas, Enceladus, and/or Dione is studied numerically with an averaged resonance model. We find that, in the Enceladus-Dione 2:1 e-Enceladus type resonance, Enceladus evolves chaotically in the future for some values of k2/Q. Past evolution of the system is marked by temporary capture into the Enceladus-Dione 4:2 ee-mixed resonance. We find that the free libration of the Enceladus-Dione 2:1 e-Enceladus resonance angle of 1.5° can be explained by a recent passage of the system through a secondary resonance. In simulations with passage through the secondary resonance, the system enters the current Enceladus-Dione resonance close to tidal equilibrium and thus the equilibrium value of tidal heating of 1.1(18,000/QS) GW applies. We find that the current anomalously large eccentricity of Mimas can be explained by passage through several past resonances. In all cases, escape from the resonance occurs by unstable growth of the libration angle, sometimes with the help of a secondary resonance. Explanation of the current eccentricity of Mimas by evolution through these resonances implies that the Q of Saturn is below 100,000. Though the eccentricity of Enceladus can be excited to moderate values by capture in the Mimas-Enceladus 3:2 e-Enceladus resonance, the libration amplitude damps and the system does not escape. Thus past occupancy of this resonance and consequent tidal heating of Enceladus is excluded. The construction of a coherent history places constraints on the allowed values of k2/Q for the satellites.  相似文献   

6.
NASA’s Dawn spacecraft observations of Asteroid (4) Vesta reveal a surface with the highest albedo and color variation of any asteroid we have observed so far. Terrains rich in low albedo dark material (DM) have been identified using Dawn Framing Camera (FC) 0.75 μm filter images in several geologic settings: associated with impact craters (in the ejecta blanket material and/or on the crater walls and rims); as flow-like deposits or rays commonly associated with topographic highs; and as dark spots (likely secondary impacts) nearby impact craters. This DM could be a relic of ancient volcanic activity or exogenic in origin. We report that the majority of the spectra of DM are similar to carbonaceous chondrite meteorites mixed with materials indigenous to Vesta. Using high-resolution seven color images we compared DM color properties (albedo, band depth) with laboratory measurements of possible analog materials. Band depth and albedo of DM are identical to those of carbonaceous chondrite xenolith-rich howardite Mt. Pratt (PRA) 04401. Laboratory mixtures of Murchison CM2 carbonaceous chondrite and basaltic eucrite Millbillillie also show band depth and albedo affinity to DM. Modeling of carbonaceous chondrite abundance in DM (1–6 vol.%) is consistent with howardite meteorites. We find no evidence for large-scale volcanism (exposed dikes/pyroclastic falls) as the source of DM. Our modeling efforts using impact crater scaling laws and numerical models of ejecta reaccretion suggest the delivery and emplacement of this DM on Vesta during the formation of the ~400 km Veneneia basin by a low-velocity (<2 km/s) carbonaceous impactor. This discovery is important because it strengthens the long-held idea that primitive bodies are the source of carbon and probably volatiles in the early Solar System.  相似文献   

7.
D. Polishook  N. Brosch  D. Prialnik 《Icarus》2011,212(1):167-174
Durda et al. (Durda, D.D., Bottke, W.F., Enke, B.L., Merline, W.J., Asphaug, E., Richardson, D.C., Leinhardt, Z.M. [2004]. Icarus 170, 243–257), using numerical models, suggested that binary asteroids with large separation, called Escaping Ejecta Binaries (EEBs), can be created by fragments ejected from a disruptive impact event. It is thought that six binary asteroids recently discovered might be EEBs because of the high separation between their components (~100 > a/Rp > ~20).However, the rotation periods of four out of the six objects measured by our group and others and presented here show that these suspected EEBs have fast rotation rates of 2.5–4 h. Because of the small size of the components of these binary asteroids, linked with this fast spinning, we conclude that the rotational-fission mechanism, which is a result of the thermal YORP effect, is the most likely formation scenario. Moreover, scaling the YORP effect for these objects shows that its timescale is shorter than the estimated ages of the three relevant Hirayama families hosting these binary asteroids. Therefore, only the largest (D  19 km) suspected asteroid, (317) Roxane, could be, in fact, the only known EEB.In addition, our results confirm the triple nature of (3749) Balam by measuring mutual events on its lightcurve that match the orbital period of a nearby satellite in addition to its distant companion. Measurements of (1509) Esclangona at different apparitions show a unique shape of the lightcurve that might be explained by color variations.  相似文献   

8.
Vertical distributions and spectral characteristics of Titan’s photochemical aerosol and stratospheric ices are determined between 20 and 560 cm?1 (500–18 μm) from the Cassini Composite Infrared Spectrometer (CIRS). Results are obtained for latitudes of 15°N, 15°S, and 58°S, where accurate temperature profiles can be independently determined.In addition, estimates of aerosol and ice abundances at 62°N relative to those at 15°S are derived. Aerosol abundances are comparable at the two latitudes, but stratospheric ices are ~3 times more abundant at 62°N than at 15°S. Generally, nitrile ice clouds (probably HCN and HC3N), as inferred from a composite emission feature at ~160 cm?1, appear to be located over a narrow altitude range in the stratosphere centered at ~90 km. Although most abundant at high northern latitudes, these nitrile ice clouds extend down through low latitudes and into mid southern latitudes, at least as far as 58°S.There is some evidence of a second ice cloud layer at ~60 km altitude at 58°S associated with an emission feature at ~80 cm?1. We speculate that the identify of this cloud may be due to C2H6 ice, which in the vapor phase is the most abundant hydrocarbon (next to CH4) in the stratosphere of Titan.Unlike the highly restricted range of altitudes (50–100 km) associated with organic condensate clouds, Titan’s photochemical aerosol appears to be well-mixed from the surface to the top of the stratosphere near an altitude of 300 km, and the spectral shape does not appear to change between 15°N and 58°S latitude. The ratio of aerosol-to-gas scale heights range from 1.3–2.4 at about 160 km to 1.1–1.4 at 300 km, although there is considerable variability with latitude. The aerosol exhibits a very broad emission feature peaking at ~140 cm?1. Due to its extreme breadth and low wavenumber, we speculate that this feature may be caused by low-energy vibrations of two-dimensional lattice structures of large molecules. Examples of such molecules include polycyclic aromatic hydrocarbons (PAHs) and nitrogenated aromatics.Finally, volume extinction coefficients NχE derived from 15°S CIRS data at a wavelength of λ = 62.5 μm are compared with those derived from the 10°S Huygens Descent Imager/Spectral Radiometer (DISR) data at 1.583 μm. This comparison yields volume extinction coefficient ratios NχE(1.583 μm)/NχE(62.5 μm) of roughly 70 and 20, respectively, for Titan’s aerosol and stratospheric ices. The inferred particle cross-section ratios χE(1.583 μm)/χE(62.5 μm) appear to be consistent with sub-micron size aerosol particles, and effective radii of only a few microns for stratospheric ice cloud particles.  相似文献   

9.
B.C. Johnson  H.J. Melosh 《Icarus》2012,217(1):416-430
We have constructed a numerical model of spherule formation in an impact produced vapor plume. This model tracks the expansion of the vapor plume using a one-dimensional Lagrangian hydrocode coupled with the ANEOS equation of state for silica. We then include the equations for nucleation and growth as described by homogeneous nucleation theory to describe the process of spherule formation. We use this model to determine the number and size of the spherules that an impact creates. We also explore when and where spherules are formed in the vapor plume, and how this affects the size of the spherules. In general we find that smaller spherules form in the outer, faster moving, portions of the vapor plume at earlier times. This work also explores the effect of impactor size and impact velocity on the resultant spherule size. We report a simple linear dependence on impactor size and a complex dependence on impact velocity. We find that a 10 km diameter asteroid impacting at a velocity of ~21 km/s creates spherules that are ~250 μm in diameter which is comparable to the spherules found in the K/Pg boundary layer.  相似文献   

10.
We obtained estimates of the Johnson V absolute magnitudes (H) and slope parameters (G) for 583 main-belt and near-Earth asteroids observed at Ond?ejov and Table Mountain Observatory from 1978 to 2011. Uncertainties of the absolute magnitudes in our sample are <0.21 mag, with a median value of 0.10 mag. We compared the H data with absolute magnitude values given in the MPCORB, Pisa AstDyS and JPL Horizons orbit catalogs. We found that while the catalog absolute magnitudes for large asteroids are relatively good on average, showing only little biases smaller than 0.1 mag, there is a systematic offset of the catalog values for smaller asteroids that becomes prominent in a range of H greater than ~10 and is particularly big above H  12. The mean (Hcatalog ? H) value is negative, i.e., the catalog H values are systematically too bright. This systematic negative offset of the catalog values reaches a maximum around H = 14 where the mean (Hcatalog ? H) is ?0.4 to ?0.5. We found also smaller correlations of the offset of the catalog H values with taxonomic types and with lightcurve amplitude, up to ~0.1 mag or less. We discuss a few possible observational causes for the observed correlations, but the reason for the large bias of the catalog absolute magnitudes peaking around H = 14 is unknown; we suspect that the problem lies in the magnitude estimates reported by asteroid surveys. With our photometric H and G data, we revised the preliminary WISE albedo estimates made by Masiero et al. (Masired, J.R. et al. [2011]. Astrophys. J. 741, 68–89) and Mainzer et al. (Mainzer, A. et al. [2011b]. Astrophys. J. 743, 156–172) for asteroids in our sample. We found that the mean geometric albedo of Tholen/Bus/DeMeo C/G/B/F/P/D types with sizes of 25–300 km is pV = 0.057 with the standard deviation (dispersion) of the sample of 0.013 and the mean albedo of S/A/L types with sizes 0.6–200 km is 0.197 with the standard deviation of the sample of 0.051. The standard errors of the mean albedos are 0.002 and 0.006, respectively; systematic observational or modeling errors can predominate over the quoted formal errors. There is apparent only a small, marginally significant difference of 0.031 ± 0.011 between the mean albedos of sub-samples of large and small (divided at diameter 25 km) S/A/L asteroids, with the smaller ones having a higher albedo. The difference will have to be confirmed and explained; we speculate that it may be either a real size dependence of surface properties of S type asteroids or a small size-dependent bias in the data (e.g., a bias towards higher albedos in the optically-selected sample of asteroids). A trend of the mean of the preliminary WISE albedo estimates increasing with asteroid size decreasing from D  30 down to ~5 km (for S types) showed in Mainzer et al. (Mainzer, A. et al. [2011a]. Astrophys. J. 741, 90–114) appears to be mainly due to the systematic bias in the MPCORB absolute magnitudes that progressively increases with H in the corresponding range H = 10–14.  相似文献   

11.
We derive astrophysical and structural parameters of the poorly studied open clusters NGC 6866, NGC 7062, and NGC 2360 based on filtered 2MASS (J, J ? H) diagrams, and stellar radial density profiles. The field star decontamination technique is utilised for selecting high-probability cluster members. The E(B ? V) reddening values of the three clusters derived from 2MASS JHKs agree with those inferred from UBV and uvby ? β photometries. We find that the core mass function slopes are flatter than the halo’s for the three clusters. The large core and cluster radii of NGC 6866 and NGC 2360 indicate an expanded core, which may suggest the presence of stellar mass black-holes. NGC 2360 is located in the third quadrant (? = 229°.80), where Giant Molecular Clouds are scarce that, together with its relatively large mass (~1800 m), might explain its longevity (~1.8 Gyr) in the Galaxy.  相似文献   

12.
A meteorite impact capable of creating a 200 km diameter crater can demagnetize the entire crust beneath, and produce an appreciable magnetic anomaly at satellite altitudes of ~400 km in case the pre-existing crust is magnetized. In this study we examine the magnetic field over all of the craters and impact-related Quasi-Circular Depressions (QCDs) with diameters larger than 200 km that are located on the highlands of Mars, excluding the Tharsis bulge, in order to estimate the mean magnetization of the highland crust. Using the surface topography and the gravity of Mars we first identify those QCDs that are likely produced by impacts. The magnetic map of a given crater or impact-related QCD is derived using the Mars Global Surveyor high-altitude nighttime radial magnetic data. Two extended ancient areas are identified on the highlands, the South Province and the Tempe Terra, which have large number of craters and impact-related QCDs but none of them has an appreciable magnetic signature. The primordial crust of these areas is not magnetized, or is very weakly magnetized at most. We examine some plausible scenarios to explain the weak magnetization of these areas, and conclude that no strong dynamo existed in the first ~100 Myr of Mars’ history when the newly formed primordial crust was cooling below the magnetic blocking temperatures of its minerals.  相似文献   

13.
《New Astronomy》2007,12(6):435-440
A detailed analysis of emission lines of carbon-like silicon reveals that some ratios of n = 3  2 line intensities are sensitive to the electron density, ne. The ratio between two groups of 3d  2p transition lines of 55.246 Å and 55.346 Å provides a good diagnostic of ne because of the combined characteristic of sensitivity to electron density and relative insensitivity to temperature. From this ratio, a lower limit of the electron density of 0.6 × 108 cm−3 was set for Procyon, which is consistent with the values constrained by C V and Si X emission lines. Significant discrepancies were found between theoretical predictions and observations for the 3s  2p lines relative to 3d  2p lines in Procyon, recently measured using the Chandra high-resolution transmission grating instrument. The difference of more than a factor of 3, cannot be explained by uncertainties of atomic data. Ness and co-workers also suggested that the effect of opacity appeared not to be a major factor for the discrepancy. For the 3s  2p line at 61.611 Å, present work indicates that the large discrepancy may be from the contamination of a S VIII line at 61.645 Å. For lines at 61.702 and 61.846 Å, we suggest that the discrepancies may be attributed to contaminations by currently yet-unknown spectral lines.  相似文献   

14.
Using the NIMS Io Thermal Emission Database (NITED), a collection of over 1000 measurements of radiant flux from Io’s volcanoes (Davies, A.G. et al. [2012]. Geophys. Res. Lett. 39, L01201. doi:10.1029/2011GL049999), we have examined the variability of thermal emission from three of Io’s volcanoes: Pele, Janus Patera and Kanehekili Fluctus. At Pele, the 5-μm thermal emission as derived from 28 night time observations is remarkably steady at 37 ± 10 GW μm?1, re-affirming previous analyses that suggested that Pele an active, rapidly overturning silicate lava lake. Janus Patera also exhibits relatively steady 5-μm thermal emission (≈20 ± 3 GW μm?1) in the four observations where Janus is resolved from nearby Kanehekili Fluctus. Janus Patera might contain a Pele-like lava lake with an effusion rate (QF) of ≈40–70 m3 s?1. It should be a prime target for a future mission to Io in order to obtain data to determine lava eruption temperature. Kanehekili Fluctus has a thermal emission spectrum that is indicative of the emplacement of lava flows with insulated crusts. Effusion rate at Kanehekili Fluctus dropped by an order of magnitude from ≈95 m3 s?1 in mid-1997 to ≈4 m3 s?1 in late 2001.  相似文献   

15.
Previous work by Scoffield, H.C., Yeoman, T.K., Wright, D.M., Milan, S.E., Wright, A.N., Strangeway, R.J. [2005. An investigation of the field aligned currents associated with a large scale ULF wave using data from CUTLASS and FAST. Ann. Geophys. 23, 487–498) investigated a large-scale ULF wave, occurring in the dusk sector (∼1900 MLT). The wave had a period of ∼800 s (corresponding to 1.2 mHz frequency), an azimuthal wave number of ∼7 and a full-width at half-maximum (FWHM) across the resonance of 350 km. IMAGE ground magnetometer and SuperDARN radar observations of the wave's spatial and temporal characteristics were used to parameterise a simple, two-dimensional field line resonance (FLR) model. The model-calculated field-aligned current (FAC) was compared with FACs derived from the FAST energetic particle spectra and magnetic field measurement. Here the authors use the same method to investigate the FAC structure of a second large-scale ULF wave, with a period of ∼450 s, occurring the dawn sector (∼0500 MLT) with an opposite sense background region 1–region 2 current system. This wave has a much larger longitudinal scale (m∼4.5) and a smaller latitude scale (FWHM=150 km). Unlike the dusk sector wave, which was dominated by upward FAC, FAST observations of the dawn sector wave show an interval of large-scale downward FAC of ∼1.5 μA m−2. Downgoing magnetospheric electrons with energies of a few keV were observed, which are associated with upward FACs of ∼1 μA m−2. For both wave studies, downward currents appear to be carried partially by upgoing electrons below the FAST energy detection threshold (5 eV), but also consist of a mixture of hotter downgoing magnetospheric electrons and upgoing ionospheric electrons of energies 30 eV–1 keV. Strong intervals of upward current show that small-scale structuring of scale ∼50 km has been imposed on the current carriers. In general, this study confirms the findings of Scoffield, H.C., Yeoman, T.K., Wright, D.M., Milan, S.E., Wright, A.N., Strangeway, R.J. [2005. An investigation of the FACs associated with a large-scale ULF wave using data from CUTLASS and FAST. Ann. Geophys. 23, 487–498).  相似文献   

16.
New measurements of sulfur dioxide (SO2) and monoxide (SO) in the atmosphere of Venus by SPICAV/SOIR instrument onboard Venus Express orbiter provide ample statistics to study the behavior of these gases above Venus’ clouds. The instrument (a set of three spectrometers) is capable to sound atmospheric structure above the clouds in several observation modes (nadir, solar and stellar occultations) either in the UV or in the near IR spectral ranges. We present the results from solar occultations in the absorption ranges of SO2 (190–230 nm, and at 4 μm) and SO (190–230 nm). The dioxide was detected by the SOIR spectrometer at the altitudes of 65–80 km in the IR and by the SPICAV spectrometer at 85–105 km in the UV. The monoxide’s absorption was measured only by SPICAV at 85–105 km. We analyzed 39 sessions of solar occultation, where boresights of both spectrometers are oriented identically, to provide complete vertical profiling of SO2 of the Venus’ mesosphere (65–105 km). Here we report the first firm detection and measurements of two SO2 layers. In the lower layer SO2 mixing ratio is within 0.02–0.5 ppmv. The upper layer, also conceivable from microwave measurements by Sandor et al. (Sandor, B.J., Todd Clancy, R., Moriarty-Schieven, G., Mills, F.P. [2010]. Icarus 208, 49–60) is characterized by SO2 increasing with the altitude from 0.05 to 2 ppmv, and the [SO2]/[SO] ratio varying from 1 to 5. The presence of the high-altitude SOx species could be explained by H2SO4 photodissociation under somewhat warmer temperature conditions in Venus mesosphere. At 90–100 km the content of the sulfur dioxide correlates with temperature increasing from 0.1 ppmv at 165–170 K to 0.5–1 ppmv at 190–192 K. It supports the hypothesis of SO2 production by the evaporation of H2SO4 from droplets and its subsequent photolysis at around 100 km.  相似文献   

17.
We perform and present a wavelet analysis on all 31 Cassini electron density profiles published to date (Nagy, A.F. et al. [2006]. J. Geophys. Res. 111 (A6), CiteID A06310; Kliore, A.J. et al. [2009]. J. Geophys. Res. 114 (A4), CiteID A04315). We detect several discrete scales of variability present in the observations. Small-scale variability (S < 700 km) is observed in almost all data sets at different latitudes, both at dawn and dusk conditions. The most typical scale of variability is 300 km with scales between 200 km and 450 km being commonly present in the vast majority of the profiles. A low latitude dawn/dusk asymmetry is noted in the prevalent scales with the spectrum peaking sharply at the 300 km scale at dusk conditions and being broader at dawn conditions. Compared to dawn conditions the dusk ionosphere also shows more significant variability at the 100 km scale. The 300 km vertical scale is also present in the few available profiles from the northern hemisphere. Early observations from 2005 show a dominant scale at 350 km whereas later in 2007–2008 the spectrum shifts to the shorter scales with the most prominent scale being 300 km. The performed wavelet analysis and the obtained results are independent of assumptions about the nature of the layers and do not require a definition for a “background” electron density profile.In the second part of the paper we present a gravity wave propagation/dissipation model for Saturn’s upper atmosphere and compare the wave properties to the characteristics of the observed electron density variability at different scales. The general features observed in the data are consistent with gravity waves being present in the lower ionosphere and causing layering of the ions and the electrons. The wave-driving mechanism provides a simultaneous explanation for several of the properties of the observed variability: (i) lack of variability in the electron density above the predicted region of wave dissipation; (ii) in most cases the peak amplitude of variability occurs within the altitude range for dissipation of gravity waves or below; (iii) shorter scales have smaller amplitudes than the longer scales; (iv) shorter scales are present at lower altitudes whereas longer scales persist to higher altitudes; and (v) several layers often form a system of equally spaced maxima and minima that can be traced over a large altitude range.  相似文献   

18.
Based on the latest release of the SGP4/SDP4 (Simplified General Perturbation Version 4/ Simplified Deep-space Perturbation Version 4) model, in this paper we have designed an orbit determination program. Through calculations for the 1120 objects with various types and orbital elements selected from the space objects database, we have obtained the accuracies of the orbit determination prediction dealt with various types of space objects by the SGP4/SDP4 model. The results show that the accuracies of the near-earth objects are in the order of magnitude of 100 meters; the averages of the orbit determination accuracies of the semi-synchronous and geosynchronous orbits are, respectively, 0.7 and 1.9 km. The orbit determination accuracies of the elliptical orbit objects are related to their eccentricities. Except for few elliptical orbit objects with e > 0.8, the orbit determination errors of the vast majority of the elliptical orbit objects are all less than 10 km. By using the SGP4/SDP4 model to make 3 days predictions for near-earth objects, 30 days for semi-synchronous orbit objects, 15 days for geosynchronous orbit objects and 1 day for elliptical orbit objects, the errors of prediction generally don’t exceed 40 km.  相似文献   

19.
Venus Express measurements of the vertical profiles of SO and SO2 in the middle atmosphere of Venus provide an opportunity to revisit the sulfur chemistry above the middle cloud tops (~58 km). A one dimensional photochemistry-diffusion model is used to simulate the behavior of the whole chemical system including oxygen-, hydrogen-, chlorine-, sulfur-, and nitrogen-bearing species. A sulfur source is required to explain the SO2 inversion layer above 80 km. The evaporation of the aerosols composed of sulfuric acid (model A) or polysulfur (model B) above 90 km could provide the sulfur source. Measurements of SO3 and SO (a1Δ  X3Σ-) emission at 1.7 μm may be the key to distinguish between the two models.  相似文献   

20.
An inversion procedure to obtain the reflectance of the central region of a satellite's disk from lunar occultation data is presented. The scheme assumes that the limb darkening of the satellite depends only on the radial distance from the center of the disk. Given this assumption, normal reflectances can be derived that are essentially independent of the limb darkening and the diameter of the satellite. The procedure has been applied to our observations of the March 1974 lunar occultation of Tethys, Dione, Rhea, Titan, and Iapetus. In the V passband we derive the following normal reflectances: Rhea (0.97±0.20), Titan (0.24±0.03), Iapetus, bright face (0.60±0.14). For Tethys and Dione the values derived have large uncertainties, but are consistent with our result for Rhea.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号