首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have analyzed the temperature retrievals from Mars Global Surveyor (MGS) Thermal Emission Spectrometer (TES) nadir spectra to yield latitude-height resolved maps of various atmospheric forced wave modes as a function of season for a full Mars year. Among the isolated wave modes is the zonal mean, time mean temperature, which we used to derive zonal mean zonal winds and stationary wave quasi-geostrophic indices of refraction, diagnostic of their propagation. The diurnal Kelvin wave was isolated in the data, with results roughly consistent with models (Wilson and Hamilton, 1996, J. Atmos. Sci. 33, 1290-1326). The s = 1 and s = 2 stationary waves were found to have significant amplitude in ducts extending up the winter polar jets, while the s = 3 stationary wave was found to be confined to near the surface. The s = 1 stationary wave was found to have little phase tilt with height during northern winter, but significant westward phase tilt with height in the southern winter. This indicates that the wave carries heat poleward, slightly more than that found in Barnes et al. (1996; J. Geophys. Res. 101, 12,753-12,776). The s = 1 stationary wave is likely the dominant mechanism for eddy meridional heat transport for the southern winter. We noted that the phase of the s = 2 stationary wave is nearly constant with time, but that the s = 1 stationary wave moved 90° of longitude from fall to winter and back in spring in the North. While interannual variability is not yet addressed, overall, these results provide the first comprehensive benchmark for forced waves in Mars’s atmosphere against which future atmospheric models of Mars can be compared.  相似文献   

2.
We have characterized the annual behavior of martian atmospheric traveling waves in the MGS TES data set from the first two martian years of mapping. There is a high degree of repeatability between the two years. They are dominated by strong low zonal wavenumber waves with high amplitudes near the polar jets, strongest in late northern fall and early northern winter. The m=1 waves have amplitudes up to about 20 K, are vertically extended, and occasionally extend even into the tropics. Periods for m=1 range from 2.5 to 30 sols. Much weaker waves were identified in the south, with amplitudes less than about 3.5 K. Traveling waves with m=2 and m=3 are also seen, but their amplitudes are typically limited to less than 4 K, and are generally more confined near the surface. In the north, they are more evident in fall and spring rather than winter solstice, which is clearly dominated by m=1 waves. Some evidence of storm tracks has been identified in the data, with accentuated weather-related temperature perturbations near longitudes 200° to 320° E for both the southern and northern hemispheres near latitude ±65° at the surface. Some evidence was also found for a sharpening of longitudinal gradients into what may be frontal systems. EP flux divergences show the waves extracting energy from the zonal mean winds. When the m=1 waves were strongest, decelerations of the zonal jet of order 30 m/(s sol) were measured. Above 1 scale height, the waves extract energy from the jet predominately through barotropic processes, but their character is overall mixed barotropic/baroclinic. Inertial instabilities may exist at altitude on the equatorward flanks of the polar jets, and marginal stability extends through to the tropics. This may explain the coordination of the tropical behavior of the waves with that centered along the polar jet, consistent with the ideas expressed in Wilson et al. (2002, Geophys. Res. Lett. 29, #1684) and similar to those in Barnes et al. (1993, J. Geophys. Res. 98, 3125-3148). Throughout the year, there exist large regions with the meridional gradient of PV less than zero, but they are strongest near winter solstice. Poleward of the winter jet, the regions of instability reach the surface, equatorward they do not. These regions, satisfying a necessary criterion for instability, likely explain the genesis of the waves, and perhaps also their bimodal character between surface (faster waves) and altitude (slow m=1 waves).  相似文献   

3.
A new model of albedo and emissivity of the martian seasonal caps represented as porous CO2 slabs containing spherical voids and dust particles is described. In the model, a radiative transfer model is coupled with a microphysical model in order to link changes in albedo and emissivity to changes in porosity caused by ice metamorphism. The coupled model is capable of reproducing temporal changes in the spectra of the caps taken by the Thermal Emission Spectrometer onboard the Mars Global Surveyor and it can be used as the forward model in the retrievals of the caps' physical properties (porosity, dust abundance, void and dust grain size) from the spectra. Preliminary results from such inversion studies are presented.  相似文献   

4.
Planetary gravity fields represented in terms of spherical harmonics or surface mass distributions\ do not have the necessary resolution to permit gravity analysis of local features. Doppler gravity maps representing residual line-of-sight (LOS) accelerations have much greater resolution but cannot be used for conventional geophysical analysis due to the geometric distortions inherent in LOS gravity patterns and lack of normalization of LOS data. However, LOS gravity data may be converted to vertical gravity anomalies by expressing the anomalous local gravitational potential over small rectangular areas in terms of a modified double Fourier series constrained by local Doppler gravity data. The vertical derivative of the resulting potential yields the vertical gravity components at desired altitudes. The resolution of the resulting normalized free air anomaly maps is limited only by that of the original Doppler gravity data. Extended gravity maps may be constructed this way using a moving window approach. It is anticipated that much of the lunar frontside can be mapped at resolutions ranging from 1 to 4 deg of arc.  相似文献   

5.
B. N. Andersen 《Solar physics》1994,152(1):241-246
The interaction between convection and gravity waves are simulated numerically in a model closely corresponding to the physical conditions in the solar interior.The penetration of convective elements into the stably stratified interior is shown to generate gravity waves. The energy efficiency of this generation is less than 0.1 %. The simulations also show that the convective overshoot region is very shallow, 0.02–0.06 pressure scaleheights.  相似文献   

6.
《Icarus》1986,68(3):481-502
The oblique geometry of the Voyager 1 radio occulation of Saturn's rings resulted in a strong coupling between the local slope of the ring midplane and the associated radio opacity (optical depth). We apply a model of this relationship to those regions of the rings where bending waves have been observed in the radio data. Using the Shu et al. linear model for a bending wave (F.H. Shu, J.N. Cuzzi, and J.J. Lissauer, 1983,Icarus53, 185–206), we obtain height profiles for the Mimas 5:3 and 7:4 bending waves. The first oscillation of the Mimas 5:3 bending wave has an amplitude of about 800 m, in agreement with the prediction of the Shu et al. model. However, the rest of the wave may be explained only by either a greatly decreased amplitude in the region beyond the second cycle, or by a significant enhancement in radio optical depth in the region of the bending wave. The shape of the enhancement necessary is similar to that of the enhancement at photopolarimetry wavelengths (L.W. Esposito, M. O'Callaghan, and R.A. West, 1983,Icarus56, 439–452), but differs in the region of the first cycle. Our solution gives 131,901±6 km as the resonance location, and a surface mass density of 35±6g cm−2. The error bars on the resonance location do not include the uncertainty in the radial scale of the radio occultation data, which is approximately 10 km (R.A. Simpson, G.L. Tyler, and J.B. Holberg, 1983,Astron. J.88, 1531–1536). The Mimas 7:4 bending wave conforms more closely to the linear model, and requires no reduction in amplitude or enhancement in optical depth. We find a surface mass density of 30.5±9 g cm−2, and resonance location at 127,765±7km.  相似文献   

7.
L. Montabone  S.R. Lewis  D.P. Hinson 《Icarus》2006,185(1):113-132
We describe an assimilation of thermal profiles below about 40 km altitude and total dust opacities into a general circulation model (GCM) of the martian atmosphere. The data were provided by the Thermal Emission Spectrometer (TES) on board the Mars Global Surveyor (MGS) spacecraft. The results of the assimilation are verified against an independent source of contemporaneous data represented by radio occultation measurements with an ultra-stable radio oscillator, also aboard MGS. This paper describes a comparison between temperature profiles retrieved by the radio occultation experiments and the corresponding profiles given by both an independent, carefully tuned GCM simulation and by an assimilation of TES observations performed over the period of time from middle, northern summer in martian year 24, corresponding to May 1999, until late, northern spring in martian year 27, corresponding to August 2004. This study shows that the assimilation of TES measurements improves the overall agreement between radio occultation observations and the GCM analysis, in particular below 20 km altitude, where the radio occultation measurements are known to be most accurate. Discrepancies still remain, mostly during the global dust storm of year 2001 and at latitudes around 60° N in northern winter-early spring. These are the periods of time and locations, however, for which discrepancies between TES and radio occultation profiles are also shown to be the largest. Finally, a further direct validation is performed, comparing stationary waves at selected latitudes and time of year. Apart from biases at high latitudes in winter time, data assimilation is able to represent the correct wave behaviour, which is one major objective for martian assimilation.  相似文献   

8.
Viking/MAWD experiment and more recent MGC/TES observations have provided to date the most detailed information about the annual atmospheric water cycle on Mars. Their data agree in major details but still reveal some disagreements. These disagreements turn out to be most significant in the perihelion season and especially during the major dust storms. We consider the potential influence of aerosol scattering on 1.38 μm water retrieval under various types of observation geometry. In order to obtain new retrievals of water vapor abundance from MAWD data, we apply radiative transfer calculations. The resulting seasonal and spatial distribution of water turns out to be more consistent with TES results, implying a remarkable stability of the martian seasonal water cycle. Mapping data corresponding to particular seasons reveals a distinct wave structure in the global distribution of the water column. We interpret it as a manifestation of a strong control over the water cycle on Mars from the atmospheric circulation.  相似文献   

9.
The Mars Express Observatoire pour la Minéralogie, l'Eau, les Glaces et l'Activité (OMEGA) collected an unprecedented visible and near-infrared hyperspectral dataset covering the low albedo regions of Mars. We investigate the ability to infer modal abundance of surfaces of these regions from a radiative transfer model developed by Shkuratov et al. [Shkuratov, Y., Starukhina, L., Hoffmann, H., Arnold, G., 1999. Icarus 137, 235-246] and adapted to basaltic surfaces by Poulet and Erard [Poulet F., Erard, S., 2004. J. Geophys. Res. 109 (E2), doi:10.1029/2003JE002179]. From OMEGA measurements of mafic surfaces, we develop several sensitivity tests to assess the extent to which the model can be applied to predict pyroxene composition (high-calcium phase and low-calcium phase), abundance of almost neutral components (plagioclase) in the near-infrared wavelength as well as grain sizes, by using a library of selected end-members. Results of the sensitivity tests indicate that the scattering model can estimate both abundances and grain sizes of major basaltic materials of low albedo regions within uncertainties (±5 to 15 vol%). The model is then applied to data from dissected cratered terrains located in Terra Meridiani. The derived grain size including uncertainties is in the 50-500 μm range. This is consistent with the thermal inertia and albedo of this region, which indicates a fine sand-sized surface with little dust. The abundances of plagioclase (43-57%) and pyroxenes (35-45±10%, including 11±5% of low-calcium phase) are in good agreement with previous basalt-like compositions of low albedo regions from thermal infrared spectral measurements. The method presented in this paper will provide a valuable tool for evaluating the modal mineralogy of other mafic regions of Mars observed in the near-infrared wavelength range.  相似文献   

10.
Mark A. Wieczorek 《Icarus》2008,196(2):506-517
The polar caps of Mars have long been acknowledged to be composed of unknown proportions of water ice, solid CO2 (dry ice), and dust. Gravity and topography data are here analyzed over the southern cap to place constraints on its density, and hence composition. Using a localized spectral analysis combined with a lithospheric flexure model of ice cap loading, the best fit density of the volatile-rich south polar layered deposits is found to be 1271 kg m−3 with 1-σ limits of 1166 and 1391 kg m−3. The best fit elastic thickness of this geologically young deposit is 140 km, though any value greater than 102 km can fit the observations. The best fit density implies that about 55% dry ice by volume could be sequestered in these deposits if they were completely dust free. Alternatively, if these deposits were completely free of solid CO2, the dust content would be constrained to lie between about 14 and 28% by volume. The bulk thermal conductivity of the polar cap is not significantly affected by these maximum allowable concentrations of dust. However, even if a moderate quantity of solid CO2 were present as horizontal layers, the bulk thermal conductivity of the polar cap would be significantly reduced. Reasonable estimates of the present day heat flow of Mars predict that dry ice beneath the thicker portions of the south polar cap would have melted. Depending on the quantity of solid CO2 in these deposits today, it is even possible that water ice could melt where the cap is thickest. If independent estimates for either the dust or CO2 content of the south polar cap could be obtained, and if radar sounding data could determine whether this polar cap is presently experiencing basal melting or not, it would be possible to use these observations to place tight constraints on the present day heat flow of Mars.  相似文献   

11.
Low altitude line-of-sight gravity data obtained by CSM and LM radio tracking during several Apollo missions are used to construct an equispaced normalized vertical gravity net 30 km above selected lunar highland regions. Correlation of local vertical gravity anomalies with craters of different depth reveals a density increase with depth in the upper lunar highland crust. Crustal densities determined in this fashion are in good agreement with other, previously published crustal density values. The nature of the density increase implies a lunar crust consisting of fractured rather than competent rock.  相似文献   

12.
Conventional evolutionary models for Mars adopt a dry mantle solidus. Taking into account the condensation conditions in the preplanetary nebula in the accretion zone of Mars, it can be concluded that large amounts of water or hydrated silicates have condensed in those regions. Therefore, water influences significantly the melting behaviour and the viscosity of the silicatic material. A model for the calculation of the thermal history of a planet is constructed. On this basis, and use of water — saturated solidus — it is possible to derive that the core is not liquid, as given in models employing a dry mantle solidus, but solid to a large extent, which prevents the operation of a large-scale dynamo and explains in that way the lack of a magnetic field. With these assumptions one can construct a possible evolutionary scheme that covers early crust differentiation, a hot thermal past and the missing magnetic field at present.  相似文献   

13.
A search for gravitational waves from the millisecond pulsar PSR 0437-4715 has been initiated using the bar detector NIOBE which is located at the University of Western Australia. We present a detailed report on the data analysis algorithm, called phase plane rotation , which will be used in this search. A discussion of the actual implementation of the algorithm is presented. The data analysis algorithm mentioned above has the advantage that it requires minimal changes to the already-existing data acquisition facility of NIOBE but, at the same time, it is as efficient as optimal filtering in detecting a signal. This search involves a very long coherent integration of the bar output which may stretch over a few years. With some planned improvements in the detector, a three-year integration should be able to put an upper limit of h  ∼ 10−26 on the signal amplitude.  相似文献   

14.
Temperature and wind measurements extending up to 95 km have been made with rocket-grenade experiments at Natal, Brasil. On many occasions the temperature and wind speed above 60 km show uniformly spaced maxima and minima. In one series of these experiments four rockets were launched during a period of 18 hr. A comparison of these spaced observations gives an indication of the propagating character of the maxima and minima and also suggests a downward phase propagation. The perturbations in the temperature and the wind speed are similar in form but they appear to differ in phase. The wavelike appearance of the temperature profiles is believed to be caused by the adiabatic heating and cooling associated with propagating gravity waves. The wavelength obtained from these observations is 10–12 km which coincides with the expected vertical wavelength of 12 km for the dominant gravity wave in this altitude range. The observed temperature variations are also in agreement with the computed values for the prevailing conditions.  相似文献   

15.
We investigate the effects of atmospheric gravity waves on the vertical and horizontal structure of the ionosphere of Jupiter. The presented non-linear, two-dimensional model of the jovian ionosphere allows for spatially and temporally varying neutral wind and temperature fields and tracks the time evolution of six ionospheric species, , and . An analytical approach is used to validate the model results for linear, small-amplitude waves and to elucidate the mechanisms that leads to perturbations in the density of the main ion species, H+ and . We demonstrate that the long-lived H+ ions are perturbed directly by wave dynamics whereas short-lived ions such as are perturbed by chemical interactions with other perturbed ion species. The model is then applied using larger gravity wave amplitudes consistent with observations. Atmospheric gravity waves propagating at high altitudes create layers of enhanced electron density similar to the system of layers observed during the J0-ingress radio occultation of the Galileo spacecraft. Our best fit to the J0-ingress observation is achieved using an 82 min period forcing wave with horizontal and vertical wavelengths of 500 km and 60 km respectively, and peaks at 510 km above the 1 bar pressure level. We further investigate the effects of the wave-induced ion flux on the background ionospheric structure and demonstrate that in the presence of a gravity wave the background density profiles of the H+ and ions are significantly modified. We also find that the column density of has variations that can exceed 10% as the wave propagates.  相似文献   

16.
Space-time variations of pressure in the solar photosphere are reproduced based on the results of observations in the Fe I line. Local internal gravity waves (IGWs) are isolated by means of proper filtering. A method of determination of the phase velocities of IGWs based on 1D observations is developed. Horizontal and vertical projections of the phase velocities of isolated IGWs with different periods are determined. It is shown that the phase velocity of an IGW decreases significantly with a decrease in oscillation frequency. The horizontal wavelengths of gravity waves with periods ranging from 5 to 60 minutes are commensurable with the granulation scales. The dispersive properties of gravity waves are studied.  相似文献   

17.
Observations of the Fe I line are used to simulate spatial and temporal pressure variations in the solar photosphere. The local internal gravity waves, which are essentially structures that are quasi-periodic in space (on granular and mesogranular scales) and time and propagate along inclined paths at subsonic velocities, are isolated by appropriate filtering. The phase and group velocities of the wave trains are orthogonal; their z-projections are of the opposite sign.  相似文献   

18.
Nair H  Allen M  Anbar AD  Yung YL  Clancy RT 《Icarus》1994,111(1):124-150
The factors governing the amounts of CO, O2, and O3 in the martian atmosphere are investigated using a minimally constrained, one-dimensional photochemical model. We find that the incorporation of temperature-dependent CO2 absorption cross sections leads to an enhancement in the water photolysis rate, increasing the abundance of OH radicals to the point where the model CO abundance is smaller than observed. Good agreement between models and observations of CO, O2, O3, and the escape flux of atomic hydrogen can be achieved, using only gas-phase chemistry, by varying the recommended rate constants for the reactions CO + OH and OH + HO2 within their specified uncertainties. Similar revisions have been suggested to resolve discrepancies between models and observations of the terrestrial mesosphere. The oxygen escape flux plays a key role in the oxygen budget on Mars; as inferred from the observed atomic hydrogen escape, it is much larger than recent calculations of the exospheric escape rate for oxygen. Weathering of the surface may account for the imbalance. Quantification of the escape rates of oxygen and hydrogen from Mars is a worthwhile objective for an upcoming martian upper atmospheric mission. We also consider the possibility that HOx radicals may be catalytically destroyed on dust grains suspended in the atmosphere. Good agreement with the observed CO mixing ratio can be achieved via this mechanism, but the resulting ozone column is much higher than the observed quantity. We feel that there is no need at this time to invoke heterogeneous processes to reconcile models and observations.  相似文献   

19.
Details are presented of an improved technique to use atmospheric absorption of magnetically reflecting solar wind electrons to constrain neutral mass densities in the nightside martian upper thermosphere. The helical motion of electrons on converging magnetic field lines, through an extended neutral atmosphere, is modeled to enable prediction of loss cone pitch angle distributions measured by the Magnetometer/Electron Reflectometer (MAG/ER) experiment on Mars Global Surveyor at 400 km altitude. Over the small fraction of Mars' southern hemisphere (∼2.5%) where the permanent crustal magnetic fields are both open to the solar wind and sufficiently strong as to dominate the variable induced martian magnetotail field, spherical harmonic expansions of the crustal fields are used to prescribe the magnetic field along the electron's path, allowing least-squares fitting of measured loss cones, in order to solve for parameters describing the vertical neutral atmospheric mass density profile from 160 to 230 km. Results are presented of mass densities in the southern hemisphere at 2 a.m. LST at the mean altitude of greatest sensitivity, 180 km, continuously over four martian years. Seasonal variability in densities is largely explained by orbital and latitudinal changes in dayside insolation that impacts the nightside through the resulting thermospheric circulation. However, the physical processes behind repeatable rapid, late autumnal cooling at mid-latitudes and near-aphelion warming at equatorial latitudes is not fully clear. Southern winter polar warming is generally weak or nonexistent over several Mars years, in basic agreement with MGS and MRO accelerometer observations. The puzzling response of mid-latitude densities from 160° to 200° E to the 2001 global dust storm suggests unanticipated localized nightside upper thermospheric lateral and vertical circulation patterns may accompany such storms. The downturn of the 11-year cycle of solar EUV flux is likely responsible for lower aphelion densities in 2004 and 2006 (Mars years 27 and 28).  相似文献   

20.
This paper presents computer-produced tonal-value plots in which darkness or intensity are used to display the ionospheric response to an isotropic spectrum of internal gravity waves. Each plot shows at a glance those portions of the wave spectrum, i.e. those wave periods and azimuths of propagation, producing the ionospheric irregularities of greatest magnitude. Arrays of the plots illustrate the variations of this response with time of day, season, latitude, geomagnetic dip, and height.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号