首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Upper Greensand Formation, in part mainly underlain by the Gault Formation and overlain by the Chalk Group, has extensive cliff outcrops in the Dorset and East Devon Coast World Heritage Site (WHS). The argillaceous Gault, up to 20 m thick in the Isle of Purbeck, is poorly exposed due to its involvement in extensive landslides, but the exposures of Upper Greensand are the most complete in England. The Gault (Middle Albian) rests unconformably on progressively older Jurassic and Triassic strata when traced westwards and becomes more arenaceous in the same direction. On the east Devon coast, the Upper Greensand comprises up to 55 m of sandstones and calcarenites that were deposited in fully marine, shallow-water environments. The formation is divided into three members there (Foxmould, Whitecliff Chert and Bindon Sandstone) each bounded by a prominent erosion surface. The full thickness of the Upper Greensand, up to 60 m, was formerly exposed in cliffs in the Isle of Purbeck in and adjacent to the steeply dipping limb of the Purbeck Monocline. The lower (Foxmould) part of the succession is similar to that in east Devon, but the upper part (White Nothe Member) is lithologically different and probably the correlative of only the Bindon Sandstone. Much of the fauna of the Gault and Upper Greensand of the WHS is not age-diagnostic with the result that the ages of parts of the succession are still poorly known. However, diverse ammonite assemblages recorded from a few thin beds in the lower and highest parts of the succession show that all except one of the Albian ammonite zones is present.  相似文献   

2.
Sections in the Gault and of the Gault-Woburn Sands junction exposed in the Leighton Buzzard area of Bedfordshire are described. These give a much clearer picture of the ammonite zonal stratigraphy than hitherto. The depositional history of the Albian sediments is discussed. The relationship of the Shenley Limestone to the regularis nodule beds in the south of the area is demonstrated, together with the nature of the mixed regularis and kitchini nodule beds seen in the central area. Periods of erosion occurred in post-kitchini mammillatum Zone times, and after renewed sedimentation in the eodentatus Subzone. Overlying these beds are clays of spathi Subzone age which pass laterally into glauconitic marginal loams against a platform of Woburn Sands in the northern part of the area. Upon this platform occur knolls of bedded Silty Beds, capped by Shenley Limestone, against which sediments of high spathi, intermedius and niobe Subzones age thin. The base of the Upper Gault, of high cristatum Subzone age, rests non-sequentially upon an eroded surface of the Lower Gault. Clays of orbignyi Subzone age are overlain by a bed of phosphatic nodules representing the lower part of the varicosum Subzone, which in turn is overlain by thick clays which may in part be of varicosum and auritus Subzones age.  相似文献   

3.
Micropalaeontology and biostratigraphy have been, and still are, a vital part of the Channel Tunnel Project. The use of foraminiferal assemblages and the determination of an accurate biozonation have given the tunnel builders a comprehensive view of the geological succession below the English Channel between Dover and Calais. This work, which was begun in 1958, has continued intermittently to the present day.  相似文献   

4.
藏南定日遮普惹山剖面主要是Albian 晚期到古近纪海相沉积, Willems 等( 1996 )对岩石地层和沉积微相进行了详细研究,并通过浮游有孔虫研究建立生物地层格架。在与岗巴地区地层对比基础上,该剖面被认为是整个藏南地区白垩纪—古近纪海相地层的标准剖面。2004 年我们与中国、德国同行一道对该剖面上白垩统地层进行再考察,重点对无脊椎动物化石样品进行采集和研究。与西藏大多数白垩纪剖面一样,尽管沉积环境为陆棚环境,该剖面以前却几乎没有菊石和叠瓦蛤类化石的报道,而同样环境下的世界其他地区剖面含有大量的菊石和叠瓦蛤类化石。藏南定日剖面重新调查后发现了少量的菊石和叠瓦蛤类化石。化石数量少一方面是由于灰泥质灰岩和泥灰质灰岩内化石保存状况差,另一方面采样条件也不理想。还有,当时的环境条件可能不利于大多数无脊椎动物类群的生存,这一点或许从大量存在于岗巴群上部的小个体双壳类碎片可以得到证实。尽管获得的化石分散并且保存差,本次研究仍获得了一些有价值的生物地层数据。岗巴群上部发现的化石Calycoceras?,指示其时代为Cenomanian 晚期,随后出现不能鉴定的desmoceratids类的幼体。之上,菊石Forresteria sp.的发现表明岗巴群顶部地层属于Coniacian下部,这被同一地层内发现的其他化石所支?  相似文献   

5.
Sediments of Early Aptian age in Bulgaria can be assigned to four different facies: platform carbonates (Urgonian complex), shallow-water siliciclastics, hemipelagic and flyschoid siliciclastics. The taxonomic analysis of the ammonite faunas of 18 sections from these four different facies resulted in a revision of the existing ammonite zonation scheme so far applied in Bulgaria and adjoining areas. A new biostratigraphic scheme, which bridges the western and eastern Tethys, is thereby proposed for the Lower Aptian of Bulgaria.The Upper Barremian Martelites sarasini Zone is characterized in its upper part by the Pseudocrioceras waagenoides Subzone in the shallow-water sections and by a horizon with Turkmeniceras turkmenicum in the deep-water settings. The Upper Barremian/Lower Aptian boundary is fixed by the first appearance of Paradeshayesites oglanlensis. For the Lower Aptian the following ammonite zones were established (from bottom to top): The Paradeshayesites oglanlensis Zone, the Deshayesites forbesi Zone (= formerly Paradeshayesites weissi Zone) including the Roloboceras hambrovi Subzone in the upper part, the Deshayesites deshayesi Zone including the Paradeshayesites grandis Subzone in the upper part and the Dufrenoyia furcata Zone. The Lower–Middle Aptian boundary has been defined by the appearance of species belonging to the genera Epicheloniceras and Colombiceras.The Lower Aptian ammonite faunas of Bulgaria, allow an interregional correlation with other areas of the Tethyan Realm. The presence of Turkmeniceras in the Upper Barremian enables a correlation with the Transcaspian region, whereas Roloboceras, Koeneniceras and Volgoceratoides found in the middle part of the Lower Aptian are more typical representatives of the ammonite faunas in northern Europe (England, Germany, Volga region).The analysis of the ammonite successions in combination with sedimentological observations enable us to conclude that the marls and marly limestones of the Lower Aptian studied here also cover the interval of the Oceanic Anoxic Event 1a. An interval of thin-laminated clays, rich in organic matter, was identified in the upper part of the D. forbesi Zone (Roloboceras hambrovi Subzone). This interval is characterized by a total lack of benthic faunas.  相似文献   

6.
The biostratigraphic revision of the benthic foraminifera present in the coastal Cenozoic quartzose and shelly sands (crags) at Fécamp and Valmont (Seine-Maritime) reveals Early Pliocene (Fécamp) and Early Pleistocene (Valmont) ages. The Tortonian-Messinian thanatocœnosis contained in the Fécamp Crag shows the presence of a former bryozoan-rich platform on the floor of the Channel that was reworked during the Lower Pliocene transgression. Tortonian-Messinian and Lower Pliocene deposits have been found in Belgium, England, Brittany, and at Fécamp, but are absent in Cotentin (North-West Normandy), which was uplifted at this period. The Lower Pleistocene tidal sands and crags described in Cotentin, Upper Normandy and the southern North Sea Basin indicate a marine passage between the Channel and the North Sea.  相似文献   

7.
River-channel and colluvial deposits, near Marsworth, Buckinghamshire, record a temperate-periglacial-temperate sequence during the late Middle Pleistocene. The deposits of a lower channel contain tufa clasts bearing leaf impressions that include Acer sp., and Sorbus aucuparia and containing temperate arboreal pollen attributed to ash-dominated woodland. The tufa probably formed at the mouth of a limestone spring before being redeposited in a small river whose deposits contain plant remains, Mollusca, Coleoptera, Ostracoda and vertebrate bones of temperate affinities. The sediments, sedimentary structures and limited biological remains above the Lower Channel deposits indicate that fluvial deposition preceded climatic cooling into periglacial conditions. Fluvial deposition recurred during a later temperate episode, as shown by the mammalian bone assemblage in stratigraphically higher channel deposits. The Upper Channel deposits are confidently attributed to Oxygen Isotope Sub-Stage 5e (Ipswichian) on the basis of their vertebrate remains. However, the age of the Lower Channel deposits is less clear. The mammalian and coleopteran remains in the Lower Channel strongly suggest correlation with Oxygen Isotope Stage 7 on the basis of their similarities to other sites whose stratigraphy is better known and the clear difference of the Lower Channel assemblage from well-established faunas of Ipswichian or any other age. By contrast, U–Th dating of the tufa clasts suggests an age post 160 ka BP, while Aile/Ile ratios on Mollusca point to an Ipswichian age and younger. Four ways of interpreting this age discrepancy are considered, the preferred one correlating the Lower Channel deposits with Oxygen Isotope Stage 7.  相似文献   

8.
<正> 广西西部早三叠世地层发育,分布广泛,化石丰富。前人对其有不少研究。早期主要有徐瑞粦(1932)、许德佑(1936—1937,1938)、赵金科等(1940—1943)对本区有关地层进行调查研究。解放后,菊石由赵金科(1959)系统深入地研究,建立了广西西部下三叠统逻楼群8个菊石带,为华南早三叠世地层分类奠定了基础。到1976年,早三叠世  相似文献   

9.
Re-examination of the classic exposures of the Eggardon Grit (topmost Upper Greensand Formation) at Eggardon Hill, Dorset shows that the upper part of this unit has a more complex stratigraphy than has been previously recognised. The Eggardon Grit Member, as described herein, is capped by a hardground and associated conglomerate, and is entirely of Late Albian age. The hardground is probably the lateral equivalent of the Small Cove Hardground, which marks the top of the Upper Greensand succession in southeast Devon. The conglomerate is overlain by a thin sandy limestone containing Early Cenomanian ammonites. This limestone is almost certainly the horizon of the Early Cenomanian ammonite fauna that has previously been attributed to the top of the Eggardon Grit. The limestone is regarded as a thin lateral equivalent of the Beer Head Limestone Formation (formerly Cenomanian Limestone) exposed on the southeast Devon coast. The fauna of the limestone at Eggardon suggests that it is probably the age equivalent to the two lowest subdivisions of the Beer Head Limestone in southeast Devon, with a remanié fauna of the Pounds Pool Sandy Limestone Member combined with indigenous macrofossils of the Hooken Nodular Limestone Member. The next highest subdivision of the Beer Head Limestone in southeast Devon (Little Beach Bioclastic Limestone Member), equates with the ammonite-rich phosphatic conglomerate of the ‘Chalk Basement Bed’, which caps the Beer Head Limestone at Eggardon, and which was previously regarded as the base of the Chalk Group on Eggardon Hill.Petrographic analysis of the Eggardon Grit shows that lithologically it should more correctly be described as a sandy limestone rather than sandstone. The original stratigraphical definition of the unit should probably be modified to exclude the softer, nodular calcareous sandstones that have traditionally been included in the lower part of the member.Without the apparently clear evidence of unbroken sedimentation across the Albian-Cenomanian boundary, suggested by the previous interpretation of the Eggardon succession, it is harder to argue for this being a prevalent feature of Upper Greensand stratigraphy in southwest England. Correlation of the Eggardon succession with successions in Dorset and southeast Devon reveals a widespread regional break in sedimentation at the Albian-Cenomanian boundary. The sand-rich facies above this unconformity represent the true base of the Chalk Group, rather than the ‘Chalk Basement Bed’ of previous interpretations.Selected elements of regionally important Upper Greensand ammonite faunas previously reported from Shapwick Quarry, near Lyme Regis, and Babcombe Copse, near Newton Abbot, are newly figured herein.  相似文献   

10.
The Oxfordian–Lower Hauterivian section of the Nordvik Peninsula (northern Central Siberia) is a reference for developing zonal scales for various fossil groups and improving the Boreal zonal standard. In the middle 1950s–late 1980s, it was studied extensively by geologists, stratigraphers, lithologists, and experts on various fossil groups. These studies yielded rich fossil and microfossil collections and a set of parallel zonal scales for various faunal groups. Recently, a new detailed ammonite zonation of the Oxfordian and Kimmeridgian units of this section has been proposed. These results contradict the previous biostratigraphic data on ammonites, foraminifers, and palynomorphs. In the present paper, all the biostratigraphic data on the Oxfordian and Kimmeridgian units of the Nordvik Peninsula (Cape Urdyuk-Khaya) and northern Central Siberia undergo a comprehensive analysis and comparison with those on the Boreal Realm. The ammonite-constrained stratigraphic position of the lower Upper Jurassic in the Cape Urdyuk-Khaya section is interpreted as Upper Oxfordian or Middle Oxfordian. In our view, this difference in the understanding is due to the misidentification of some Oxfordian ammonite forms. The zones based on other fossil groups (foraminifers, dinocysts) which were distinguished in the Upper Oxfordian and Kimmeridgian sections of the Nordvik Peninsula are well traceable circumarctically. Their stratigraphic position in various regions of the Northern Hemisphere is constrained by ammonites and bivalves. However, if we use the last alternative ammonite zonation of this section part, hardly explicable contradictions will appear in interregional foraminiferal and dinocyst correlations.  相似文献   

11.
Late Barremian ammonite fauna from the epipelagic marlstone and marly limestone interbeds of Boljetin Hill (Boljetinsko Brdo) of Danubic Unit (eastern Serbia) is described. The ammonite fauna includes representatives of three suborders (Phylloceratina, Lytoceratina and Ancyloceratina), specifically Hypophylloceras danubiense n. sp., Lepeniceras lepense Rabrenović, Holcophylloceras avrami n. sp., Phyllopachyceras baborense (Coquand), Phyllopachyceras petkovici n. sp., Phyllopachyceras eichwaldi eichwaldi (Karakash), Phyllopachyceras ectocostatum Drushchits, Protetragonites crebrisulcatus (Uhlig), Macroscaphites perforatus Avram, Acantholytoceras cf. subcirculare (Avram), Dissimilites cf. trinodosus (d'Orbigny) and Argvethites? sp. The taxonomic composition and percent abundance of the identified ammonites indicate that their taxa are predominantly confined to the Tethyan realm. Ammonites with smooth and slightly sculptured shells predominate among the studied fauna. The ammonite-bearing succession from Boljetin represents the lower part of the Upper Barremian, ranging in ammonite zonation from the Toxancyloceras vandenheckei Zone to the lower part of the Imerites giraudi Zone. The associated organic-walled dinoflagellate cysts confirm the Late Barremian age of the ammonite-bearing levels.  相似文献   

12.
Re-examination of the classic exposures of the Eggardon Grit (topmost Upper Greensand Formation) at Eggardon Hill, Dorset shows that the upper part of this unit has a more complex stratigraphy than has been previously recognised. The Eggardon Grit Member, as described herein, is capped by a hardground and associated conglomerate, and is entirely of Late Albian age. The hardground is probably the lateral equivalent of the Small Cove Hardground, which marks the top of the Upper Greensand succession in southeast Devon. The conglomerate is overlain by a thin sandy limestone containing Early Cenomanian ammonites. This limestone is almost certainly the horizon of the Early Cenomanian ammonite fauna that has previously been attributed to the top of the Eggardon Grit. The limestone is regarded as a thin lateral equivalent of the Beer Head Limestone Formation (formerly Cenomanian Limestone) exposed on the southeast Devon coast. The fauna of the limestone at Eggardon suggests that it is probably the age equivalent to the two lowest subdivisions of the Beer Head Limestone in southeast Devon, with a remanié fauna of the Pounds Pool Sandy Limestone Member combined with indigenous macrofossils of the Hooken Nodular Limestone Member. The next highest subdivision of the Beer Head Limestone in southeast Devon (Little Beach Bioclastic Limestone Member), equates with the ammonite-rich phosphatic conglomerate of the ‘Chalk Basement Bed’, which caps the Beer Head Limestone at Eggardon, and which was previously regarded as the base of the Chalk Group on Eggardon Hill.Petrographic analysis of the Eggardon Grit shows that lithologically it should more correctly be described as a sandy limestone rather than sandstone. The original stratigraphical definition of the unit should probably be modified to exclude the softer, nodular calcareous sandstones that have traditionally been included in the lower part of the member.Without the apparently clear evidence of unbroken sedimentation across the Albian–Cenomanian boundary, suggested by the previous interpretation of the Eggardon succession, it is harder to argue for this being a prevalent feature of Upper Greensand stratigraphy in southwest England. Correlation of the Eggardon succession with successions in Dorset and southeast Devon reveals a widespread regional break in sedimentation at the Albian–Cenomanian boundary. The sand-rich facies above this unconformity represent the true base of the Chalk Group, rather than the ‘Chalk Basement Bed’ of previous interpretations.Selected elements of regionally important Upper Greensand ammonite faunas previously reported from Shapwick Quarry, near Lyme Regis, and Babcombe Copse, near Newton Abbot, are newly figured herein.  相似文献   

13.
藏北双湖-安多地区侏罗纪菊石新资料及地层述评   总被引:2,自引:0,他引:2  
近期采集的菊石鉴定表明藏北安多地区布曲组、“夏里组”和“索瓦组”的时代为中巴通期至中卡洛维期。特别要指出的是 ,从藏北地区沉积演化和古生物地理区系的角度来看 ,该地不具备存在晚侏罗世提塘期“斯匹提页岩动物群”的地质背景 ,所以藏北地区近年来多次报道的晚侏罗世提塘期的“斯匹提页岩菊石动物群”值得怀疑 ,有关化石的鉴定是不可靠的 ;还应该指出的是 ,雁石坪地区侏罗纪岩石单位也不适宜在安多地区运用。双湖地区菊石层序指明该地富含油页岩的缺氧性沉积 ,即“海螂蛤页岩相”的时代为早侏罗世晚普林斯巴赫至早图阿尔期 ,它们是早侏罗世晚期全球性缺氧事件在东特提斯北缘的响应。  相似文献   

14.
15.
梁诗经 《福建地质》2007,26(4):235-247
漳平岬顶上二叠统罗坑组-下三叠统溪口组均为海相细碎屑沉积,界线附近地层沉积连续,未见间断,化石丰富,生物群演化特征明显。三叠纪新生分子自Claraia wangi-Eumorphotis multiformis组合带开始出现,其下晚二叠世晚期菊石相继消失,Crurithyris,Paracrurithyris等少数腕足类上延至三叠纪与Claraia混生,形成见跨代生物混生层。根据生物群演化,将漳平岬顶二叠纪-三叠纪界线置于Claraia wangi-Eumorphotis multiformis组合带之底,此界线与华南海相碎屑岩相区以Claraia类群之底划分的界线相当,与浙江长兴煤山以Hindeodus parvus标定的界线较为接近,亦可以对比。  相似文献   

16.
Early Cretaceous sediments of Aptian–Albian age outcrop at Munday’s Hill Quarry, Bedfordshire, England. Previous papers describing the section have resulted in different terminologies being applied. The Lower Cretaceous in Bedfordshire is represented by sediments belonging to the Lower Greensand Group and the Gault Clay Formation. Within the Lower Greensand Group in the study area the Woburn Sands Formation, are of Aptian–Albian age. Selected samples have been analysed for palynology. The analysis reveals diverse palynomorph assemblages, including well-preserved dinoflagellate cysts and sporomorphs. Comparison of the assemblages with published records indicates that the lower samples are of Late Aptian age. Forms recorded include common Kiokansium unituberculatum, Cerbia tabulata, Aptea polymorpha and Cyclonephelium inconspicuum. An Early Albian age is indicated for the uppermost sample.  相似文献   

17.
Abstract The age of the Longzhaogou and Jixi Groups of coal measures in eastern Heilongjiang were previously considered to be Jurassic or mainly Jurassic. But there occur Middle Barremian- Early Albian Aucellina ( bivalvia) fossils in the Upper Yunshan Formation of the Longzhaogou Group and the Lower Chengzihe Formation of the Jixi Group, and the Qihulin Formation of the Longzhaogou Group yields Early Cretaceous bivalve and ammonite fossils. Consequently, the geological ages of the two groups are mainly, or even all, Early Cretaceous.  相似文献   

18.
A previously uncollected fauna of ammonites, bivalves, and other molluscs, associated with radiolarian microfossils, has been newly recognized near Lawn Hill on the east coast of central Queen Charlotte Islands, British Columbia. The regional biostratigraphic zonation indicates that the Lawn Hill fauna is correlative with the Nostoceras hornbyense zonule of the Pachydiscus suciaensis ammonite biozone, recognized in the Nanaimo Group of southeast Vancouver Island. The Nostoceras hornbyense Zone (new) is herein proposed for strata of Pacific coast Canada containing the zonal index. Several molluscan taxa present in the Lawn Hill section are new to British Columbia and the ammonite fauna suggests that the Nostoceras hornbyense Zone is late Campanian in age, supported by radiolarian taxa present in the section. Strata sampled in the Lawn Hill section preserve reversed-polarity magnetization, considered likely correlative with Chron 32r. The presence of the Nostoceras hornbyense Zone on Queen Charlotte Islands is the first recognition of this zone in Canada north of central Vancouver Island and represents the youngest Cretaceous known in this region. Campanian radiolarians identified from the Lawn Hill section are also the first recognized from the Pacific coast of Canada.  相似文献   

19.
A recent high resolution airborne geophysical survey across the Isle of Wight (IoW) and Lymington area has provided the first electromagnetic data across the relatively young geological formations characterising much of southern England. The multi-frequency data provide information on bulk electrical conductivity to depths of the order of 100 m. A GIS-based assessment of the electrical conductivity information in relation to bedrock geological classification has been conducted for the first time. The analysis uses over 104,000 measurements across onshore IoW and has established average and statistical properties as a function of bedrock geology. The average values are used to provide baseline maps of apparent electrical conductivity and the variation with depth (measured as a function of frequency). The average conductivity as a function of depth within the main aquifer units is summarised. The data indicate that the majority of the Palaeogene is characterised by values consistently in excess of 100 mS/m and with a surprisingly high degree of spatial heterogeneity. The youngest (Oligocene) Hamstead Member displays some strong edge effects and the largest localized values in conductivity. The central Upper Chalk is associated with the lowest observed conductivity values and mineral content and/or porosity appears to increase with increasing age. The large central outcrop of the Lower Greensand Group, Ferruginous Sand Formation provides persistently low (<30 mS/m) conductivity values which imply a relatively uniform distribution of clean sand content. Non-geological (e.g. environmental) responses are contained within the data set and examples of these in relation to a closed municipal landfill and an area of potential coastal saline intrusion are discussed. In the south, the Gault clay/mudstone of the Early Cretaceous appears as a distinctive conductive unit. Cross sectional modelling of the data has been undertaken across the aquifer units of the Southern Downs. The results indicate that the Gault Formation, acting as an aquitard, can be traced as a distinct unit under the more resistive Early Cretaceous Upper Greensand and Late Cretaceous Chalk formations. The conductivity modelling should therefore allow an estimation of the subsurface configuration of the aquifer and aquitard units.  相似文献   

20.
西藏申扎和改则地区早石炭世地层及腕足类研究   总被引:1,自引:0,他引:1  
西藏申扎和改则地区早石炭世地层发育,腕足类及珊瑚类化石丰富。腕足类化石计有34属45种,共建立3个组合;申扎大塘阶下部巴日阿郎寨组Ovatia-Unispirifer组合;大塘阶上部永珠组Balakhonia-Productus组合;改则大塘阶上部Latiproductus-Striatifera组合。本文系统讨论了各腕足类组合的时代及与国内外同期地层的对比,将西藏境内早石炭世的沉积物及生物群划分为3个类型。根据生物群及沉积物在空间上的分布特点,笔者认为在早石炭世时,班公湖至怒江断裂南北生物群及沉积物具有明显的差异,即南部申扎和珠峰地区生物群及沉积物特征与冈瓦纳大陆相似,而北部改则地区与扬子地台的生物群及沉积物特征相同,其间可能有宽阔的海域隔离。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号