首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 0 毫秒
1.
The abundance of HDO above the clouds in the dayside atmosphere of Venus was measured by ground-based 2.3 μm spectroscopy over 4 days. This is the first HDO observation above the clouds in this wavelength region corresponding to a new height region. The latitudinal distributions found show no clearly defined structure. The disk-averaged mixing ratio is 0.22 ± 0.03 ppm for a representative height region of 62–67 km. This is consistent with measurements found in previous studies. Based on previous H2O measurements, the HDO/H2O ratio is found to be 140 ± 20 times larger than the telluric ratio. This lies between the ratios of 120 ± 40 and 240 ± 25, respectively, reported for the 30–40 km region by ground-based nightside spectroscopy and for the 80–100 km region by solar occultation measurement on board the Venus Express.  相似文献   

2.
3.
4.
Cassini/VIMS limb observations have been used to retrieve vertical profiles of hydrogen cyanide (HCN) from its 3 μm emission in the region from 600 to 1100 km altitude at daytime. While the daytime emission is large up to about 1100 km, it vanishes at nighttime at very low altitudes, suggesting that the daytime emission originates under non-LTE conditions. The spectrally integrated radiances around 3.0 μm shows a monotonically decrease with tangent altitude, and a slight increase with solar zenith angle in the 40-80° interval around 800 km.A sophisticated non-LTE model of HCN energy levels has been developed in order to retrieve the HCN abundance. The population of the HCN 0 00 1 energy level, that contributes mostly to the 3.0 μm limb radiance, has been shown to change significantly with the solar zenith angle (SZA) and HCN abundance. Also its population varies with the collisional rate coefficients, whose uncertainties induced errors in the retrieved HCN of about 10% at 600-800 km and about 5% above. HCN concentrations have been retrieved from a set of spectra profiles, covering a wide range of latitudes and solar zenith angles, by applying a line-by-line inversion code. The results show a significant atmospheric variability above ∼800 km with larger values for weaker solar illumination. The HCN shows a very good correlation with solar zenith angles, irrespective of latitude and local time, suggesting that HCN at these high altitudes is in or close to photochemical equilibrium. A comparison with UVS and UVIS measurements show that these are close to the lower limit (smaller SZAs) of the VIMS observations above 750 km. However, they are in reasonable agreement when combining the rather large UV measurement errors and the atmospheric variability observed in VIMS. A comparison of the mean profile derived here with the widely used profile reported by Yelle and Griffith (Yelle R.V., Griffith, C.A. [2003]. Icarus 166, 107-115) shows a good agreement for altitudes ranging from 850 to 1050 km, while below these altitudes our result exhibits higher concentrations.  相似文献   

5.
The abundance of carbon monoxide in the Venus’ dayside atmosphere above the clouds was measured by ground-based 2.3 μm spectroscopy for 4 days. The hemispherical distributions found show no significant latitudinal or longitudinal structure. The disc-averaged mixing ratio of 58 ± 17 ppm found at a representative height of 62-67 km is consistent with previous measurements. Such a flat distribution of CO abundance above the clouds seems to be controlled by an efficient horizontal eddy diffusion with a time scale of 30 days or shorter although the CO distribution below the clouds seems to be controlled by the meridional circulation. The pole-ward wind speed of the meridional circulation above the clouds is estimated to be 0.2 m s−1 or less based on the difference between the CO mixing ratios above and below the clouds.  相似文献   

6.
《Icarus》1987,72(3):623-634
Spectra of Venus in the 925- to 980-cm−1 spectral range were recorded in January 1985 at a resolution of 0.06 cm−1. Several lines from the ν3ν1 bands of 13CO2 and 12C16O18O were observed for the first time. Synthetic spectra, which include absorption from CO2 bands and from sulfuric acid clouds, are compared to the observations. Taking into account measurement noise as well as systematic errors, the analysis yields 12C/13C=86±12 and 16O/18O=500±80, in agreement with the terrestrial ratios. The results are consistent with previous ground-based near-infrared studies and with in situ mass spectrometer measurements.  相似文献   

7.
The new ESA Venus Express orbiter is the first mission applying the probing technique of solar and stellar occultation to the atmosphere of Venus, with the SPICAV/SOIR instrument. SOIR is a new type of spectrometer used for solar occultations in the range 2.2-4.3 μm. Thanks to a high spectral resolving power R∼15,000-20,000 (unprecedented in planetary space exploration), a new gaseous absorption band was soon detected in the atmospheric transmission spectra around 2982 cm−1, showing a structure resembling an unresolved Q branch and a number of isolated lines with a regular wave number pattern. This absorption could not be matched to any species contained in HITRAN or GEISA databases, but was found very similar to an absorption pattern observed by a US team in the spectrum of solar light reflected by the ground of Mars [Villanueva, G.L., Mumma, M.J., Novak, R.E., Hewagama, T., 2008. Icarus 195 (1), 34-44]. This team then suggested to us that the absorption was due to an uncatalogued transition of the 16O12C18O molecule. The possible existence of this band was soon confirmed from theoretical considerations by Perevalov and Tashkun. Some SOIR observations of the atmospheric transmission are presented around 2982 cm−1, and rough calculations of line strengths of the Q branch are produced, based on the isotopic ratio measured earlier in the lower atmosphere of Venus. This discovery emphasizes the role of isotopologues of CO2 (as well as H2O and HDO) as important greenhouse gases in the atmosphere of Venus.  相似文献   

8.
We present an analysis of VIRTIS-M-IR observations of 1.74 μm emission from the nightside of Venus. The 1.74 μm window in the near infrared spectrum of Venus is an ideal proxy for investigating the evolution of middle and lower cloud deck opacity of Venus because it exhibits good signal to noise due to its brightness, good contrast between bright and dark regions, and few additional sources of extinction beside the clouds themselves. We have analyzed the data from the first 407 orbits (equivalent to 407 Earth days) of the Venus Express mission to determine the magnitude of variability in the 1.74 μm radiance. We have also performed an analysis of the evolution of individual features over a span of roughly 5–6 h on two successive orbits of Venus Express. We find that the overall 1.74 μm brightness of Venus has been increasing through the first 407 days of the mission, indicating a gradual diminishing of the cloud coverage and/or thickness, and that the lower latitudes exhibited more variability and more brightening than higher latitudes. We find that individual features evolve with a time scale of about 30 h, consistent with our previous analysis. Analysis of the evolution and motion of the clouds can be used to estimate the mesoscale dynamics within the clouds of Venus. We find that advection alone cannot explain the observed evolution of the features. The measured vorticity and divergence in the vicinity of the features are consistent with evolution under the influence of significant vertical motions likely driven by a radiative dynamical feedback. We measure a zonal wind speed of around 65 m/s, and a meridional wind speed around 2.5 m/s by tracking the motion of the central region of the features. But we also find that the measured wind speeds depend strongly on the points chosen for the wind speed analysis.  相似文献   

9.
On its highly elliptical 24 h orbit around Venus, the Venus Express (VEX) spacecraft briefly reaches a periapsis altitude of nominally 250 km. Recently, however, dedicated and intense radio tracking campaigns have taken place in August 2008, October 2009, February and April 2010, for which the periapsis altitude was lowered to the 186–176 km altitude range in order to be able to probe the upper atmosphere of Venus above the North Pole for the first time ever in situ. As the spacecraft experiences atmospheric drag, its trajectory is measurably perturbed during the periapsis pass, allowing us to infer total atmospheric mass density at the periapsis altitude. A Precise Orbit Determination (POD) of the VEX motion is performed through an iterative least-squares fitting process to the Doppler tracking data, acquired by the VEX radioscience experiment (VeRa). The drag acceleration is modelled using an initial atmospheric density model (VTS3 model, Hedin, A.E., Niemann, H.B., Kasprzak, W.T., Seiff, A. [1983]. J. Geophys. Res. 88, 73–83). A scale factor of the drag acceleration is estimated for each periapsis pass, which scales Hedin’s density model in order to best fit the radio tracking data. Reliable density scale factors have been obtained for 10 passes mainly from the second (October 2009) and third (April 2010) VExADE campaigns, which indicate a lower density by a factor of about 1.8 than Hedin’s model predicts. These first ever in situ polar density measurements at solar minimum have allowed us to construct a diffusive equilibrium density model for Venus’ thermosphere, constrained in the lower thermosphere primarily by SPICAV-SOIR measurements and above 175 km by the VExADE drag measurements (Müller-Wodarg et al., in preparation). The preliminary results of the VExADE campaigns show that it is possible to obtain with the POD technique reliable estimates of Venus’ upper atmosphere densities at an altitude of around 175 km. Future VExADE campaigns will benefit from the planned further lowering of VEX pericenter altitude to below 170 km.  相似文献   

10.
Sub-millimeter 12CO (346 GHz) and 13CO (330 GHz) line absorptions, formed within the mesospheric to lower thermospheric altitude (70–120 km) region of the Venus atmosphere, have been mapped across the nightside disk of Venus during 2001–2009 inferior conjunctions, employing the James Clerk Maxwell Telescope (JCMT). Radiative transfer analysis of these thermal line absorptions supports temperature and CO mixing profile retrievals, as described in a companion paper (Clancy et al., 2012). Here, we consider the analysis of the sharp line absorption cores of these CO spectra in terms of accurate Doppler wind profile measurements at 95–115 km altitudes versus local time (~8 pm–4 am) and latitude (~60N–60S). These Doppler wind measurements support determinations of the nightside zonal and subsolar-to-antisolar (SSAS) circulation components over a variety of timescales. The average behavior fitted from 21 retrieved maps of 12CO Doppler winds (obtained over hourly, daily, weekly, and interannual intervals) indicates stronger average zonal (85 m/s retrograde) versus SSAS (65 m/s) circulation at the 1 μbar pressure (108–110 km altitude) level. However, the absolute and relative magnitudes of these circulation components exhibit extreme variability over daily to weekly timescales. Furthermore, the individual Doppler wind measurements within each nightside mapping observation generally show significant deviations (20–50 m/s, averaged over 5000 km horizontal scales) from the simple zonal/SSAS solution, with distinct local time and latitudinal characters that are also time variable. These large scale residual circulations contribute 30–70% of the observed nightside Doppler winds at any given time, and may be most responsible for global variations in nightside lower thermospheric trace composition and temperatures, as coincidentally retrieved CO abundance and temperature distributions do not correlate with solution retrograde zonal and SSAS winds (see companion paper, Clancy et al., 2012). Limited comparisons of these nightside submillimeter results with dayside infrared Doppler wind measurements suggest distinct dayside versus nightside circulations, in terms of zonal winds in particular. Combined 12CO and 13CO Doppler wind mapping observations obtained since 2004 indicate that the average zonal and SSAS wind components increase by 50–100% between altitudes of 100 and 115 km. If gravity waves originating from the cloud levels are responsible for the extension of zonal winds into the thermosphere (Alexander, M.J. [1992]. Geophys. Res. Lett. 19, 2207–2210), such waves deposit substantial momentum (i.e., break) in the lower nightside thermosphere.  相似文献   

11.
A study of the CO2 atmospheric emissions at 10-μm in the upper atmospheres of Mars and Venus is performed in order to explain a number of ground-based measurements of these emissions recently taken at very high spectral resolution in both planets. The measurements are normally used to derive atmospheric temperatures and winds, but uncertainties on the actual emission layers were so far a serious drawback for their correct interpretation. The non-LTE models used for Mars and Venus in the present analysis are entirely similar in order to perform consistent comparisons between the two planets. In particular, the same scheme of CO2 states and ro-vibrational bands are used, with similar assumptions on collisional routes and rate coef?cients, and also the same radiative transfer approximations. The emissions at 10-μm are produced in both atmospheres by the same excitation mechanism: radiative pumping of the CO2(0001) vibrational state by direct solar absorption(at 4.3 μm) and indirect absorption (at 2.7 μm, followed by collisional quenching). The computed radiances are specially strong in the upper mesosphere and lower thermosphere of the two planets during maximum solar illumination, producing a population inversion in such conditions with the lower states of the bands, the CO2 (1000) and CO2(0200). We obtained that other population inversions are also possible, involving higher energy CO2 states. The larger solar ?ux available on Venus is found to produce larger vibrational populations and stronger emissions than equivalent atmospheric layers on Mars, in agreement with the observations. A number of perturbation studies were used to determine the exact emission altitudes, or weighting function peaks, for usual nadir sounding. The sensitivity of the emission to non-LTE model uncertainties and to atmospheric variations in temperature and CO2 density is also presented. The dependence with the solar zenith angle and with the emission angle, as obtained with this model, could also be useful for guiding future observations.  相似文献   

12.
13.
A high-resolution (0.6 cm?1) spectrum of Jupiter at 5 μm recorded at the Kuiper Airborne Observatory is used to determine upper limits to the column density of 19 molecules. The upper limits to the mixing ratios of SiH4, H2S, HCN, and simple hydrocarbons are discussed with respect to current models of Jupiter's atmosphere. These upper limits are compared to expectations based upon the solar abundance of the elements. This analysis permits upper limit measurements (SiH4), or actual detections (GeH4), of molecules with mixing ratios with hydrogen as low as 10?9. In future observations at 5 μm the sensitivity of remote spectroscopic analyses should permit the study of constituents with mixing ratios as low as 10?10, which would include the hydrides of such elements as Sn and As as well as numerous organic molecules.  相似文献   

14.
We present absorption cross sections of propane (C3H8) at temperatures from 145 K to 297 K in the 690–1550 cm−1 region. Pure and N2-broadened spectra were measured at pressures from 3 Torr to 742 Torr using a Bruker IFS125 FT-IR spectrometer at JPL. The gas absorption cell, developed at Connecticut College, was cooled by a closed-cycle helium refrigerator. The cross sections were measured and compiled for individual spectra recorded at various experimental conditions covering the planetary atmosphere and Titan. In addition to the cross sections, a propane pseudoline list with a frequency grid of 0.005 cm−1, was fitted to the 34 laboratory spectra. Line intensities and lower state energies were retrieved for each line, assuming a constant width. Validation tests showed that the pseudoline list reproduces discrete absorption features and continuum, the latter contributed by numerous weak and hot band features, in most of the observed spectra within 3%. Based on the pseudoline list, the total intensity in the 690–1550 cm−1 region was determined to be 52.93 (±3%) × 10−19 cm−1/(molecule cm−2) at 296 K; this value is within 3% of the average from four earlier studies. Finally, the merit of the pseudoline approach is addressed for heavy polyatomic molecules in support of spectroscopic observation of atmospheres of Titan and other planets. The cold cross sections will be submitted to the HITRAN database (hitran.harvard.edu), and the list of C3H8 pseudolines will be available from a MK-IV website of JPL (http://mark4sun.jpl.nasa.gov/data/spec/Pseudo).  相似文献   

15.
Complex organic materials may exist as haze layers in the atmosphere of Titan and as dark coloring agents on icy satellite surfaces. Laboratory measurements of optical constants of plausible complex organic materials are necessary for quantitative evaluation from remote sensing observations, and to document the existence of complex organic materials in the extraterrestrial environments. The recent Cassini VIMS and CIRS observations provide new constraints on Titan’s haze properties in the mid-infrared wavelength region. Here, we present the optical constants (2.5–25 μm) of Titan tholins generated with cold plasma irradiation of a N2/CH4 (90/10) gas mixture at pressures of 0.26 mbar, 1.6 mbar, and 23 mbar. Our new optical constants of three types of Titan tholins suggest that no single Titan tholin in this study fulfills all the observational constraints of the Titan haze material. The discrepancy remains a challenge for future modeling and laboratory efforts that aim toward a better understanding of Titan’s haze material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号