共查询到20条相似文献,搜索用时 15 毫秒
1.
《Planetary and Space Science》2007,55(12):1831-1842
The Venus Climate Orbiter mission (PLANET-C), one of the future planetary missions of Japan, aims at understanding the atmospheric circulation of Venus. Meteorological information will be obtained by globally mapping clouds and minor constituents successively with four cameras at ultraviolet and infrared wavelengths, detecting lightning with a high-speed imager, and observing the vertical structure of the atmosphere with radio science technique. The equatorial elongated orbit with westward revolution fits the observation of the movement and temporal variation of the atmosphere which as a whole rotates westward. The systematic, continuous imaging observations will provide us with an unprecedented large data set of the Venusian atmospheric dynamics. Additional targets of the mission are the exploration of the ground surface and the observation of zodiacal light. The mission will complement the ESA's Venus Express, which also explores the Venusian environment with different approaches. 相似文献
2.
W. D. Evans E. E. Fenimore R. W. Klebesadel J. G. Laros N. J. Terrell 《Astrophysics and Space Science》1981,75(1):35-46
The LASL Pioneer Venus Orbiter Gamma Burst Detector (OGBD) is a vital element in the long base-line array of similar instruments intended to precisely locate sources of gamma-ray bursts. Results of early observations are described. The source of the gamma-ray burst of 5 March, 1979 (the first to be located with precision) has been determined to be consistent with the direction of supernova remnant N49 within the LMC. Approximate locations defined for a small number of events suggest no departure from an isotropic distribution.Paper presented at the Symposium on Cosmic Gamma-Ray Bursts held at Toulouse, France, 26–29 November 1979. 相似文献
3.
《Planetary and Space Science》2006,54(13-14):1482-1495
Venus has no internal magnetic dynamo and thus its ionosphere and hot oxygen exosphere dominate the interaction with the solar wind. The solar wind at 0.72 AU has a dynamic pressure that ranges from 4.5 nPa (at solar max) to 6.6 nPa (at solar min), and its flow past the planet produces a shock of typical magnetosonic Mach number 5 at the subsolar point. At solar maximum the pressure in the ionospheric plasma is sufficient to hold off the solar wind at an altitude of 400 km above the surface at the subsolar point, and 1000 km above the terminators. The deflection of the solar wind occurs through the formation of a magnetic barrier on the inner edge of the magnetosheath, or shocked solar wind. Under typical solar wind conditions the time scale for diffusion of the magnetic field into the ionosphere is so long that the ionosphere remains field free and the barrier deflects almost all the incoming solar wind. Any neutral atoms of the hot oxygen exosphere that reach the altitude of the magnetosheath are accelerated by the electric field of the flowing magnetized plasma and swept along cycloidal paths in the antisolar direction. This pickup process, while important for the loss of the Venus atmosphere, plays a minor role in the deceleration and deflection of the solar wind. Like at magnetized planets, the Venus shock and magnetosheath generate hot electrons and ions that flow back along magnetic field lines into the solar wind to form a foreshock. A magnetic tail is created by the magnetic flux that is slowed in the interaction and becomes mass-loaded with thermal ions.The structure of the ionosphere is very much dependent on solar activity and the dynamic pressure of the solar wind. At solar maximum under typical solar wind conditions, the ionosphere is unmagnetized except for the presence of thin magnetic flux ropes. The ionospheric plasma flows freely to the nightside forming a well-developed night ionosphere. When the solar wind pressure dominates over the ionospheric pressure the ionosphere becomes completely magnetized, the flow to the nightside diminishes, and the night ionosphere weakens. Even at solar maximum the night ionosphere has a very irregular density structure. The electromagnetic environment of Venus has not been well surveyed. At ELF and VLF frequencies there is noise generated in the foreshock and shock. At low altitude in the night ionosphere noise, presumably generated by lightning, can be detected. This paper reviews the plasma environment at Venus and the physics of the solar wind interaction on the threshold of a new series of Venus exploration missions. 相似文献
4.
V. Cottini N.I. Ignatiev G. Piccioni P. Drossart D. Grassi W.J. Markiewicz 《Icarus》2012,217(2):561-569
Observations of the dayside of Venus performed by the high spectral resolution channel (–H) of the Visible and Infrared Thermal Imaging Spectrometer (VIRTIS) on board the ESA Venus Express mission have been used to measure the altitude of the cloud tops and the water vapor abundance around this level with a spatial resolution ranging from 100 to 10 km. CO2 and H2O bands between 2.48 and 2.60 μm are analyzed to determine the cloud top altitude and water vapor abundance near this level. At low latitudes (±40°) mean water vapor abundance is equal to 3 ± 1 ppm and the corresponding cloud top altitude at 2.5 μm is equal to 69.5 ± 2 km. Poleward from middle latitudes the cloud top altitude gradually decreases down to 64 km, while the average H2O abundance reaches its maximum of 5 ppm at 80° of latitude with a large scatter from 1 to 15 ppm. The calculated mass percentage of the sulfuric acid solution in cloud droplets of mode 2 (~1 μm) particles is in the range 75–83%, being in even more narrow interval of 80–83% in low latitudes. No systematic correlation of the dark UV markings with the cloud top altitude or water vapor has been observed. 相似文献
5.
Sanjay S. Limaye 《Icarus》1984,57(3):362-385
Polarization observations obtained from the Orbiter Cloud Photopolarimeter (OCPP) show local, organized features whose morphology is similar to that of the ultraviolet clouds. No obvious correlation between the observed amount of polarization and relative brightness was found, suggesting that the polarization features are not due to variations in the unpolarized intensity alone, but rather to other causes such are the existence of a haze. Many of the features that can be seen even at 935 nm wavelength are believed to be signatures of local variations in the haze of submicron-size particles that have been detected from the OCCP data (K. Kawabata, D. L/ Cooffeen, J. E. Hansen, W. A. Lane, M. Sato, and L. D. Travis (1980). J. Geophys. Res.85, 8129–8140). Substantial variations in the structure and visibility of the polarization features that are observed suggest that the haze amount mixed with and above the main cloud layer may not be constant by varies with time. Some of these features last for least a few days thus allowing measurements of their apparent motions. The small number of measurements possible from the available data shows movements similar to those of the ultraviolet clouds in both direction and speed. According to Kawabata et al. the haze extends well above the main cloud layer to about 5 mb pressure level while the optical depth unity at 365 nm (corresponding to the level of the ultraviolet clouds tracked to infer the cloud-top level circulation) occurs at about 30 mb pressure level. Thus, the rapid retrograde circulation suggested by the movements of haze features in the polarimetry data would indicate that the layer in which such rapid circulation exists is fairly deep. 相似文献
6.
The altitude variation of the zonal wind velocity in the Venus atmosphere above the cloud layer is deduced from the structure of the wavenumber 2 solar tide. Results show that the amplitude of the zonal wind increases with respect to altitude near the equator, but decreases for latitudes greater than 30°. Thus, the zonal wind becomes concentrated at lower latitudes by 100 km altitude. 相似文献
7.
8.
T. Tavenner E.F. Young M.A. Bullock J. Murphy S. Coyote 《Planetary and Space Science》2008,56(10):1435-1443
We present a map of the global mean lower cloud coverage of Venus. This map is the average of 35 nights of 2.26 μm night side observations taken at NASA's Infrared Telescope Facility on Mauna Kea, over the years spanning 2001-2007. The atmosphere of Venus is a very dynamic system, and the lower clouds are constantly changing [Crisp, D., Allen, D.A., Grinspoon, D.H., Pollack, J.B., 1991a. The dark side of Venus: near-infrared images and spectra from the Anglo-Australian Observatory. Science, 253, 1263-1266]. By studying average cloud coverage, the daily variations are suppressed in order to see the underlying persistent cloud pattern. We find a relatively thick but highly variable equatorial band of clouds (±20° in latitude) and more quiescent mid-latitude clouds that are less opaque on average, with persistent cloudiness near the poles. We show that there is enough variation between our daily observations or between observations taken in different months that they cannot be considered individually representative of the global mean. We also compare the cloud coverage map to the topography of Venus and find no definitive correlations with high altitude features. 相似文献
9.
Y.J. Lee D.V. Titov S. Tellmann A. Piccialli N. Ignatiev M. Pätzold B. Häusler G. Piccioni P. Drossart 《Icarus》2012,217(2):599-609
We investigate the Venus cloud top structure by joint analysis of the data from Visual and Thermal Infrared Imaging Spectrometer (VIRTIS) and the atmospheric temperature sounding by the Radio Science experiment (VeRa) onboard Venus Express. The cloud top altitude and aerosol scale height are derived by fitting VIRTIS spectra at 4–5 μm with temperature profiles taken from the VeRa radio occultation. Our study shows gradual descent of the cloud top from 67.2 ± 1.9 km in low latitudes to 62.8 ± 4.1 km at the pole and decrease of the aerosol scale height from 3.8 ± 1.6 km to 1.7 ± 2.4 km. These changes correlate with the mesospheric temperature field. In the cold collar and high latitudes the cloud top position remarkably coincides with the sharp minima in temperature inversions suggesting importance of radiative cooling in their maintenance. This behaviour is consistent with the earlier observations. Spectral trend of the cloud top altitude derived from a comparison with the earlier observations in 1.6–27 μm wavelength range is qualitatively consistent with sulphuric acid composition of the upper cloud and suggests that particle size increases from equator to pole. 相似文献
10.
Statistics on the temporal variability of uv cloud features on Venus during 66 days of nominal mission imaging by the Pioneer Venus Orbiter Cloud Photopolarimeter reveal at least five types of systematic variability on large scales: (1) a low-latitude global-scale wave of period 3.94 ± 0.1 days corresponding to longitudinal motion of the dark equatorial band and propagating westward relative to the mean flow; (2) a midlatitude wave of period 5.20 ± 0.2 days corresponding to wavenumber 1 oscillations of the latitude of the bright polar bands and propagating eastward relative to the mean flow; (3) ~2- to 3-week fluctuations in the slope of longitudinal cloud brightness power spectra at intermediate wavenumbers manifested by variations in the intensity of large bow-shaped features; (4) ~2-month variations in polar region brightness consistent with polar brightening episodes observed from Earth; and (5) a monotonic decrease in the disk-integrated brightness of Venus during the nominal mission which may be either a true time variation or a solar-locked longitudinal dependence of brightness. Small-scale features appear to correlate with large-scale albedo patterns. Specifically, cellular features exist primarily where large-scale dark material is present, while the orientation of streak features with respect to latitude circles oscillates with the same ~4-day period as the large-scale features at low latitudes. The wide range of time scales present in the data suggests the complexity of Venus stratospheric dynamics. Extended observations over many years may be becessary to define the general circulation. 相似文献
11.
R. Yu. Udovitskiy Yu. V. Sotnikova M. G. Mingaliev P. G. Tsybulev G. V. Zhekanis N. A. Nizhelskij 《Astrophysical Bulletin》2016,71(4):496-505
We present the automated systemfor estimating the parameters of radio sources observed on all available continuum radiometers (two receiving facilities of secondary mirrors No. 1 and No. 2 with a total of 30 radiometers) developed at RATAN-600 radio telescope and put into normal operation. The system is also used for the monitoring of the parameters of the antenna and receiving systems of RATAN-600 radio telescope, which is carried out using current measurements of calibration radio sources. 相似文献
12.
Jobea Cimino 《Icarus》1982,51(2):334-357
The opportunity to determine the planetwide temperature and cloud structure of Venus using radio occultation techniques arose with Pioneer Venus. Amplitude and Doppler data provided by the radio occultation experiment offered a unique and powerful means of examining the atmospheric properties in the lower cloud region.Absorption due to gaseous components of the atmosphere was subtracted from the measured absorption coefficient profiles before they were used to compute cloud mass contents. This absorption was found to represent a small part of the total absorption, depending on the latitude. In the main cloud deck, gaseous absorption contributes 10 to 20%, however, at the bottom of the detected absorption layer the sulfuric acid vapor contributes up to 100% due to increased vapor pressures. The clouds are the primary contributing absorbers in the 1- to 3-bar level of the Venus atmosphere. Below about 3 bars, depending on the latitude, absorption due to sulfuric acid vapor dominates.If a cloud particle model consisting of a solid nonabsorbing dielectric sphere with a concentric liquid sulfuric acid coating is invoked, the absorptivity of the particles increases from that of a pure sulfuric acid liquid sphere, and the mass content derived from the absorption coefficient profiles decreases. As the ratio of the core radius to the total radius (q) increases, absorption increases by more than a factor of 10 for high values of q. In the case of pure sulfuric acid droplets, the conductivity is sufficiently high that some of the field is excluded from the interior of the droplet thereby reducing the absorption. When a dielectric core of nonabsorbing material is introduced, the surface charge density is reduced and the absorption increases.The mass contents for all orbits in the equatorial region of Venus were calculated using values of q from 0 to 1. The resulting profiles match the probe mass content profiles at similar locations when a q of 0.97 is chosen.The wavelength dependence of the absorption for the spherical shell model varies with q from 1/λ2 for pure liquid to λ0.2 for a large core. A q of from 0.96 to 0.98 results in a wavelength dependence of 1/λ1.0 to 1/λ1.4 which matches the radio occultation absorption wavelength dependence and the microwave opacity wavelength dependence.Mass content profiles using a q of 0.97 were determined for occultations in the polar, collar, midlatitudinal, and equatorial regions assuming q remains constant over the planet. The results show considerable variability in both the level and the magnitude of the lower cloud deck. The cloud layer is lowest in altitude in the polar region. This might be expected as the temperature profile is cooler in the polar region than over the rest of the planet. The mass content is greatest in the polar and collar regions; however, many of the collar profiles were cut off due to fluctuations resulting from increased turbulence in the collar region. The mass contents are least dense in the midlatitude regions. There is a sharp lower boundary at about 1.5 bars in the equatorial and midlatitude regions and at about 2.5 bars in the polar region. Measurements made by the Particle Size Spectrometer and nephelometers also showed sharp lower cloud boundaries at this level. 相似文献
13.
Dmitrij V. Titov Wojciech J. Markiewicz Nikolay I. Ignatiev Li Song Sanjay S. Limaye Agustin Sanchez-Lavega Jonas Hesemann Miguel Almeida Thomas Roatsch Klaus-Dieter Matz Frank Scholten David Crisp Larry W. Esposito Stubbe F. Hviid Ralf Jaumann Horst U. Keller Richard Moissl 《Icarus》2012,217(2):682-701
Since the discovery of ultraviolet markings on Venus, their observations have been a powerful tool to study the morphology, motions and dynamical state at the cloud top level. Here we present the results of investigation of the cloud top morphology performed by the Venus Monitoring Camera (VMC) during more than 3 years of the Venus Express mission. The camera acquires images in four narrow-band filters centered at 365, 513, 965 and 1010 nm with spatial resolution from 50 km at apocentre to a few hundred of meters at pericentre. The VMC experiment provides a significant improvement in the Venus imaging as compared to the capabilities of the earlier missions. The camera discovered new cloud features like bright “lace clouds” and cloud columns at the low latitudes, dark polar oval and narrow circular and spiral “grooves” in the polar regions, different types of waves at the high latitudes. The VMC observations revealed detailed structure of the sub-solar region and the afternoon convective wake, the bow-shape features and convective cells, the mid-latitude transition region and the “polar cap”. The polar orbit of the satellite enables for the first time nadir viewing of the Southern polar regions and an opportunity to zoom in on the planet. The experiment returned numerous images of the Venus limb and documented global and local brightening events. VMC provided almost continuous monitoring of the planet with high temporal resolution that allowed one to follow changes in the cloud morphology at various scales.We present the in-flight performance of the instrument and focus in particular on the data from the ultraviolet channel, centered at the characteristic wavelength of the unknown UV absorber that yields the highest contrasts on the cloud top. Low latitudes are dominated by relatively dark clouds that have mottled and fragmented appearance clearly indicating convective activity in the sub-solar region. At ~50° latitude this pattern gives way to streaky clouds suggesting that horizontal, almost laminar, flow prevails here. Poleward from about 60°S the planet is covered by almost featureless bright polar hood sometimes crossed by dark narrow (~300 km) spiral or circular structures. This global cloud pattern can change on time scales of a few days resulting in global and local “brightening events” when the bright haze can extend far into low latitudes and/or increase its brightness by 30%. Close-up snapshots reveal plenty of morphological details like convective cells, cloud streaks, cumulus-like columns, wave trains. Different kinds of small scale waves are frequently observed at the cloud top. The wave activity is mainly observed in the 65–80° latitude band and is in particular concentrated in the region of Ishtar Terra that suggests their possible orographic origin. The VMC observations have important implications for the problems of the unknown UV absorber, microphysical processes, dynamics and radiative energy balance at the cloud tops. They are only briefly discussed in the paper, but each of them will be the subject of a dedicated study. 相似文献
14.
We present results of a simple two-dimensional model investigating the observable effects that convective motions and gravity waves can have on the condensational Venus cloud. Gravity waves have been observed in the Venus atmosphere in the form of temperature scintillations in the Magellan and Pioneer Venus occultation data. Multiple in situ probes and long-duration remote observations indicate the presence of convective motions in the Venus clouds. Dynamical studies by others have suggested that gravity waves can exist in the stable regions of the Venus atmosphere above the middle clouds and beneath the middle clouds, and likely are triggered by flow past sub-cloud plumes caused by convective overshooting. We find that a simplified treatment of convective kinematics generates variation in the Venus condensational cloud consistent with the observed variability of optical depth and brightness temperature. Specifically, we find that the downdraft regions in our simulated convective cell exhibit a decrease in cloud optical depth of around Δτ∼10. The brightness temperature ranges from about 460 K in the downdraft regions of the simulated convective cells, to about 400 K in the simulated updrafts. We also find that gravity waves launched by obstacles (such as overshooting convective plumes) near the cloud base exhibit horizontal wavelengths comparable to the separation between convective cells, and generate variations in brightness temperature that should be observable by instruments such as VIRTIS on Venus Express. However, a more robust treatment of the atmospheric dynamics is needed to address adequately these interactions between the clouds and the mesoscale dynamics. 相似文献
15.
We review two models describing the Venus climate system: the carbonate and pyrite models. It has been argued carbonate and pyrite are potentially important minerals controlling the climate of Venus, though existence of either minerals has not been confirmed. Although it used to be proposed that carbonation reaction might explain the Venus’ atmospheric CO2 abundance, it is unlikely Venus’ surface is reactive enough to control the Venus’ massive CO2 atmosphere. Venus’ surface carbonate is also able to affect the climate through the reaction with atmospheric SO2 to form anhydrite. Under the carbonate model the climate state is not in equilibrium and would be unstable due to the reaction between carbonate and SO2. On the other hand, pyrite-magnetite reaction is proposed to explain the Venus’ atmospheric SO2 abundance. Under pyrite-magnetite reaction, however, the climate would be stabilized such that the existing climate state is maintained over a geological timescale, while some observational facts such as atmospheric abundance of SO2 and surface temperature could also be reasonably explained. 相似文献
16.
Hairong Lai Christopher T. Russell Hanying Wei Tielong Zhang 《Meteoritics & planetary science》2014,49(1):28-35
Asteroid 2201 Oljato passed through perihelion inside the orbit of Venus near the time of its conjunction with Venus in 1980, 1983, and 1986. During those three years, many interplanetary field enhancements (IFEs) were observed by the Pioneer Venus Orbiter (PVO) in the longitude sector where the orbit of Oljato lies inside Venus' orbit. We attribute IFEs to clouds of fine‐scale, possibly highly charged dust picked up by the solar wind after an interplanetary collision between objects in the diameter range of 10–1000 m. We interpret the increase rate in IFEs at PVO in these years as due to material in Oljato's orbit colliding with material in, or near to, Venus' orbital plane and producing a dust‐anchored structure in the interplanetary magnetic field. In March 2012, almost 30 yr later, with Venus Express (VEX) now in orbit, the Oljato‐Venus geometry is similar to the one in 1980. Here, we compare IFEs detected by VEX and PVO using the same IFE identification criteria. We find an evolution with time of the IFE rate. In contrast to the results in the 1980s, the recent VEX observations reveal that at solar longitudes in which the Oljato orbit is inside that of Venus, the IFE rate is reduced to the level even below the rate seen at solar longitudes where Oljato's orbit is outside that of Venus. This observation implies that Oljato not only lost its co‐orbiting material but also disrupted the “target material,” with which the co‐orbiting material was colliding, near Venus. 相似文献
17.
Michael C. Malin Bruce A. Cantor Robert M. Haberle Peter C. Thomas James F. Bell III 《Icarus》2008,194(2):501-512
The Mars Reconnaissance Orbiter observes Mars from a nearly circular, polar orbit. From this vantage point, the Mars Color Imager extends the ∼5 Mars years record of Mars Global Surveyor global, visible-wavelength multi-color observations of meteorological events and adds measurements at three additional visible and two ultraviolet wavelengths. Observations of the global distribution of ozone (which anti-correlates with water vapor) and water ice and dust clouds allow tracking of atmospheric circulation. Regional and local observations emphasize smaller scale atmospheric dynamics, especially those related to dust lifting and subsequent motion. Polar observations detail variations related to the polar heat budget, including changes in polar frosts and ices, and storms generated at high thermal contrast boundaries. 相似文献
18.
A spectacular change in the lower corona on the south-west limb has been found in solar images taken by the Yohkoh soft X-ray telescope. The event is characterized by a large topological change in magnetic field and a large intensity decrease observed after the X1. 1/1B flare on 9 November, 1991. A coronal mass ejection (CME) was observed by the Mark III K-coronameter (MK3) at the HAO/Mauna Loa Observatory. Both the MK3 (white-light) and soft X-ray observations showed that one leg of this CME was located above the flare site. An interplanetary shock associated with this event was observed by Pioneer Venus Orbiter, and, possibly, by IMP-8.Also Cooperative Institute for Research in the Environmental Sciences (CIRES), University of Colorado, Boulder, CO 80309, U.S.A. 相似文献
19.
Near-infrared observations of the nightside of Venus reveal regions of high brightness temperatures. These regions of high brightness temperatures are caused by the localized evaporation of the middle and lower cloud decks, which are about 50 to 60 km above the surface of the planet. We simulate the Venus condensational middle and lower cloud deck with the University of Colorado/NASA Ames Community Aerosol and Radiation Model for Atmospheres (CARMA). Our simulated clouds have similar characteristics to the observed Venus clouds. Our radiative transfer model reproduces the observed temperature structure and atmospheric stability structure within the middle cloud region. A radiative-dynamical feedback occurs which generates mixing due to increased absorption of upwelling infrared radiation within the lower cloud region, as previously suggested by others. We find that localized variations in temperature structure or in sub-grid scale mixing cannot directly explain the longevity and optical depth of the clouds. However, vertical motions are capable of altering the cloud optical depth by a sufficient magnitude in a short enough timescale to be responsible for the observed clearings. 相似文献
20.
With the advent of surveys generating multi-epoch photometry and the discovery of large numbers of variable stars, the classification of these stars has to be automatic. We have developed such a classification procedure for about 1700 stars from the variable star catalogue of the All-Sky Automated Survey 1–2 (ASAS 1–2) by selecting the periodic stars and by applying an unsupervised Bayesian classifier using parameters obtained through a Fourier decomposition of the light curve. For irregular light curves we used the period and moments of the magnitude distribution for the classification. In the case of ASAS 1–2, 83 per cent of variable objects are red giants. A general relation between the period and amplitude is found for a large fraction of those stars. The selection led to 302 periodic and 1429 semiperiodic stars, which are classified in six major groups: eclipsing binaries, 'sinusoidal curves', Cepheids, small amplitude red variables, SR and Mira stars. The type classification error level is estimated to be about 7 per cent. 相似文献