首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this work we study in a general view slow rotating planets as Venus or Titan which present superrotating winds in their atmospheres. We are interested in understanding what mechanisms are candidates to be sources of net angular momentum to generate this kind of dynamics. In particular, in the case of Venus, in its atmosphere around an altitude of 100 km relative to the surface, there exists winds that perform a full rotation around the planet in four terrestrial days, whereas the venusian day is equivalent to 243 terrestrial ones. This phenomenon called superrotation is known since many decades. However, its origin and behaviour is not completely understood. In this article we analise and ponderate the importance of different effects to generate this dynamics.  相似文献   

2.
I. López  J. Lillo 《Icarus》2008,195(2):523-536
Magellan data show that the surface of Venus is dominated by volcanic landforms including large flow fields and a wide range of volcanic edifices that occur in different magmatic and tectonic environments. This study presents the results from a comprehensive survey of volcano-rift interaction in the BAT region and its surroundings. We carried out structural mapping of examples where interaction between volcanoes and regional fractures results in a deflection of the fractures around the volcanic features and discuss the nature of the local volcano-related stress fields that might be responsible for the observed variations of the regional fracture systems. We propose that the deflection of the regional fractures around these venusian volcanoes might be related to volcanic spreading, a process recognized as of great importance in the tectonic evolution of volcanoes on Earth and Mars, but not previously described on Venus.  相似文献   

3.
《Planetary and Space Science》2007,55(14):2063-2070
Ribbons are regularly spaced, between 2 and 6 km, troughs that exist on venusian tesserae, which are mainly located in, and characterize to, venusian crustal plateaus. Independent of the geological or temporal relations with other features, regularly and similarly spaced ribbons on several tesserae strongly suggest a thermal control on the thickness of the deformed layer. This can be used to constraint the heat flow at the time of ribbon formation, which holds important implications for the viability of the hypotheses that address the origin and evolution of crustal plateaus. For a brittle–ductile transition ∼1–3 km deep (as proposed from ribbon spacing), realistic strain rates, and a present-day surface temperature of 740 K, the implied heat flow is very high, 130–780 mW m−2. If Venus has experienced higher surface temperatures due to climate forcing by massive volcanism, then the heat flow could be greatly reduced. For surface temperatures of 850–900 K the heat flow is 190–560, 60–230 and 20–130 mW m−2 for brittle–ductile transition depths of 1, 2 and 3 km, respectively. Heat flow values around 80–100 mW m−2 are reasonable for venusian hotspots, based on terrestrial analogs, but hardly consistent with coldspot settings. High surface temperatures are also required to maintain the crustal solidus deeper than a few kilometers during the formation of ribbon terrains. For the obtained heat flows, a solidus deeper than ∼30 km (the likely mean value for the crustal thickness) is difficult to achieve. This suggests that a substantial proportion of the crust beneath crustal plateaus was emplaced subsequently to the time when ribbon terrains were formed. Alternatively, at that time a magma reservoir inside the crust could have existed.  相似文献   

4.
It has been proposed that divergence and crustal spreading occur in Western Aphrodite Terra and some adjacent equatorial regions of Venus at rates in the range of a few centimeters per year. If equatorial spreading is common and widespread, then a consequence of this should be: (1) a young average age of the surface of the planet, (2) a trend in age from older terrain in the polar regions to younger terrain toward the equator, and (3) a latitudinal distribution of extensional features in equatorial regions and compressional deformation features in middle to high latitudes. These predictions are tested using published results from Arecibo, VENERA 15/16, and Pioneer Venus data, and it is found that: (1) the northern mid-to-high latitudes are characterized by a young average age, (2) there is a trend in the total number of craters per unit area from high values in the north polar regions to low values toward the equator, and (3) there is evidence for a latitudinal distribution of tectonic features of different types, with extensional features common in equatorial regions and compressional deformation features common in the northern middle to high latitudes. Further tests of these and other predictions can be made using data from the upcoming Magellan mission.  相似文献   

5.
Laura Schaefer 《Icarus》2004,168(1):215-219
Chemical equilibrium calculations of volatile metal geochemistry on Venus show that high dielectric constant compounds of lead and bismuth such as PbS (galena), Bi2S3 (bismuthite) or Pb-Bi sulfosalts condense in the venusian highlands and may be responsible for the low radar emissivities observed by Magellan and Pioneer Venus. Our calculations also show that elemental tellurium is unstable on Venus' surface and will not condense below 46.6 km. This is over 30 km higher than Maxwell Montes, the highest point on Venus' surface. Elemental analyses of Venus' highlands surface by laser induced breakdown spectroscopy (LIBS) and/or X-ray fluorescence (XRF) can verify the identity of the heavy metal frost on Venus. The Pb-Pb age of Venus could be determined by mass spectrometric measurements of the Pb207/Pb204 and Pb206/Pb204 isotopic ratios in Pb-bearing frosts. All of these measurements are technologically feasible now.  相似文献   

6.
Theoretical consideration of the magma vesiculation process under observed and inferred venusian surface conditions suggests that vesicles should form in basaltic melts, especially if CO2 is the primary magmatic volatile. However, the high surface atmospheric pressure ((~90 bars) and density on Venus retard bubble coalescence and disruption sufficiently to make explosive volcanism unlikely. The products of explosive volcanism (fire fountains, convecting eruption clouds, pyroclastic flows, and topography-mantling deposits of ash, spatter, and scoria) should be rare on Venus, and effusive eruptions should dominate. The volume fraction of vesicles in basaltic rocks on Venus are predicted to be less than in chemically similar rocks on Earth. Detection of pyroclastic landforms or eruption products on Venus would indicate either abnormally high volatile contents of Venus magmas (2.5–4 wt%) or different environmental conditions (e.g., lower atmospheric pressure) in previous geologic history.  相似文献   

7.
The oxygen green line is one of the most characteristic features in the terrestrial visible nightglow; it can be seen in the Venus nightglow, but with much greater intensity variation than in the terrestrial case. Here we synthesize our current understanding of the green line in the Venus nightglow and discuss what might be expected observationally in the rising phase of solar cycle 24.  相似文献   

8.
On Venus, present evidence indicates a crust of predominantly basaltic composition and a relatively young average age for the surface (several hundreds of millions of years). Estimates of crustal thickness from several approaches suggest an average crustal thickness of 10–20 km for much of the lowlands and rolling plains and a total volume of crust of about 1 × 1010 km3, approximately comparable to the present crustal volume of the Earth (1.02 × 1010 km3). The Earth's oceanic crust is thought to have been recycled at least 10–20 times over Earth history. The near-coincidence in present crustal volumes for the Earth and Venus suggests that either: (1) the presently observed crust of Venus represents the total volume that has accumulated over the history of the planet and that crustal production rates are thus very low, or (2) that crustal production rates are higher and that there is a large volume of missing crust unaccounted for on Venus which may have been lost by processes of crustal recycling.Known processes of crustal formation and thickening (impact-related magma ocean, vertical differentiation, and crustal spreading) are reviewed and are used as a guide to assess regional geologic evidence for the importance of these processes on Venus. Geologic evidence for variations in crustal thickness on Venus (range and frequency distribution of topography, regional slopes, etc.) are outlined. The hypothesis that the topography of Venus could result solely from crustal thickness variations is assessed and tested as an end-member hypothesis. A map of crustal thickness distribution is compiled on the basis of a simple model of Airy isostasy and global Venus topography. An assessment is then made of the significance of crustal thickness variations in explaining the topography of Venus. It is found that the distinctive unimodal hypsometric curve could be explained by: (1) a crust of relatively uniform thickness (most likely 10–20 km thick) comprising over 75% of the surface, (2) local plateaus (tessera) of thickened crust (about 20–30 km) forming less than 15% of the surface, (3) regions of apparent crustal thicknesses of 30–50 km (Beta, Ovda, Thetis, Atla Regiones and Western Ishtar Terra) forming less than 10% of the surface and showing some geologic evidence of crustal thickening processes (these areas can be explained on the basis of geologic observations and gravity data as combinations of thermal effects and crustal thickening), and (4) areas in which Airy isostasy predicts crustal thicknesses in excess of 50 km (the linear orogenic belts of Western Ishtar Terra, less than 1% of the surface).It is concluded that Venus hypsometry can be reasonably explained by a global crust of generally similar thickness with variations in topography being related to (1) crustal thickening processes (orogenic belts and plateau formation) and (2) local variations in the thermal structure (spatially varying thermal expansion in response to spatially varying heat flow). The most likely candidates for the formation and evolution of the crust are vertical differentiation and/or lateral crustal spreading processes. The small average crustal thickness (10–20 km) and the relatively small present crustal volume suggest that if vertical crustal growth processes are the dominant mechanism of crustal growth, than vertical growth has not commonly proceeded to the point where recycling by basal melting or density inversion will occur, and that therefore, rates of crustal production must have been much lower in the past than in recent history. Crustal spreading processes provide a mechanism for crustal formation and evolution that is consistent with observed crustal thicknesses. Crustal spreading processes would be characterized by higher (perhaps more Earth-like) crustal production rates than would characterize vertical differentiation processes, and crust created earlier in the history of Venus and not now observed (missing crust) would be accounted for by loss of crust through recycling processes. Lateral crustal spreading processes for the formation and evolution of the crust of Venus are interpreted to be consistent with many of the observations derived from presently available data. Resurfacing through vertical differentiation processes also clearly occurs, and if it is the major contributor to the total volume of the crust, then very low resurfacing rates are required.Although thermal effects on topography are clearly present and important on both Venus and the Earth, the major difference between the hypsometric curves on Earth (bimodal) and Venus (unimodal) is attributed primarily to the contrast in relative average thickness of the crust between the two terrains on Earth (continental/oceanic; 40/5 km = 35 km, 8:1) and Venus (upland plateaus/lowlands; about 30/15 km = 15 km, 2:1) (35 – 20 km = a difference of 20 km). The Venus unimodal distribution is thus attributed primarily to the large percentage of terrain with relatively uniform crustal thickness, with the skewness toward higher elevations due to the relatively small percentage of crust that is thickened by only about a factor of two. The Earth, in contrast, has a larger percentage of highlands (continents), whose crust is thicker by a factor of eight, on the average, leading to the distinctive bimodal hypsometric curve.Data necessary to firmly establish the dominant type of crustal formation and thickening processes operating and to determine the exact proportion of the topography of Venus that is due to thermal effects versus crustal thickness variations include: (1) global imaging data (to determine the age of the surface, the distribution and age of regions of high heat flux, and evidence for the nature and global distribution of processes of crustal formation and crustal loss), and (2) high resolution global gravity and topography data (to model crustal thickness variations and thermal contributions and to test various hypotheses of crustal growth).'Geology and Tectonics of Venus', special issue edited by Alexander T. Basilevsky (USSR Acad. of Sci. Moscow), James W. Head (Brown University, Providence), Gordon H. Pettengill (MIT, Cambridge, Massachusetts) and R. S. Saunders (J.P.L., Pasadena).  相似文献   

9.
Of the impact craters on Earth larger than 20 km in diameter, 10-15% (3 out of 28) are doublets, having been formed by the simultaneous impact of two well-separated projectiles. The most likely scenario for their formation is the impact of well-separated binary asteroids. If a population of binary asteroids is capable of striking the Earth, it should also be able to hit the other terrestrial planets as well. Venus is a promising planet to search for doublet craters because its surface is young, erosion is nearly nonexistent, and its crater population is significantly larger than the Earth's. After a detailed investigation of single craters separated by less than 150 km and “multiple” craters having diameters greater than 10 km, we found that the proportion of doublet craters on Venus is at most 2.2%, significantly smaller than Earth's, although several nearly incontrovertible doublets were recognized. We believe this apparent deficit relative to the Earth's doublet population is a consequence of atmospheric screening of small projectiles on Venus rather than a real difference in the population of impacting bodies. We also examined “splotches,” circular radar reflectance features in the Magellan data. Projectiles that are too small to form craters probably formed these features. After a careful study of these patterns, we believe that the proportion of doublet splotches on Venus (14%) is comparable to the proportion of doublet craters found on Earth (10-15%). Thus, given the uncertainties of interpretation and the statistics of small numbers, it appears that the doublet crater population on Venus is consistent with that of the Earth.  相似文献   

10.
I. López 《Icarus》2011,213(1):73-85
Volcanoes on Venus are classified according to size with studies on the stratigraphic position of large volcanoes proposing that most of the large volcanoes postdate the regional volcanic materials. Some studies regarding intermediate volcanoes proposed that some of these volcanic features could be large volcanoes with embayed flow aprons, a situation that would alter the previous stratigraphic considerations about large volcanoes on Venus.In this work I analyze the global population of embayed intermediate-size volcanoes and compare their summits with that of other edifices classified as large volcanoes. Intermediate-size volcanoes are considered embayed when: (1) flows from another source clearly overlap the volcano slopes, and (2) display scarps related to flank-failure processes but with the associated collapse deposits being absent (i.e. interpreted as covered). As result of the survey 88 embayed intermediate-size volcanoes have been catalogued and integrated into a Geographic Information System. These embayed volcanoes have summit sizes and characteristics similar to large volcanoes and, therefore, could be interpreted as possible large volcanoes with their flow aprons embayed. Embayment materials for these volcanoes include all the units present in the history of the volcanic plains and would indicate that this type of central volcanic edifice would occur throughout the geologic history recorded in the venusian plains.  相似文献   

11.
We analyze night-time near-infrared (NIR) thermal emission images of the Venus surface obtained with the 1-μm channel of the Venus Monitoring Camera onboard Venus Express. Comparison with the results of the Magellan radar survey and the model NIR images of the Beta-Phoebe region show that the night-time VMC images provide reliable information on spatial variations of the NIR surface emission. In this paper we consider if tessera terrain has the different NIR emissivity (and thus mineralogic composition) in comparison to the surrounding basaltic plains. This is done through the study of an area SW of Beta Regio where there is a massif of tessera terrain, Chimon-mana Tessera, surrounded by supposedly basaltic plains. Our analysis showed that 1-μm emissivity of tessera surface material is by 15–35% lower than that of relatively fresh supposedly basaltic lavas of plains and volcanic edifices. This is consistent with hypothesis that the tessera material is not basaltic, maybe felsic, that is in agreement with the results of analyses of VEX VIRTIS and Galileo NIMS data. If the felsic nature of venusian tesserae will be confirmed in further studies this may have important implications on geochemical environments in early history of Venus. We have found that the surface materials of plains in the study area are very variegated in their 1-μm emissivity, which probably reflects variability of degree of their chemical weathering. We have also found a possible decrease of the calculated emissivity at the top of Tuulikki Mons volcano which, if real, may be due to different (more felsic?) composition of volcanic products on the volcano summit.  相似文献   

12.
The observed record of impact craters on the surface of the planet Venus can be used to calculate the contribution of fine materials generated by impact processes to the global sedimentary cycle. Using various methods for the extending the population of impact craters with diameters larger than 8 km observed on the northern 25% of the Venus to the entire surface area of the planet, we have estimated how materials ejected from the integrated record of impact cratering over the past 0.5 to 1.0 æ might have been globally distributed. Relationships for computing the fraction of ejected materials from impact craters in a given size range originally developed for the Moon (and for terrestrial nuclear explosion cratering experiments) were scaled for Venus conditions, and the ejecta fragments with sizes less than 30 m were considered to represent those with the greatest potential for global transport and eventual fallout. A similar set of calculations were carried out using the observed terrestrial cratering record, corrected for the missing population of small craters and oceanic impacts that have either been eroded or are unobserved (due to water cover). Our calculations suggest that both Venus and the Earth should have experienced approximately 6000 impact events over the past 0.5 to 1 æ (in the size range from 1 km to about 180 km). The cumulative global thickness of impact-derived fine materials that could have produced from this record of impacts in this time period is most likely between 1–2 mm for Venus, and certainly no more than 6 mm (assuming an enhanced population of large 150–200 km scale impact events). For Earth, the global cumulative thickness is most likely 0.2 to 0.3 mm, and certainly no more than 2 to 3 mm. The cumulative volume of impact ejecta (independent of particle size) for Venus generated over the past 1 æ, when spread out over the global surface area to form a uniform layer, would fall between 2 and 12 meters, although 99% of this material would be deposited in the near rim ejecta blanket (from 1 to 2.3 crater radii from the rim crest), and only 0.02% would be available for global transport as dust-sized particles. Thus, our conclusion is that Venus, as with the Earth, cannot have formed a substantial impact-derived regolith layer over the past billion years of its history as is typical for smaller silicate planets such as the Moon and Mercury. This conclusion suggests that there must be other extant mechanisms for sediment formation and redistribution in the Venus environment, on the basis of Venera Lander surface panoramas which demonstrate the occurrence of local sediment accumulations.'Geology and Tectonics of Venus', special issue edited by Alexander T. Basilevsky (USSR Acad. of Sci. Moscow), James W. Head (Brown University, Providence), Gordon H. Pettengill (MIT, Cambridge, Massachusetts) and R. S. Saunders (J.P.L., Pasadena).  相似文献   

13.
Observations of Venus using the ultraviolet filter of the Venus Monitoring Camera (VMC) on ESA’s Venus Express Spacecraft (VEX) provide the best opportunity for study of the spatial and temporal distribution of the venusian unknown ultraviolet absorber since the Pioneer Venus (PV) mission. We compare the results of two sets of 125 radiative transfer models of the upper atmosphere of Venus to each pixel in a subset of VMC UV channel images. We use a quantitative best fit criterion based upon the notion that the distribution of the unknown absorber should be independent of the illumination and observing geometry. We use the product of the cosines of the incidence and emission angles and search for absorber distributions that are uncorrelated with this geometric parameter, finding that two models can describe the vertical distribution of the unknown absorber. One model is a well-mixed vertical profile above a pressure level of roughly 120 mb (~63 km). This is consistent with the altitude of photochemical formation of sulfuric acid. The second model describes it as a thin layer of pure UV absorber at a pressure level roughly around 24 mb (~71 km) and this altitude is consistent with the top of upper cloud deck. We find that the average abundance of unknown absorber in the equatorial region is 0.21 ± 0.04 optical depth and it decreases in the polar region to 0.08 ± 0.05 optical depth at 365 nm.  相似文献   

14.
Curt Covey  Gerald Schubert 《Icarus》1981,47(1):130-138
Ultraviolet albedo contrasts in the Venus atmosphere are probably large-scale atmospheric waves propagating slowly with respect to the rapid cloud-top zonal winds. Using a simple theoretical model and profiles of mean wind and thermal structure based on Pioneer Venus data, we find planetary-scale gravity waves with phase velocities matching the speeds of the uv markings. We propose an upward-propagating wave and waves trapped at cloud levels as candidates to explain the observed uv features.  相似文献   

15.
《Planetary and Space Science》2006,54(13-14):1344-1351
Radio waves and optical flashes consistent with the lightning generation have been reported frequently at Venus. These observations point to the presence of electrical discharges in the sulfuric acid clouds of Venus. A particularly strong whistler-mode signal has been found propagating parallel to the magnetic field in the night ionosphere near 100 Hz by the Pioneer Venus spacecraft. At high (radio) frequencies, intermittent signals are also seen reminiscent of terrestrial lightning. However, these signals appear to be weaker than their terrestrial counterparts. On Venus Express, the magnetometer bandwidth is sufficient to record the lightning signals propagating in the whistler mode and will be used to map the occurrence of lightning across the nightside of the planet.  相似文献   

16.
A study of the dawn-dusk asymmetry of the Venus nightside ionosphere is conducted by examining the configuration of the ionospheric trans-terminator flow around Venus and also the dawn-ward displacement of the region where most of the ionospheric holes and the electron density plateau profiles are observed (dawn meaning the west in the retrograde rotation of Venus and that corresponds to the trailing side in its orbital motion). The study describes the position of the holes and the density plateau profiles which occur at neighboring locations in a region that is scanned as the trajectory of the Pioneer Venus Orbiter (PVO) sweeps through the nightside hemisphere with increasing orbit number. The holes are interpreted as crossings through plasma channels that extend downstream from the magnetic polar regions of the Venus ionosphere and the plateau profiles represent cases in which the electron density maintains nearly constant values in the upper ionosphere along the PVO trajectory. From a collection of PVO passes in which these profiles were observed it is found that they appear at neighboring positions of the ionospheric holes in a local solar time (LST) map including cases where only a density plateau profile or an ionospheric hole was detected. It is argued that the ionospheric holes and the density plateau profiles have a common origin at the magnetic polar regions where plasma channels are formed and that the density plateau profiles represent crossings through a friction layer that is adjacent to the plasma channels. It is further suggested that the dawn-dusk asymmetry in the position of both features in the nightside ionosphere results from a fluid dynamic force (Magnus force) that is produced by the combined effects of the trans-terminator flow and the rotational motion of the ionosphere that have been inferred from the PVO measurements.  相似文献   

17.
The finding of36A excess on Venus by the mass-spectroscopic measurement of the Venus Pioneer appears to endorse the more rapid accretion theory of Venus than the Earth and the secondary origin of the terrestrial atmosphere.  相似文献   

18.
Early Pioneer Venus orbiter measurements by the Electron Temperature Probe (OETP) have revealed wavelike structures at the ionopause and clouds of plasma above the ionopause, features which may represent ionospheric plasma at different stages in its removal by solar wind-ionosphere interaction processes. Continuing operation of the orbiter through three Venus years has now provided enough additional examples of these features to permit their morphologies to be examined in some detail. The global distribution of the clouds suggests that they originate at the dayside ionopause as wavelike structures which may become detached and swept downstream in the ionosheath flow. Alternatively the clouds may actually be attached streamers analogous to cometary structure. Estimates of the total ion escape rate from Venus by this process yields values up to 7 × 1026 ions s?1, based on their measured transit times, their probability of occurrence, their statistical distribution and their average electron density. Preliminary analysis shows that such an excape flux could be supplied by the upward diffusion limited flow of 0+ from the entire dayside ionosphere. Observed distortions of dayside ionosphere height profiles suggest that such flows may be present much of the time. If such an escape flux were to continue over the entire lifetime of Venus, the effects upon the evolution of its primitive atmosphere may have been significant.  相似文献   

19.
Several arguments have been put forward suggesting that Venus has no place tectonics. We examine some of these arguments and suggest that because conditions on the surface of Venus are very different from those on Earth, the arguments should be reconsidered. We show that in the absence of an ocean, the differential hypsographic curve of Earth would probably have only one mode, like that for Venus. We show that the atmosphere of Venus is quite capable of erosion, provided that near-surface velocities are about 1 m · sec?1 or more, and that therefore the “oceanic” areas on Venus, should they exist, are probably covered with some thickness of sediment. If sedimentation on Venus is at all rapid, it is likely that subduction zones could be filled up and made unrecognizable topographically. Because Venus does not have an ocean, and because its surface temperature is much greater than that on Earth, ridge crests on Venus have a much smaller topographic expression than those on Earth. If significant sedimentation occurs they would be completely unrecognizable topographically.  相似文献   

20.
Theoretical calculations of extrusive volcanic degassing on Venus yield atmospheric pressure-related rock density profiles consistent with the formation of magma neutral buoyancy zones and magma reservoirs at different depths as a function of altitude (Head and Wilson, J. geophys. Res. 97, 3877, 1992). Global analysis of radiating dike swarms interpreted to originate at magma reservoirs show that their distribution matches these predictions across approximately 90% of the planet's surface; only those highland regions whose elevations exceed 6053 km appear anomalous. The distribution of the large volcano population (extrusive reservoir products) (Keddie and Head, Planet. Space Sci. 42, 455, 1994) has yielded similar results. Comparison between the dike swarm (intrusive) and large volcano (extrusive) populations suggests that neutral buoyancy plays an important role in governing volcanic processes near the venusian surface and that the depth to the level of neutral buoyancy increases systematically at altitudes above 6051 km.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号