首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We evaluate the evidence for the presence of mineral spectral signatures indicative of the past presence of water at two putative paleolakes on Mars using observations by the Mars Reconnaissance Orbiter (MRO) Compact Reconnaissance Image Spectrometer for Mars (CRISM). CRISM spectra of both sites are consistent with laboratory spectra of Mg-rich phyllosilicates. Our analysis represents the first detailed evaluation of these locations. The spatial occurrence and association with topographic features within the craters is distinctly different for the two sites. The occurrence of these minerals supports the conclusion that water was once active in the areas sampled by these craters. The distribution of the phyllosilicates in Luqa does not provide distinctive evidence for the presence of a previous standing body of water and is consistent with either impact emplacement or post-impact alteration. For Cankuzo, the phyllosilicate distribution provides evidence of a layer in the crater wall indicative of aqueous activity, but does not require a paleolake.  相似文献   

2.
Hydrated minerals on Mars are most commonly found in ancient terrains dating to the first billion years of the planet’s evolution. Here we discuss the identification of a hydrated light-toned rock unit present in one Chasma of the Noctis Labyrinthus region. Stratigraphy and topography show that this alteration layer is part of a thin unit that drapes pre-existing bedrock. CRISM spectral data show that the unit contains hydrated minerals indicative of aqueous alteration. Potential minerals include sulfates such as bassanite (CaSO4·1/2H2O) or possibly hydrated chloride salts. The proximity of a smooth volcanic plain and the similar crater model age (Late Amazonian, <100 Myr) of this plain and the draping deposits suggest that the alteration layer may be formed by the interaction of water with ash layers deposited during this geologically recent volcanic activity. The alteration phases may have formed due to the presence of snow in contact with hot ash, or eventually solid-gas interactions due to the volcanic activity. The relatively young age of the volcanic plain implies that recent alteration processes have occurred on Mars in relation with volcanic activity, but such local processes do not require conditions different than the current climate.  相似文献   

3.
We present the Messinian evaporite suite (Mediterranean region) and the Solfatara hydrothermal system (Phlegraean Fields volcanic province, Italy), discuss their implications for understanding the origin of sulfates on Mars and show preliminary sets of VNIR laboratory and in situ reflectance spectra of rocks from these geologic systems. The choice was based on a number of evidence relative to Mars: (1) the chemistry of the Martian sulfates, suggesting fluid interactions with possibly alkali-basaltic rocks and/or regolith; (2) close range evidence of sulfates within sedimentary formations on Mars; (3) sulfate spectral signatures associated to large-scale layered patterns interpreted as thick depositional systems on Mars. The Messinian evaporites comprise three units: primary shallow-water sulfates (primary lower gypsum: PLG), shallow- to deep-water mixed sulfates and clastic terrigenous deposits (resedimented lower gypsum: RLG), and shallow-water associations of primary sulfates and clastic fluvio-deltaic deposits (upper evaporites: UE). The onset of the Messinian evaporites records the transition to negative hydrologic budget conditions associated with the Messinian Salinity Crisis, which affected the entire Mediterranean basin and lasted about 640 kyr. The Solfatara is a still evolving hydrothermal system that provides epithermal deposits precipitated from the interaction of fluids and trachybasaltic to phonolitic rocks. Thermal waters include alkali-chloride, alkali-carbonate and alkali-sulfate endmembers.The wide spectrum of sedimentary gypsum facies within the Messinian formation includes some of the depositional environments hitherto identified on Mars and others not found on Mars. The PLG unit includes facies associations correlated over long distances, that could be a possible analog of the stratified rock units exposed from Arabia Terra at least as far as Valles Marineris. The facies cycles within the UE unit can be compared to the sequences of strata observed in craters such as Holden and Eberswalden. The UE unit records paleoenvironmental changes which are ultimately controlled by terrestrial climatic variations. They can be considered as a reliable climatic proxy and may be useful for the reconstruction of climatic events on Mars. The intermediate Messinian RLG unit has not, at present, a well-defined depositional counterpart on Mars, although there are some similarities with the northern lowlands and Vastitas Borealis Formation. The dramatic variation of hydrologic budget conditions at the onset of the Messinian evaporites may provide criteria for the interpretation of similar variations on Mars.The volcanic rocks at the Solfatara bear some similarities with the “alkaline magmatic province” observed at the Gusev crater on Mars, and the assemblages of hydrothermal phases resulting from the Solfatara's parent rocks could be analogues for processes involving Gusev-type rocks.The Messinian sulfates have a prevalent Ca-sulfatic composition and wide textural variability. Preliminary laboratory reflectance spectra of rock samples in the VNIR region reveal the signature of sulfates and mixtures of several Fe-bearing phases. At the Solfatara, in situ reflectance measurements of epithermal minerals close to active fumaroles showed the presence of Fe-bearing sulfates, hematite, Al- and K-sulfates and abundant amorphous fraction. XRD analysis supported this interpretation.The range of depositional facies observed in the Messinian units and the variety of minerals detected in the Solfatara will be useful for the interpretation of close range data of Mars. The spectral characterization at various scales of the Messinian sedimentary facies and the Solfatara hydrothermal minerals will both help in the exploration of Mars from orbit and with close range inspection.  相似文献   

4.
Uzboi Vallis (centered at ∼28°S, 323°E) is ∼400 km long and comprises the southernmost segment of the northward-draining Uzboi-Ladon-Morava (ULM) meso-scale outflow system that emerges from Argyre basin. Bond and Holden craters blocked the valley to the south and north, respectively, forming a Late Noachian-to-Hesperian paleolake basin that exceeded 4000 km3. Limited CRISM data suggest lake deposits in Uzboi and underlying basin floor incorporate relatively more Mg-clays and more Fe-clays, respectively. The short-lived lake overflowed and breached Holden crater’s rim at an elevation of −350 m and rapidly drained into the crater. Fan deltas in Holden extend 25 km from the breach and incorporate meter-sized blocks, and longitudinal grooves along the Uzboi basin floor are hundreds of meters long and average 60 m wide, suggesting high-discharge drainage of the lake. Precipitation-derived runoff rather than regional groundwater or overflow from Argyre dominated contributions to the Uzboi lake, although the failure of most tributaries to respond to a lowering of base level indicates their incision largely ended when the lake drained. The Uzboi lake may have coincided with alluvial and/or lacustrine activity in Holden, Eberswalde, and other craters in southern Margaritifer Terra, where fluvial/lacustrine activity may have required widespread, synoptic precipitation (rain or snow), perhaps associated with an ephemeral, global hydrologic system during the Late Noachian into the Hesperian on Mars.  相似文献   

5.
Titan, the main satellite of Saturn, has an active cycle of methane in its troposphere. Among other evidence for a mechanism of evaporation at work on the ground, dry lakebeds have been discovered. Recent Cassini infrared observations of these empty lakes have revealed a surface composition poor in water ice compared to that of the surrounding terrains—suggesting the existence of organic evaporites deposits. The chemical composition of these possible evaporites is unknown. In this paper, we study evaporite composition using a model that treats both organic solids dissolution and solvent evaporation. Our results suggest the possibility of large abundances of butane and acetylene in the lake evaporites. However, due to uncertainties of the employed theory, these determinations have to be confirmed by laboratory experiments.  相似文献   

6.
The Tyrrhena Terra region of Mars is studied with the imaging spectrometers OMEGA (Observatoire pour la Minéralogie, l’Eau, les Glaces et l’Activité) onboard Mars Express and CRISM (Compact Reconnaissance Infrared Spectrometer for Mars) onboard Mars Reconnaissance Orbiter, through the observation of tens of craters that impacted into this part of the martian highlands. The 175 detections of hydrated silicates are reported, mainly associated with ejecta blankets, crater walls and rims, and central up-lifts. Sizes of craters where hydrated silicates are detected are highly variable, diameters range from less than 1 km to 42 km. We report the presence of zeolites and phyllosilicates like prehnite, Mg-chlorite, Mg-rich smectites and mixed-layer chlorites–smectites and chlorite–vermiculite from comparison of hyperspectral infrared observations with laboratory spectra. These minerals are associated with fresh craters post-dating any aqueous activity. They likely represent ancient hydrated terrains excavated by the crater-forming impacts, and hence reveal the composition of the altered Noachian crust, although crater-related hydrothermal activity may have played a minor role for the largest craters (>20 km in diameter). Most detected minerals formed over relatively high temperatures (100–300 °C), likely due to aqueous alteration of the Noachian crust by regional low grade metamorphism from the Noachian thermal gradient and/or by extended hydrothermal systems associated with Noachian volcanism and ancient large impact craters. This is in contrast with some other phyllosilicate-bearing regions like Mawrth Vallis where smectites, kaolinites and hydrated silica were mainly identified, pointing to a predominance of surface/shallow sub-surface alteration; and where excavation by impacts played only a minor role. Smooth plains containing hydrated silicates are observed at the boundary between the Noachian altered crust, dissected by fluvial valleys, and the Hesperian unaltered volcanic plains. These plains may correspond to alluvial deposition of eroded material. The highlands of Tyrrhena Terra are therefore particularly well suited for investigating the diversity of hydrated minerals in ancient martian terrains.  相似文献   

7.
Evidence of recent gully activity on Mars has been reported based on the formation of new light toned deposits within the past decade, the origin of which remains controversial. Analogous recent light toned gully features have formed by liquid water activity in the Atacama Desert on Earth. These terrestrial deposits leave no mineralogical trace of water activity but rather show an albedo difference due to particle size sorting within a fine-grained mudflow. Therefore, spectral differences indicating varying mineralogy between a recent gully deposit and the surrounding terrain may not be the most relevant criteria for detecting water flow in arid environments. Instead, variation in particle size between the deposit and surrounding terrain is a possible discriminator to identify a water-based flow. We show that the Atacama deposit is similar to the observed Mars gully deposits, and both are consistent with liquid water activity. The light-toned Mars gully deposits could have formed from dry debris flows, but a liquid water origin cannot be ruled out because not all liquid water flows leave hydrated minerals behind on the surface. Therefore, the Mars deposits could be remnant mudflows that formed on Mars within the last decade.  相似文献   

8.
Outflow channels and valley systems are evidence of water flow on the surface of Mars. Whenever there is a consequent flow of water on an irregular surface, temporary impoundment in surface depressions will form lakes. A classification of martian lake basins based on the location of the basin in respect to water sources is proposed. The classes are Type 1: Valley-head basins, Type 2: Intravalley basins, Type 3: Valley-terminal basins, and Type 4: Isolated basins.Martian lakes are ephemeral features. Many craters and irregular depressions impounded water only until the basins filled and overflowed. Water escaping by spillover rapidly cut crevasses in the downstream side of basins and drained the ponds. Clastic lacustrine sediments collected in the lakes as flowing water lost velocity and turbulence. Evaporitic deposits may be significant in those basins that were not rapidly drained. Sediments deposited in lake basins form smooth, featureless plains. Lacustrine plains are potentially candidate sites for Mars landings and for the search for evidence of ancient life.  相似文献   

9.
HiRISE images together with other recent orbital data from Mars define new characteristics of enigmatic Hesperian-aged deposits in Sirenum Fossae that are mostly 100-200 m thick, drape kilometers of relief, and often display generally low relief surfaces. New characteristics of the deposits, previously mapped as the “Electris deposits,” include local detection of meter-scale beds that show truncating relationships, a generally light-toned nature, and a variably blocky, weakly indurated appearance. Boulders shed by erosion of the deposits are readily broken down and contribute little to talus. Thermal inertia values for the deposits are ∼200 J m−2 K−1 s−1/2 and they may incorporate hydrated minerals derived from weathering of basalt. The deposits do not contain anomalous amounts of water or water ice. Deflation may dominate degradation of the deposits over time and points to an inventory of fine-grained sediment. Together with constraints imposed by the regional setting on formation processes, these newly resolved characteristics are most consistent with an eolian origin as a loess-like deposit comprised of redistributed and somewhat altered volcanic ash. Constituent sediments may be derived from airfall ash deposits in the Tharsis region. An origin directly related to airfall ash or similar volcanic materials is less probable and emplacement by alluvial/fluvial, impact, lacustrine, or relict polar processes is even less likely.  相似文献   

10.
The 174 km diameter Terby impact crater (28.0°S-74.1°E) located on the northern rim of the Hellas basin displays anomalous inner morphology, including a flat floor and light-toned layered deposits. An analysis of these deposits was performed using multiple datasets from Mars Global Surveyor, Mars Odyssey, Mars Express and Mars Reconnaissance Orbiter missions, with visible images for interpretation, near-infrared data for mineralogical mapping, and topography for geometry. The geometry of layered deposits was consistent with that of sediments that settled mainly in a sub-aqueous environment, during the Noachian period as determined by crater counts. To the north, the thickest sediments displayed sequences for fan deltas, as identified by 100 m to 1 km long clinoforms, as defined by horizontal beds passing to foreset beds dipping by 6-10° toward the center of the Terby crater. The identification of distinct sub-aqueous fan sequences, separated by unconformities and local wedges, showed the accumulation of sediments from prograding/onlapping depositional sequences, due to lake level and sediment supply variations. The mineralogy of several layers with hydrated minerals, including Fe/Mg phyllosilicates, supports this type of sedimentary environment. The volume of fan sediments was estimated as >5000 km3 (a large amount considering classical martian fan deltas such as Eberswalde (6 km3)) and requires sustained liquid water activity. Such a large sedimentary deposition in Terby crater is characteristic of the Noachian/Phyllosian period during which the environment favored the formation of phyllosilicates. The latter were detected by spectral data in the layered deposits of Terby crater in three distinct layer sequences. During the Hesperian period, the sediments experienced strong erosion, possibly enhanced by more acidic conditions, forming the current morphology with three mesas and closed depressions. Small fluvial valleys and alluvial fans formed subsequently, attesting to late fluvial processes dated as late Early to early Late Hesperian. After this late fluvial episode, the Terby impact crater was submitted to aeolian processes and permanent cold conditions with viscous flow features. Therefore, the Terby crater displays, in a single location, geologic features that characterize the three main periods of time on Mars, with the presence of one of the thickest sub-aqueous fan deposits reported on Mars. The filling of Terby impact crater is thus one potential “reference geologic cross-section” for Mars stratigraphy.  相似文献   

11.
We investigate the sulfate and iron oxide deposits in Ophir Chasma, Mars, based on short-wave infrared data from the Compact Reconnaissance Imaging Spectrometer for Mars - CRISM and from the Observatoire pour la Minéralogie, l’Eau, les Glaces et l’Activité - OMEGA. Sulfates are detected mainly in two locations. In the valley between Ophir Mensa and the southern wall of Ophir Chasma, kieserite is found both within the slope of Ophir Mensa, and superposed on the basaltic wall of the chasm. Here, kieserite is unconformably overlain by polyhydrated sulfate deposits and iron oxides. Locally, jarosite and unidentified phases with absorptions at 2.21 μm or 2.23 μm are detected, which could be mixtures of jarosite and amorphous silica or other poorly crystalline phases.The second large sulfate-rich outcrop is found on the floor of the central valley. Although the same minerals are found here, polyhydrated sulfates, kieserite, iron oxides, and locally a possibly jarosite-bearing phase, this deposit is very distinct. It is not layered, almost horizontal, and located at a much lower elevation of below −4250 m. Kieserite superposes polyhydrated sulfate-rich deposits, and iron oxides form lags.The facies of sulfate formation remains unclear, and could be different for the two locations. A formation in a lake, playa or under a glacier is consistent with the mineralogy of the central valley and its flat, low-lying topography. This is not conceivable for the kieserite deposits observed south of Ophir Mensa. These deposits are observed over several thousands of meters of elevation, which would require a standing body of water several thousands of meters deep. This would have lead to much more pervasive sulfate deposits than observed. These deposits are therefore more consistent with evaporation of groundwater infiltrating into previously sulfate-free light-toned deposits. The overlying polyhydrated sulfates and other mineral phases are observed in outcrops on ridges along the slopes of the southern chasm wall, which are too exposed to be reached by groundwater. Here, a water supply from the atmosphere by rain, snow, fog or frost is more conceivable.  相似文献   

12.
The presence of extensive phyllosilicate deposits from the early Noachian of Mars are often interpreted as having formed from neutral to subalkaline solutions. In this paper we examine the Río Tinto fluvial basin, an early Mars analog, that hosts clay production and sedimentation along the entire course of the river. At Río Tinto, phyllosilicate minerals including clays and micas are sourced by volcanosedimentary bedrock of rhyolitic and andesitic composition affected by Carboniferous hydrothermal alteration. Pleistocene to modern acidic weathering of those materials chemically altered the volcanic and sedimentary materials to K/Na-clay-(montmorillonite/smectites)-kaolinite assemblages in paleosoils and fractures while physical weathering degrades phyllosilicates more resistant to acidic attack. During the wet season, phyllosilicates are eroded, transported and deposited from both acidic headwaters and neutral tributaries. During the dry season, sulfates and nanophase oxyhydroxides co-precipitate. Late summer storms that cause fast flooding events mix illite, quartz, feldspars, iron oxides and other minerals in fluvial deposits where these minerals are stabilized and aggrade until the following wet season. As a result, chemical precipitates, primary phyllosilicates and secondary clays form mineral admixtures that explain the compositional diversity of the fluvial deposits. These deposits reveal the persistence of smectites, whose occurrence is explained given that the reaction kinetics under acidic conditions of degradation is lowered by seasonal discharges of the river. The longevity of phyllosilicate minerals within fluvial deposits depends on climatic and geochemical conditions and processes which are in turn are correlated to temperature, persistence of water, hydrological cycling, hydrogeochemistry and composition of the source materials in the basement. These parameters are universal and have to be characterized in order to understand the distribution of mineral composition on any planetary surface, including Mars.  相似文献   

13.
Previous orbital mapping of crystalline gray haematite, ferric oxides, and sulfates has shown an association of this mineralogy with light-toned, layered deposits on the floor of Valles Marineris, in chaos terrains in the canyon’s outflow channels, and in Meridiani Planum. The exact nature of the relationship between ferric oxides and sulfates within Valles Marineris is uncertain. The Observatoire pour la Mineralogie, l’Eau, les Glaces et l’Activite (OMEGA) spectrometer initially identified sulfate and ferric oxides in the layered deposits of Valles Marineris. The Thermal Emission Spectrometer (TES) has also mapped coarse (gray) haematite in or at the base of these deposits. We use Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) spectra and Context Camera (CTX) and High Resolution Imaging Science Experiment (HiRISE) imagery from the Mars Reconnaissance Orbiter (MRO) to explore the mineralogy and morphology of the large layered deposit in central Capri Chasma, part of the Valles Marineris canyon system that has large, clear exposures of sulfate and haematite. We find kieserite (MgSO4·H2O) and ferric oxide (often crystalline red haematite) in the lower bedrock exposures and a polyhydrated sulfate without ferric oxides in the upper bedrock. This stratigraphy is duplicated in many other basinal chasmata, suggesting a common genesis. We propose the haematite and monohydrated sulfate formed by diagenetic alteration of a sulfate-rich sedimentary deposit, where the upper polyhydrated sulfate-rich, haematite-poor layers either were not buried sufficiently to convert to a monohydrated sulfate or were part of a later depositional phase. Based on the similarities between the Valles Marineris assemblages and the sulfate and haematite-rich deposits of Meridiani Planum, we hypothesize a common evaporite and diagenetic formation process for the Meridiani Planum sediments and the sulfate-bearing basinal Interior Layered Deposits.  相似文献   

14.
To assess whether life existed on Mars, it is crucial to identify geochemical biosignatures that are relevant to specific Martian environments. In this paper, thermochemical modeling was used to investigate fluid chemistries and secondary minerals that would have evolved biotically over geological time scales in Martian fluvio-lacustrine and evaporitic settings, and that could be used as potential inorganic biosignatures for life detection on Mars. Modeling was performed using fluid and rock chemistries relevant to Gale crater aqueous environments. Potential inorganic biosignatures were identified investigating alteration deposits found at the surface of a simulant exposed to short-term bio-mediated weathering and comparing experimental and modeling results. In a fluvio-lacustrine setting (water/rock of 2000–278), models suggest that less complex mineral assemblages form during biotic basalt dissolution and subsequent brine evaporation compared to what would happen in an abiotic system. Mainly nontronite, kaolinite, and quartz form under biotic conditions, whereas celadonite, talc, and goethite would also precipitate abiotically. Quartz, sepiolite, and gypsum would precipitate from the evaporation of fluids evolved biotically, whereas nontronite, talc, zeolite, and gypsum would form in an abiotic evaporitic environment. These results could be used to distinguish products of abiotic and biotic processes, aiding the interpretation of data from Mars exploration missions.  相似文献   

15.
Gale Crater contains a 5.2 km-high central mound of layered material that is largely sedimentary in origin and has been considered as a potential landing site for both the MER (Mars Exploration Rover) and MSL (Mars Science Laboratory) missions. We have analyzed recent data from Mars Reconnaissance Orbiter to help unravel the complex geologic history evidenced by these layered deposits and other landforms in the crater. Results from imaging data from the High Resolution Imaging Science Experiment (HiRISE) and Context Camera (CTX) confirm geomorphic evidence for fluvial activity and may indicate an early lacustrine phase. Analysis of spectral data from the CRISM (Compact Reconnaissance Imaging Spectrometer for Mars) instrument shows clay-bearing units interstratified with sulfate-bearing strata in the lower member of the layered mound, again indicative of aqueous activity. The formation age of the layered mound, derived from crater counts and superposition relationships, is ∼3.6-3.8 Ga and straddles the Noachian-Hesperian time-stratigraphic boundary. Thus Gale provides a unique opportunity to investigate global environmental change on Mars during a period of transition from an environment that favored phyllosilicate deposition to a later one that was dominated by sulfate formation.  相似文献   

16.
New high-resolution spectral and morphologic imaging of deposits on walls and floor of Ius Chasma extend previous geomorphic mapping, and permit a new interpretation of aqueous processes that occurred during the development of Valles Marineris. We identify hydrated mineralogy based on visible-near infrared (VNIR) absorptions. We map the extents of these units with CRISM spectral data as well as morphologies in CTX and HiRISE imagery. Three cross-sections across Ius Chasma illustrate the interpreted mineral stratigraphy. Multiple episodes formed and transported hydrated minerals within Ius Chasma. Polyhydrated sulfate and kieserite are found within a closed basin at the lowest elevations in the chasma. They may have been precipitates in a closed basin or diagenetically altered after deposition. Fluvial or aeolian processes then deposited layered Fe/Mg smectite and hydrated silicate on the chasma floor, postdating the sulfates. The smectite apparently was weathered out of Noachian-age wallrock and transported to the depositional sites. The overlying hydrated silicate is interpreted to be an acid-leached phyllosilicate transformed from the underlying smectite unit, or a smectite/jarosite mixture. The finely layered smectite and massive hydrated silicate units have an erosional unconformity between them, that marks a change in surface water chemistry. Landslides transported large blocks of wallrock, some altered to contain Fe/Mg smectite, to the chasma floor. After the last episode of normal faulting and subsequent landslides, opal was transported short distances into the chasma from a few m-thick light-toned layer near the top of the wallrock, by sapping channels in Louros Valles. Alternatively, the material was transported into the chasma and then altered to opal. The superposition of different types of hydrated minerals and the different fluvial morphologies of the units containing them indicate sequential, distinct aqueous environments, characterized by alkaline, then circum-neutral, and finally very acidic surface or groundwater chemistry.  相似文献   

17.
Diverse phyllosilicate deposits discovered previously in the Nili Fossae region with near infrared reflectance data are a window into the complex history of aqueous alteration on Mars. In this work, we used thermal infrared data from the Thermal Emission Spectrometer (TES) in combination with near infrared data from the Observatoire pour la Minéralogie, l’Eau, les Glaces, et l’Activité (OMEGA) to better constrain the mineralogy and geologic origin of these deposits. We developed a TES spectral index for identification of clay minerals, which correctly identifies the phyllosilicates in the Nili Fossae area and points to several other interesting deposits in the Syrtis Major region. However, detailed inspection of the TES spectral features of Nili Fossae phyllosilicates shows a feature at low wavenumbers (350-550 cm−1) that is not an exact match to any specific Fe3+-, Al-, or Mg-rich phyllosilicate phase. Instead, the feature is more similar to basaltic glass and may indicate that the phyllosilicates in this region are: (1) rich in Fe2+ (based on similarity to trends seen in laboratory data of clay minerals), (2) poorly crystalline/extremely disordered, and/or (3) present within a matrix of actual basalt glass. This feature is similar to spectral features seen in altered rocks in the Columbia Hills region of Gusev Crater by previous authors. By calibrating measured spectral index values against mathematical spectral mixtures of typical martian dark surfaces and known abundances of alteration minerals, we are able to estimate an enrichment in abundance of alteration minerals in the altered surfaces. Many dark, Noachian deposits in the Nili Fossae area are enriched phyllosilicates by 20-30% (±10-15%) relative to dark, volcanic surfaces in the same region. The distribution and abundance of these phases indicates that alteration in the region was pervasive, but did not completely erase the original mineralogy of what was likely an Fe-rich basalt protolith. As a group, the Nili Fossae phyllosilicate deposits are fundamentally different from those found in the Mawrth Vallis region. Nili Fossae deposits have strong thermal infrared features related to admixed pyroxene, plagioclase, and occasionally olivine, whereas the Mawrth Vallis deposits contain no mafic minerals. Comparison of TES and OMEGA data also illustrates some more general differences between the datasets, including the impact of physical character of the martian surface on detectability of minerals in each spectral range.  相似文献   

18.
Encouraged by recent results of the Mars Odyssey spacecraft mission and the OMEGA team (Mars Express) concerning water in equatorial latitudes between ±45° on Mars and the possible existence of hydrated minerals, we have investigated the water sorption properties of natural zeolites and clay minerals close to martian atmospheric surface conditions as well as the properties of Mg-sulfates and gypsum. To quantify the stability of hydrous minerals on the martian surface and their interaction with the martian atmosphere, the water adsorption and desorption properties of nontronite, montmorillonite, chabazite and clinoptilolite have been investigated using adsorption isotherms at low equilibrium water vapor pressures and temperatures, modeling of the adsorption equilibrium data, thermogravimetry (TG), differential scanning calorimetry (DSC), and proton magic angle spinning nuclear magnetic resonance measurements (1H MAS NMR). Mg-sulfate hydrates were also analyzed using TG/DSC methods to compare with clay mineral and zeolites. Our data show that these microporous minerals can remain hydrated under present martian atmospheric conditions and hold up to 2.5-25 wt% of water in their void volumes at a partial water vapor pressure of 0.001 mbar in a temperature range of 333-193 K. Results of the 1H MAS NMR measurements suggest that parts of the adsorbed water are liquid-like water and that the mobility of the adsorbed water might be of importance for adsorption-water-triggered chemistry and hypothetical exobiological activity on Mars.  相似文献   

19.
M. Sowe  L. Wendt  P.C. McGuire  G. Neukum 《Icarus》2012,218(1):406-419
Hydrated minerals have been detected in many martian chaos regions and chasmata, playing a major role in its past aqueous activity. Based on short wave infrared data from CRISM, imagery and elevation data, we identified and mapped hydrated minerals in Aureum Chaos to shed light on their stratigraphy and geological context.The Interior Layered Deposits (ILDs) display three stratigraphic units: The lowest unit shows massive and also layered, high-albedo monohydrated sulfate (MHS, best matching kieserite; 20–650 m thick) with intercalated hydroxylated ferric sulfates (HFSs, best matching jarosite) and ferric oxides. The overlying polyhydrated sulfate (PHS) is commonly layered (20–40 m thick), smooth to heavily fractured, of lower albedo and partially contains ferric oxides. Spectrally neutral, distinctly layered, and bumpy cap rock (40–300 m thick) forms the top.We found spectral and morphological similarities to Aram Chaos (PHS, MHS, ferric oxides; texture of ILD and cap rock) and Juventae Chasma (HFS). Besides, the phyllosilicate nontronite was found attributed to chaotic terrain as light toned fractured exposure and within dark, smooth mantling. The coexistence of sulfates and phyllosilicates indicates changes in the geochemistry of the aqueous environment.Since sulfates and phyllosilicates could be alteration products, the observed mineralogy presumably is not the original; conversions between PHS and MHS, MHS or PHS into jarosite, jarosite into iron oxides are considered. Due to its occurrence along mantling edges and on flat surfaces of MHS without textural differences, it appears that PHS is an alteration product of MHS, e.g. due to surface exposure. The facies and relative timing of sulfate formation remains undefined. However, two different formation models are considered. The first implies contemporaneous ILD and PHS deposition and diagenetic sulfate conversion (into MHS, iron oxides) due to overburden later on. This model is less conclusive than groundwater evaporation -the second model- due to the lack of a sharp PHS–MHS boundary that would indicate a diagenetic formation.Alternatively, the second model suggests subsequent sulfate formation. Groundwater would have penetrated into pre-existing sulfate-free ILD. The permeability and porosity of ILD material would have defined the rate of water absorption and sulfate precipitation (low in cap rock?), resulting in cementation of probably aeolian deposited ILDs. We think this model is more consistent and could explain ILD stratigraphy with the potential anhydrous cap rock on top.The surface age of chaotic terrain (late Hesperian) and mantling deposits (mid to late Amazonian) limit the ILD age and possibly the emplacement of sulfates. Phyllosilicates in the mantling are presumably allochthonous. Limiting the timing of in situ phyllosilicates is more complicated; they could be Noachian (excavated material, following the phyllosian era), or instead syn- or post-chaotic. A close spatial and temporal association of sulfates and phyllosilicates, in which nontronite represents the deep facies, and sulfates the evaporitic facies is known from Earth and is also possible and would combine groundwater alteration with the observed mineralogy.The preservation of nontronite, HFS and MHS probably reflects a relatively dry environment with intermittent aqueous activity since their emplacement.  相似文献   

20.
Phyllosilicates, carbonates, zeolites, and sulfates on Mars give clues about the planet's past environmental conditions, but little is known about the specific conditions in which these minerals formed within the crust and at the surface. The aim of the present study was to gain increased understanding on the formation of secondary phases by hydrothermal alteration of basaltic glass. The reaction processes were studied under varying conditions (temperature, pCO2, water:rock ratio, and fluid composition) with relevance to aqueous hydrothermal alteration in fully and partly saturated Martian basalt deposits. Analyses made on reaction products using X‐ray diffraction (XRD) and scanning electron microscope (SEM) were compared with near infrared spectroscopy (NIR) to establish relative detectability and spectral signatures. This study demonstrates that comparable alteration minerals (phyllosilicates, carbonates, zeolites) form from vapor condensing on mineral surfaces in unsaturated sediments and not only in fully water‐saturated sediments. In certain environments where water vapor might be present, it can alter the basaltic bedrock to a suite of authigenic phases similar to those observed on the Martian surface. For the detection of the secondary phases, XRD and SEM‐EDS were found to be superior to NIR for detecting and characterizing zeolites. The discrepancy in detectability of zeolites between NIR and XRD/SEM‐EDS might indicate that zeolites on Mars are more abundant than previously thought.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号