首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
In 1999, observations of the Venus nightglow with the Keck I telescope showed that the 5577 Å oxygen green line was a significant feature, comparable in intensity to the terrestrial green line. Subsequent measurements have been carried out at the Apache Point Observatory (APO) and again at Keck I, confirming the presence of the line with substantially varying intensity. The Herzberg II emission intensity, from the O2(c-X) transition, was found to have an intensity near 3 kR in one APO run, comparable to the value found on all previous measurements. Thus, of the three oxygen features seen at Venus—the green line, the Herzberg II emission system, and the 1.27-μ 0-0 band of the IR atmospheric system—the first is quite variable, the second is relatively constant, while the third also shows large variations. The reaction between O2(, v=0) and CO is considered as a possible mechanism to explain green line production and its variability, as well as the variability of the 1.27-μ emission and the stability of the CO2 atmosphere. This reaction may catalyze CO2 recombination some five orders of magnitude faster than the slow three-body O + CO reaction.  相似文献   

2.
Ultraviolet (UV) nightglow data from the SPICAV instrument (SPectroscopy for the Investigation of the Characteristics of the Atmosphere of Venus) onboard the Venus Express spacecraft, currently in orbit around Venus, are presented. In its extended source mode, SPICAV has shown that the Venus nightglow in the UV contains essentially Lyman-α and Nitric Oxide (NO) emissions. In the stellar mode, when the slit of the spectrometer is removed, an emission is also observed at the limb in addition to the stellar spectrum. A forward model allows us to identify this feature as being an NO emission. Due to radiative recombination of N and O atoms produced on the dayside of Venus, and transported to the nightside, NO nightglow provides important constraints to the Solar-to-Anti Solar thermospheric circulation prevailing above 90 km. The forward model presented here allows us to derive the altitude of the peak of emission of the NO layer, found at 113.5±6 km, as well as its scale height, of 3.4±1 km and its brightness. The latter is found to be very variable with emissions between 19 Kilo-Rayleigh (kR) and 540 kR. In addition, the NO nightglow is sometimes very patchy, as we are able to observe two distinct emission zones in the field of view. Finally, systematic extraction of this emission from stellar occultations extends the database of the NO emission already reported elsewhere using limb observations.  相似文献   

3.
A positive correlation is reported between sodium nightglow intensity and radio wave absorption of the previous midday for the period October 1970–March 1971. For the same period a weak correlation, at best, exists for the green line (5577 Å) nightglow and absorption. The correlations are briefly discussed and water vapour is suggested as a possible link between the sodium nightglow intensity and radio wave absorption for the October–March period.  相似文献   

4.
Hydroxyl nightglow is intensively studied in the Earth atmosphere, due to its coupling to the ozone cycle. Recently, it was detected for the first time also in the Venus atmosphere, thanks to the VIRTIS-Venus Express observations. The main Δν=1, 2 emissions in the infrared spectral range, centred, respectively, at 2.81 and 1.46 μm (which correspond to the (1-0) and (2-0) transitions, respectively), were observed in limb geometry (Piccioni et al., 2008) with a mean emission rate of 880±90 and 100±40 kR (1R=106 photon cm−2 s−1 (4πster)−1), respectively, integrated along the line of sight. In this investigation, the Bates-Nicolet chemical reaction is reported to be the most probable mechanism for OH production on Venus, as in the case of Earth, but HO2 and O may still be not negligible as mechanism of production for OH, differently than Earth. The nightglow emission from OH provides a method to quantify O3, HO2, H and O, and to infer the mechanism of transport of the key species involved in the production. Very recently, an ozone layer was detected in the upper atmosphere of Venus by the SPICAV (Spectroscopy for Investigation of Characteristics of the Atmosphere of Venus) instrument onboard Venus Express (Montmessin et al., 2009); this discovery enhances the importance of ozone to the OH production in the upper atmosphere of Venus through the Bates-Nicolet mechanism. On Venus, OH airglow is observed only in the night side and no evidence has been found whether a similar emission exists also in the day side. On Mars it is expected to exist both on the day and night sides of the planet, because of the presence of ozone, though OH airglow has not yet been detected.In this paper, we review and compare the OH nightglow on Venus and Earth. The case of Mars is also briefly discussed for the sake of completeness. Similarities from a chemical and a dynamical point of view are listed, though visible OH emissions on Earth and IR OH emissions on Venus are compared.  相似文献   

5.
A scheme of excitation, quenching, and energy transfer processes in the oxygen nightglow on the Earth, Venus, and Mars has been developed based on the observed nightglow intensities and vertical profiles, measured reaction rate coefficients, and photochemical models of the nighttime atmospheres of the Venus and Mars. The scheme involves improved radiative lifetimes of some band systems, calculated yields of the seven electronic states of O2 in termolecular association, and rate coefficients of seven processes of electronic quenching of the Herzberg states of O2, which are evaluated by fitting to the nightglow observations. Electronic quenching of the vibrationally excited Herzberg states by O2 and N2 in the Earth's nightglow is a quarter of total collisional removal of the O2(A, A′) states and a dominant branch for the O2(c) state. The scheme supports the conclusion by Steadman and Thrush (1994) that the green line is excited by energy transfer from the O2(A3Σu+, v≥6) molecules, and the inferred rate coefficient of this transfer is 1.5×10−11 cm3 s−1. The O2 bands at 762 nm and 1.27 μm are excited directly, by quenching of the Herzberg states, and by energy transfer from the O2(5Πg) state. Quenching of the O2 band at 762 nm excites the band at 1.27 μm as well. Effective yield of the O2(a1Δg) state in termolecular association on Venus and Mars is ∼0.7. Quantitative assessments of all these processes have been made. A possible reaction of O2(c1Σu)+CO is a very minor branch of recombination of CO2 on Venus and Mars. Night airglow on Mars is calculated for typical conditions of the nighttime atmosphere. The calculated vertical intensity of the O2 band at 1.27 μm is 13 kR, far below the recently reported detections.  相似文献   

6.
Venus nightglow was observed at NASA IRTF using a high-resolution long-slit spectrograph CSHELL at LT = 21:30 and 4:00 on Venus. Variations of the O2 airglow at 1.27 μm and its rotational temperature are extracted from the observed spectra. The mean O2 nightglow is 0.57 MR at 21:30 at 35°S-35°N, and the temperature increases from 171 K near the equator to ∼200 K at ±35°. We have found a narrow window that covers the OH (1-0) P1(4.5) and (2-1) Q1(1.5) airglow lines. The detected line intensities are converted into the (1-0) and (2-1) band intensities of 7.2 ± 1.8 kR and <1.4 kR at 21:30 and 15.5 ± 2 kR and 4.7 ± 1 kR at 4:00. The f-component of the (1-0) P1(4.5) line has not been detected in either observation, possibly because of resonance quenching in CO2. The observed Earth’s OH (1-0) and (2-1) bands were 400 and 90 kR at 19:30 and 250 and 65 kR at 9:40, respectively. A photochemical model for the nighttime atmosphere at 80-130 km has been made. The model involves 61 reactions of 24 species, including odd hydrogen and chlorine chemistries, with fluxes of O, N, and H at 130 km as input parameters. To fit the OH vibrational distribution observed by VEX, quenching of OH (v > 3) in CO2 only to v ? 2 is assumed. According to the model, the nightside-mean O2 emission of 0.52 MR from the VEX and our observations requires an O flux of 2.9 × 1012 cm−2 s−1 which is 45% of the dayside production above 80 km. This makes questionable the nightside-mean O2 intensities of ∼1 MR from some observations. Bright nightglow patches are not ruled out; however, the mean nightglow is ∼0.5 MR as observed by VEX and supported by the model. The NO nightglow of 425 R needs an N flux of 1.2 × 109 cm−2 s−1, which is close to that from VTGCM at solar minimum. However, the dayside supply of N at solar maximum is half that required to explain the NO nightglow in the PV observations. The limited data on the OH nightglow variations from the VEX and our observations are in reasonable agreement with the model. The calculated intensities and peak altitudes of the O2, NO, and OH nightglow agree with the observations. Relationships for the nightglow intensities as functions of the O, N, and H fluxes are derived.  相似文献   

7.
It is argued that Chapman's process is too slow to explain the green line emission in the nightglow but that Barth's two-stage mechanism is fast enough. The key to the difference in their efficiencies is that the life-time of Chapman's intermediate [O3] complex is very much shorter than that of Barth's intermediate [O3] complex because of its greater internal energy. Consequently the chance of the representative mass point passing from the initial surface to the required final surface is very much less in the former case than the latter where O(1S) is one of the products in a quite considerable fraction of the decays of the complex.  相似文献   

8.
《Planetary and Space Science》2006,54(13-14):1344-1351
Radio waves and optical flashes consistent with the lightning generation have been reported frequently at Venus. These observations point to the presence of electrical discharges in the sulfuric acid clouds of Venus. A particularly strong whistler-mode signal has been found propagating parallel to the magnetic field in the night ionosphere near 100 Hz by the Pioneer Venus spacecraft. At high (radio) frequencies, intermittent signals are also seen reminiscent of terrestrial lightning. However, these signals appear to be weaker than their terrestrial counterparts. On Venus Express, the magnetometer bandwidth is sufficient to record the lightning signals propagating in the whistler mode and will be used to map the occurrence of lightning across the nightside of the planet.  相似文献   

9.
Venus and Earth display different hypsography. We use topographic profiles to search for well-understood terrestrial analogs to venusian features. Specifically, by using cross-correlation, we correlate average profiles for terrestrial rifts (slow and fast, “ultra-slow,” incipient and inactive) and also hotspots (oceanic and continental) with those for venusian chasmata and regiones, to draw inferences as to the processes responsible for shaping Venus’ surface. Correlations tend to improve with faster spreading rates; Venus’ correlations rank considerably lower than terrestrial ones, suggesting that if chasmata are analogous to terrestrial spreading centers, then spreading on Venus barely attains ultra-slow rates. Individual features’ normalized average profiles are correlated with profiles of other such features to establish the degree of similarity, which in turn allows for the construction of a covariance matrix. Principal component analysis of this covariance matrix shows that Yellowstone more strongly resembles Atla, Beta and W. Eistla regiones than it does the terrestrial oceanic hotspots, and that venusian chasmata, especially Ganis, most closely resemble the ultra-slow spreading Arctic ridge.  相似文献   

10.
An historical account is given of the development of our knowledge concerning the processes controlling the emission of the λ 5577 and λλ6300, 6364 lines of oxygen and the λλ5198, 5201 lines of nitrogen in the nightglow. Only in the case of the last can the processes be regarded as fully established. It is not yet known whether the emission of the oxygen green line from near the 100 km level follows the three-body process of Chapman (1931) or the two stage mechanism of Barth (1962, 1964). The pattern of the processes germane to the pre-twilight enhancement of the oxygen red doublet is not clear.  相似文献   

11.
Nightglow emissions provide insight into the global thermospheric circulation, specifically in the transition region (~70–120 km). The O2 IR nightglow statistical map created from Venus Express (VEx) Visible and InfraRed Thermal Imaging Spectrometer (VIRTIS) observations has been used to deduce a three-dimensional atomic oxygen density map. In this study, the National Center of Atmospheric Research (NCAR) Venus Thermospheric General Circulation Model (VTGCM) is utilized to provide a self-consistent global view of the atomic oxygen density distribution. More specifically, the VTGCM reproduces a 2D nightside atomic oxygen density map and vertical profiles across the nightside, which are compared to the VEx atomic oxygen density map. Both the simulated map and vertical profiles are in close agreement with VEx observations within a ~30° contour of the anti-solar point. The quality of agreement decreases past ~30°. This discrepancy implies the employment of Rayleigh friction within the VTGCM may be an over-simplification for representing wave drag effects on the local time variation of global winds. Nevertheless, the simulated atomic oxygen vertical profiles are comparable with the VEx profiles above 90 km, which is consistent with similar O2 (1Δ) IR nightglow intensities. The VTGCM simulations demonstrate the importance of low altitude trace species as a loss for atomic oxygen below 95 km. The agreement between simulations and observations provides confidence in the validity of the simulated mean global thermospheric circulation pattern in the lower thermosphere.  相似文献   

12.
The finding of36A excess on Venus by the mass-spectroscopic measurement of the Venus Pioneer appears to endorse the more rapid accretion theory of Venus than the Earth and the secondary origin of the terrestrial atmosphere.  相似文献   

13.
The comparison of the theoretical inferences and the experimental data on large-scale turbulence in the atmospheres of the Earth and Venus, including those acquired with the Venus Express spacecraft, allows us to conclude that there is a inverse spectral flux of energy in the atmosphere of Venus, as in the terrestrial atmosphere, which participates in generating the superrotation of the atmosphere.  相似文献   

14.
A 150 mm aperture, pressure scanned Fabry-Perot interferometer has been used to study the midlatitude twilight and nightglow sodium D-line profiles. The line width measurements during evening and morning twilight indicate that the sodium layer temperature rises to a midwinter maximum (~230 K) and then falls to a midsummer minimum (~150 K), in qualitative agreement with the CIRA 1972 model predictions. Nightglow intensity measurements obtained with the interferometer indicate a highly variable behaviour, ranging from near-constant intensities, to monotonically falling, and to rising and falling intensities during the night. Broadening of the nightglow line profiles yields a sodium atom dissociation kinetic energy of (46 ± 4) meV. This suggests that the Chapman NaO + O chemiexcitation process, rather than dissociative recombination of “corkscrewing” ions and electrons, gives rise to the nightglow.  相似文献   

15.
Classified as a terrestrial planet, Venus, Mars, and Earth are similar in several aspects such as bulk composition and density. Their atmospheres on the other hand have significant differences. Venus has the densest atmosphere, composed of CO2 mainly, with atmospheric pressure at the planet's surface 92 times that of the Earth, while Mars has the thinnest atmosphere, composed also essentially of CO2, with only several millibars of atmospheric surface pressure. In the past, both Mars and Venus could have possessed Earth-like climate permitting the presence of surface liquid water reservoirs. Impacts by asteroids and comets could have played a significant role in the evolution of the early atmospheres of the Earth, Mars, and Venus, not only by causing atmospheric erosion but also by delivering material and volatiles to the planets. Here we investigate the atmospheric loss and the delivery of volatiles for the three terrestrial planets using a parameterized model that takes into account the impact simulation results and the flux of impactors given in the literature. We show that the dimensions of the planets, the initial atmospheric surface pressures and the volatiles contents of the impactors are of high importance for the impact delivery and erosion, and that they might be responsible for the differences in the atmospheric evolution of Mars, Earth and Venus.  相似文献   

16.
In this work we study in a general view slow rotating planets as Venus or Titan which present superrotating winds in their atmospheres. We are interested in understanding what mechanisms are candidates to be sources of net angular momentum to generate this kind of dynamics. In particular, in the case of Venus, in its atmosphere around an altitude of 100 km relative to the surface, there exists winds that perform a full rotation around the planet in four terrestrial days, whereas the venusian day is equivalent to 243 terrestrial ones. This phenomenon called superrotation is known since many decades. However, its origin and behaviour is not completely understood. In this article we analise and ponderate the importance of different effects to generate this dynamics.  相似文献   

17.
Anthony Mallama 《Icarus》2009,204(1):11-499
The empirically derived phase curves of terrestrial planets strongly distinguish between airless Mercury, cloud-covered Venus, and the intermediate case of Mars. The function for Mercury is steeply peaked near phase angle zero due to powerful backscattering from its surface, while that for Venus has 100 times less contrast and exhibits a brightness excess near 170° due to Mie scattering from droplets in the atmosphere. The phase curve of Mars falls between those of Mercury and Venus, and there are variations in luminosity due to the planet’s rotation, seasons, and atmospheric states. The phase function and geometric albedo of the Earth are estimated from published albedos values. The curves for Mercury, Venus and Mars are compared to that of the Earth as well as theoretical phase functions for giant planets. The parameters of these different phase functions can be used to characterize exoplanets.  相似文献   

18.
A hypothesis is considered in which the 36Ar found on Venus is of solar origin. This possibility is quantitatively discussed within the framework of present theories of planetary accumulation by sweep up of planetesimals under gas-free conditions. Solar wind implantation of 36Ar would take place by irradiation of accumulating material during the first ≈105 years of planetary growth, provided that the flux of solar wind was enhanced by a factor of ≈100 at that time. Enrichment of Venus in implanted gas would be a consequence of the irradiated material being initially confined to the innermost edge of the radially opaque circusolar planetesimal disk predicted by these theories. The observed atmospheric data require a Ne/Ar fractionation by a factor of ≈100 during the planetesimal stage. It is also necessary that there be very little mixing of irradiated planetesimals from the inner edge of disk to the distance (≈1 AU) at which the Earth formed. The hypothesis can be tested by measurement of the abundance of Kr and Xe in the Venus atmosphere. Venera data indicate a terrestrial 36Ar/Kr ratio, in disagreement with the solar wind hypothesis. In contrast, the Pioneer experiments find a lower limit to this ratio, well above the terrestrial value, that is compatible with the hypothesis. These experiments also show that Venus' 36Ar/Xe ratio does not correspond to the so-called “planetary” trapped inert gas composition. The inert of Venus could be related to result of admixture of gas with solar composition. The inert gas on Venus could be related to that found in enstatite chondrites.  相似文献   

19.
Recent radar measures of the radius and mass of Mercury imply a composition for the planet containing about 60% iron. One or other of two conclusions seems inescapable: either that Mercury is a highly exceptional object among terrestrial planets, or that all measures to date of the planet involve substantial systematic error. In either case the situation is such that independent checking of the radius and mass of Mercury by some entirely different means has become of the greatest importance to planetary physics and cosmogony.The recent radar and other determinations of the solid radius of Venus imply an internal structure similar to that of the Earth, namely a liquid core surrounded by a solid mantle and outer-shell zone. The theory also implies that the temperatures within Venus should be slightly higher than at the corresponding parts of the Earth. The proportion of mass in the core of Venus (about 25% of the whole) is entirely consistent with the phase-change hypothesis as to its nature, as of course is also the absence of any liquid or iron core in both Mars and the Moon. On the older iron-core hypothesis, Venus with considerably less iron content by mass than the Earth, and Mars and the Moon with none, would all present problems in different degrees to account for the differences of composition.If Venus began as an all-solid planet, the initial radius would have been about 6300 km, and the total amount of surface reduction to date owing to contraction of the planet would have been almost 40 million km2, and as a proportion of the total area only slightly less than the contraction of the Earth. The theory thus predicts the existence of folded and thrusted mountain-systems of terrestrial type at the surface of Venus.  相似文献   

20.
The results of two theoretical investigations concerning the destabilizing effects of radiative transfer on stably stratified shear flows are applied to the CO2 atmospheres Mars and Venus. It is found that radiatively modified critical Richardson numbers remain below plausible atmospheric values throughout the stratospheres of both planets. Above certain altitudes, however, in the upper stratospheres of these planets (≈50 km on Mars and ≈100 km on Venus), critical Richardson numbers begin to increase significantly above the nonradiating critical value. This trend continues until, in the lower thermosphere, critical Richardson numbers eventually surpass atmospheric values. This effect could lead to observably greater turbulent mixing in the upper atmospheres of Mars and Venus than might be expected from terrestrial observation and from nonradiating theoretical calculations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号