首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
We observed the products C4H5, C4H4, C3H3 and CH3 of the C(3P) + C3H6 reaction using product time-of-flight spectroscopy and selective photoionization. The identified species arise from the product channels C4H5 + H, C4H4 + 2H and C3H3 + CH3. Product isomers were identified via measurements of photoionization spectra and calculations of adiabatic ionization energy. Product C4H5 probably involves three isomers HCCCHCH3, H2CCCCH3 and H2CCCHCH2. In contrast, products C4H4 and C3H3 involve exclusively HCCCHCH2 and H2CCCH, respectively. Reaction mechanisms are unraveled with crossed-beam experiments and quantum-chemical calculations. The 3P carbon atom attacks the π orbital of propene (C3H6) to form a cyclic complex c-H2C(C)CHCH3 that rapidly opens the ring to form H2CCCHCH3 followed by decomposition to HCCCHCH3/H2CCCCH3/H2CCCHCH2 + H and H2CCCH + CH3; the corresponding branching ratios are 7:5:10:78 predicted with RRKM calculations at collision energy 4 kcal mol?1. Nascent C4H5 with enough internal energy further decomposes to HCCCHCH2 + H. Ratios of products C4H5, C4H4 and C3H3 are experimentally evaluated to be 17:8:75. This work provides a comprehensive look at product channels of the title reaction and gives implications for the formation of hydrocarbons in extra-terrestrial environments such as Titan and carbon-rich interstellar media. We suggest that the title reaction, hitherto excluded in any chemical networks, needs to be taken into account at least in the atmosphere of Titan and carbon-rich molecular clouds where rapid neutral–neutral reactions are dominant and carbon atoms and propene are abundant.  相似文献   

2.
The nature of cometary volatile materials is subject to debate. Theoretical models of cometary nuclei and laboratory studies suggest that these objects could be made of amorphous water ice in addition to other volatile molecules and refractory grains. This water ice structure has the ability to encapsulate the gases of surrounding environment, reflecting the physical and chemical conditions during their deposition. Therefore, the knowledge of the chemical composition of volatile molecules trapped in amorphous water ice provides a tool for probing the formation environment of cometary ice grains. Experimental studies of gas trapping efficiency in amorphous water ice have been previously conducted mostly under kinetic conditions, where dynamic pumping and temperature gradients prevented rigorous calibrations. In this work, we investigated the trapping efficiencies of Ar, CO, CH4, Kr and N2 by depositing water vapor as ice in the presence of trace gases in a volume submerged in liquid nitrogen at 77 K. The gas trapping efficiencies were determined simply by monitoring the pressure difference of the trace gases before and after the deposition of a known amount of water molecules as amorphous ice.Our results show that the trapped gas to water molecule ratio in amorphous ice is controlled primarily by the partial pressure of the gas during water ice deposition, and is independent of the ice deposition rate as well as the gas to water ratio in the vapor phase. The trapping efficiencies of gases decrease in the order of Kr > CH4 > CO > Ar > N2 in accordance with previous studies. Assuming that the water ice structure of comets is at least partially amorphous water ice at the time of their formation, these results suggest that the total pressure and composition of the surrounding environment of amorphous ice formation are significant controlling factors of trace gas concentrations in cometary ice. This further indicates that the evolution of the solar nebula and timing of cometary ice condensation can also be important parameters in linking the volatile contents of comets and their formation process.  相似文献   

3.
We present spectral and spatial information for major volatile species in Comet 10P/Tempel 2, based on high-dispersion infrared spectra acquired on UT 2010 July 26 (heliocentric distance Rh = 1.44 AU) and September 18 (Rh = 1.62 AU), following the comet’s perihelion passage on UT 2010 July 04. The total production rate for water on July 26 was (1.90 ± 0.12) × 1028 molecules s?1, and abundances of six trace gases (relative to water) were: CH3OH (1.58% ± 0.23%), C2H6 (0.39% ± 0.04%), NH3 (0.83% ± 0.20%), and HCN (0.13% ± 0.02%). A detailed analysis of intensities for water emission lines provided a rotational temperature of 35 ± 3 K. The mean OPR is consistent with nuclear spin populations in statistical equilibrium (OPR = 3.01 ± 0.18), and the (1σ) lower bound corresponds to a spin temperature >38 K. Our measurements were contemporaneous with a jet-like feature observed at optical wavelengths. The spatial profiles of four primary volatiles display strong enhancements in the jet direction, which favors release from a localized vent on the nucleus. The measured IR continuum is much more sharply peaked and is consistent with a dominant contribution from the nucleus itself. The peak intensities for H2O, CH3OH, and C2H6 are offset by ~200 km in the jet direction, suggesting the possible existence of a distributed source, such as the release of icy grains that subsequently sublimed in the coma. On UT September 18, no obvious emission lines were present in our spectra, nevertheless we obtained a 3σ upper limit Q(H2O) < 2.86 × 1027 molecules s?1.  相似文献   

4.
Vertical distributions and spectral characteristics of Titan’s photochemical aerosol and stratospheric ices are determined between 20 and 560 cm?1 (500–18 μm) from the Cassini Composite Infrared Spectrometer (CIRS). Results are obtained for latitudes of 15°N, 15°S, and 58°S, where accurate temperature profiles can be independently determined.In addition, estimates of aerosol and ice abundances at 62°N relative to those at 15°S are derived. Aerosol abundances are comparable at the two latitudes, but stratospheric ices are ~3 times more abundant at 62°N than at 15°S. Generally, nitrile ice clouds (probably HCN and HC3N), as inferred from a composite emission feature at ~160 cm?1, appear to be located over a narrow altitude range in the stratosphere centered at ~90 km. Although most abundant at high northern latitudes, these nitrile ice clouds extend down through low latitudes and into mid southern latitudes, at least as far as 58°S.There is some evidence of a second ice cloud layer at ~60 km altitude at 58°S associated with an emission feature at ~80 cm?1. We speculate that the identify of this cloud may be due to C2H6 ice, which in the vapor phase is the most abundant hydrocarbon (next to CH4) in the stratosphere of Titan.Unlike the highly restricted range of altitudes (50–100 km) associated with organic condensate clouds, Titan’s photochemical aerosol appears to be well-mixed from the surface to the top of the stratosphere near an altitude of 300 km, and the spectral shape does not appear to change between 15°N and 58°S latitude. The ratio of aerosol-to-gas scale heights range from 1.3–2.4 at about 160 km to 1.1–1.4 at 300 km, although there is considerable variability with latitude. The aerosol exhibits a very broad emission feature peaking at ~140 cm?1. Due to its extreme breadth and low wavenumber, we speculate that this feature may be caused by low-energy vibrations of two-dimensional lattice structures of large molecules. Examples of such molecules include polycyclic aromatic hydrocarbons (PAHs) and nitrogenated aromatics.Finally, volume extinction coefficients NχE derived from 15°S CIRS data at a wavelength of λ = 62.5 μm are compared with those derived from the 10°S Huygens Descent Imager/Spectral Radiometer (DISR) data at 1.583 μm. This comparison yields volume extinction coefficient ratios NχE(1.583 μm)/NχE(62.5 μm) of roughly 70 and 20, respectively, for Titan’s aerosol and stratospheric ices. The inferred particle cross-section ratios χE(1.583 μm)/χE(62.5 μm) appear to be consistent with sub-micron size aerosol particles, and effective radii of only a few microns for stratospheric ice cloud particles.  相似文献   

5.
《Planetary and Space Science》2007,55(10):1328-1345
The planetary fourier spectrometer (PFS) for the Mars express mission (MEX) is an infrared spectrometer operating in the wavelength range from 1.2 to 45 μm by means of two spectral channels, called SWC (short wavelength channel) and LWC (long wavelength channel), covering, respectively, 1.2–5.5 and 5.5–45 μm.The middle-spring Martian north polar cap (Ls∼40°) has been observed by PFS/MEX in illuminated conditions during orbit 452. The SWC spectra are here used to study the cap composition in terms of CO2 ice, H2O ice and dust content. Significant spectral variation is noted in the cap interior, and regions of varying CO2 ice grain sizes, water frost abundance, CO2 ice cover and dust contamination can be distinguished. In addition, we correlate the infrared spectra with an image acquired during the same orbit by the OMEGA imaging spectrometer and with the altimetry from MOLA data. Many of the spectra variations correlate with heterogeneities noted in the image, although significant spectral variations are not discernible in the visible. The data have been divided into five regions with different latitude ranges and strong similarities in the spectra, and then averaged. Bi-directional reflectance models have been run with the appropriate lighting geometry and used to fit the observed data, allowing for CO2 ice and H2O ice grain sizes, dust and H2O ice contaminations in the form of intimate granular mixtures and spatial mixtures.A wide annulus of dusty water ice surrounds the recessing CO2 seasonal cap. The inner cap exhibits a layered structure with a thin CO2 layer with varying concentrations of dark dust, on top of an H2O ice underneath ground. In the best-fits, the ices beneath the top layer have been considered as spatial mixtures. The results are still very good everywhere in the spectral range, except where the CO2 ice absorption coefficients are such that even a thin layer is enough to totally absorb the incoming radiation (i.e. the band is saturated). This only happens around 3800 cm−1, inside the strong 2.7-μm CO2 ice absorption band. The effect of finite snow depth has been investigated through a layered albedo model. The thickness of the CO2 ice deposits increases with latitude, ranging from 0.5–1 g cm−2 within region II to 60–80 g cm−2 within the highest-latitude (up to 84°N) region V.Region I is at the cap edge and extends from 65°N to 72°N latitude. No CO2 ice is present in this region, which consists of relatively large grains of water ice (20 μm), highly contaminated by dust (0.15 wt%). The adjacent region II is a narrow region [76–79°N] right at the edge of the north residual polar cap. This region is very distinct in the OMEGA image, where it appears to surround the whole residual cap. The CO2 ice features are barely visible in these spectra, except for the strong saturated 2.7 μm band. It basically consists of a thin layer of 5-mm CO2 ice on top of an H2O ice layer with the same composition as region I. A third interesting region III is found all along the shoulder of the residual cap [79–81°N]. It extends over 1.5 km in altitude and over only 2° of latitude and consists of CO2 ice with a large dust content. It is an admixture of CO2 ice (3–4 mm), with several tens of ppm by mass of water ice and more than 2 ppt by mass of dust. The surface temperatures have been retrieved from the LWC spectra for each observation. We found an increase in the surface temperature in this region, indicating a spatial mixture of cold CO2 ice and warmer dust/H2O ice. Region IV is close to the top of the residual cap [81–84°N]; it is much brighter than region III, with a dust content 10 times lower than the latter. The CO2 grain size is 3 mm and strong CO2 ice features are present in the data, indicating a thicker CO2 ice layer than in region II (1–2 g cm−2). The final region V is right at the top of the residual cap (⩾84°N). It is “pure” CO2 ice (no dust) of 5 mm grain sizes, with 30 ppm by weight of water ice. The CO2 ice features are very pronounced and the 2.7 μm band is saturated. The optical thickness is close to the semi-infinite limit (30–40 g cm−2). Assuming a snowpack density of 0.5 g cm−3, we get a minimum thickness of 1–2 cm for the top-layer of regions II and III, 4–10 cm for region IV, and ⩾60–80 cm thickness for region V. These values are in close agreement with several recent results for the south seasonal polar cap.These results should provide new, useful constraints in models of the Martian climate system and volatile cycles.  相似文献   

6.
《New Astronomy》2007,12(3):234-245
We present the Galactic model parameters for thin disc estimated by Sloan Digital Sky Survey (SDSS) data of 14 940 stars with apparent magnitudes 16 < g0  21 in six intermediate latitude fields in the first Galactic quadrant. Star/galaxy separation was performed by using the SDSS photometric pipeline and the isodensity contours in the (g  r)0  (r  i)0 two colour diagram. The separation of thin disc stars is carried out by the bimodal distribution of stars in the (g  r)0 histogram, and the absolute magnitudes were evaluated by a procedure presented in the literature (Bilir, S., Karaali, S., Tunçel, S. 2005. AN 326, 321). Exponential density law fits better to the derived density functions for the absolute magnitude intervals 8 < M(g)  9 and 11 < M(g)  12, whereas sech/sech2 laws are more appropriate for absolute magnitude intervals 9 < M(g)  10 and 10 < M(g)  11. We showed that the scaleheight and scalelength are Galactic longitude dependent. The average values and ranges of the scaleheight and the scalelength are 〈H = 220 pc (196  H  234 pc) and 〈H = 1900 pc (1561  h  2280 pc) respectively. This result would be useful to explain different numerical values claimed for those parameters obtained by different authors for the fields in different directions of the Galaxy.  相似文献   

7.
The exosphere of an atmosphereless icy moon is the result of different surface release processes and subsequent modification of the released particles. At Europa icy moon, water molecules are directly released, but photolysis and radiolysis due to solar UV and Jupiter’s magnetospheric plasma, respectively, can result in OH, H, O and (possibly) H2 production. These molecules can recombine to reform water and/or new chemical species. As a consequence, Europa’s neutral environment becomes a mixture of different molecules, among which, H2O dominates in the highest altitudes and O2, formed mainly by radiolysis of ice and subsequent release of the produced molecules, prevails at lower altitudes. In this work, starting from a previously developed Monte Carlo model for the generation of Europa’s exosphere, where the only considered species was water, we make a first attempt to simulate also the H2 and O2 components of the neutral environment around Europa, already observed by the Hubble Space Telescope and the Ultraviolet Imaging Spectrograph on board Cassini, during its flyby of Jupiter. Considering a specific configuration where the leading hemisphere coincides with the sunlit hemisphere, we estimate along the Europa–Sun line an O2 column density of about 1.5 × 1019 m?2 at the dayside and 3 × 1018 m?2 at the nightside. In this work we also improve our previous estimation of the sputtered H2O exosphere of this moon, taking into consideration the trailing–leading asymmetry in the magnetospheric ion bombardment and the energy and temperature dependences of the process yields. We find that a density of 1.5 × 1012 H2O/m3 is expected at altitudes ~0.1RE above the surface of the trailing hemisphere. Additionally, we calculate the escape of H2O, O2 and H2. The total number of neutral atoms in Europa’s neutral torus, is estimated to be in the range 7.8 × 1032–3.3 × 1033.  相似文献   

8.
《New Astronomy》2007,12(6):446-453
Using reliable trigonometric measurements, we find that the absolute magnitude of cataclysmic variables depends on the orbital period and de-reddened (J  H)0 and (H  K s)0 colours of 2MASS (Two Micron All Sky Survey) photometric system. The calibration equation covers the ranges 0.032d < Porb  0.454d, −0.08 < (J  H)0  1.54, −0.03 < (H  Ks)0  0.56 and 2.0 < MJ < 11.7; It is based on trigonometric parallaxes with relative errors of (σπ/π)  0.4. By using the period-luminosity-colours (PLCs) relation, we estimated the distances of cataclysmic variables with orbital periods and 2MASS observations and compared them with distances found from other methods. We suggest that the PLCs relation can be a useful statistical tool to estimate the distances of cataclysmic variables.  相似文献   

9.
We present the ensemble properties of 31 comets (27 resolved and 4 unresolved) observed by the Sloan Digital Sky Survey (SDSS). This sample of comets represents about 1 comet per 10 million SDSS photometric objects. Five-band (u, g, r, i, z) photometry is used to determine the comets’ colors, sizes, surface brightness profiles, and rates of dust production in terms of the A formalism. We find that the cumulative luminosity function for the Jupiter Family Comets in our sample is well fit by a power law of the form N(<H)  10(0.49±0.05)H for H < 18, with evidence of a much shallower fit N(<H)  10(0.19±0.03)H for the faint (14.5 < H < 18) comets. The resolved comets show an extremely narrow distribution of colors (0.57 ± 0.05 in g ? r for example), which are statistically indistinguishable from that of the Jupiter Trojans. Further, there is no evidence of correlation between color and physical, dynamical, or observational parameters for the observed comets.  相似文献   

10.
It has been revealed recently that, in the scale free range, i.e. from the scale of the onset of nonlinear evolution to the scale of dissipation, the velocity and mass density fields of cosmic baryon fluid are extremely well described by the self-similar log-Poisson hierarchy. As a consequence of this evolution, the relations among various physical quantities of cosmic baryon fluid should be scale invariant, if the physical quantities are measured in cells on scales larger than the dissipation scale, regardless the baryon fluid is in virialized dark halo, or in pre-virialized state. We examine this property with the relation between the Compton parameter of the thermal Sunyaev–Zel’dovich effect, y(r), and X-ray luminosity, Lx(r), where r being the scale of regions in which y and Lx are measured. According to the self-similar hierarchical scenario of nonlinear evolution, one should expect that (1) in the y(r) ? Lx(r) relation, y(r) = 10A(r)[Lx(r)]α(r), the coefficients A(r) and α(r) are scale-invariant; (2) The relation y(r) = 10A(r)[Lx(r)]α(r) given by cells containing collapsed objects is also available for cells without collapsed objects, only if r is larger than the dissipation scale. These two predictions are well established with a scale decomposition analysis of observed data, and a comparison of observed y(r) ? Lx(r) relation with hydrodynamic simulation samples. The implication of this result on the characteristic scales of non-gravitational heating is also addressed.  相似文献   

11.
We report sensitive Chandra X-ray non-detections of two unusual, luminous Iron Low-Ionization Broad Absorption Line Quasars (FeLoBALs). The observations do detect a non-BAL, wide-binary companion quasar to one of the FeLoBAL quasars. We combine X-ray-derived column density lower limits (assuming solar metallicity) with column densities measured from ultraviolet spectra and CLOUDY photoionization simulations to explore whether constant-density slabs at broad-line region densities can match the physical parameters of these two BAL outflows, and find that they cannot. In the “overlapping-trough” object SDSS J0300+0048, we measure the column density of the X-ray absorbing gas to be NH ? 1.8 × 1024 cm?2. From the presence of Fe ii UV78 absorption but lack of Fe ii UV195/UV196 absorption, we infer the density in that part of the absorbing region to be ne ? 106 cm?3. We do find that a slab of gas at that density might be able to explain this object’s absorption. In the Fe iii-dominant object SDSS J2215–0045, the X-ray absorbing column density of NH ? 3.4 × 1024 cm?2 is consistent with the Fe iii-derived NH ? 2 × 1022 cm?2 provided the ionization parameter is log U > 1.0 for both the ne = 1011 cm?3 and ne = 1012 cm?3 scenarios considered (such densities are required to produce Fe iii absorption without Fe iiabsorption). However, the velocity width of the absorption rules out its being concentrated in a single slab at these densities. Instead, this object’s spectrum can be explained by a low density, high ionization and high temperature disk wind that encounters and ablates higher density, lower ionization Fe iii-emitting clumps.  相似文献   

12.
Vladimir Krasnopolsky 《Icarus》2012,219(1):244-249
To search for DCl in the Venus atmosphere, a spectrum near the D35Cl (1–0) R4 line at 2141.54 cm?1 was observed using the CSHELL spectrograph at NASA IRTF. Least square fitting to the spectrum by a synthetic spectrum results in a DCl mixing ratio of 17.8 ± 6.8 ppb. Comparing to the HCl abundance of 400 ± 30 ppb (Krasnopolsky [2010a] Icarus, 208, 314–322), the DCl/HCl ratio is equal to 280 ± 110 times the terrestrial D/H = 1.56 × 10?4. This ratio is similar to that of HDO/H2O = 240 ± 25 times the terrestrial HDO/H2O from the VEX/SOIR occultations at 70–110 km. Photochemistry in the Venus mesosphere converts H from HCl to that in H2O with a rate of 1.9 × 109 cm?2 s?1 (Krasnopolsky [2012] Icarus, 218, 230–246). The conversion involves photolysis of HCl; therefore, the photochemistry tends to enrich D/H in HCl and deplete in H2O. Formation of the sulfuric acid clouds may affect HDO/H2O as well. The enriched HCl moves down by mixing to the lower atmosphere where thermodynamic equilibriums for H2 and HCl near the surface correspond to D/H = 0.71 and 0.74 times that in H2O, respectively. Time to establish these equilibriums is estimated at ~3 years and comparable to the mixing time in the lower atmosphere. Therefore, the enriched HCl from the mesosphere gives D back to H2O near the surface. Comparison of chemical and mixing times favors a constant HDO/H2O up to ~100 km and DCl/HCl equal to D/H in H2O times 0.74.Ammonia is an abundant form of nitrogen in the reducing environments. Thermodynamic equilibriums with N2 and NO near the surface of Venus give its mixing ratio of 10?14 and 6 × 10?7, respectively. A spectrum of Venus near the NH3 line at 4481.11 cm?1 was observed at NASA IRTF and resulted in a two-sigma upper limit of 6 ppb for NH3 above the Venus clouds. This is an improvement of the previous upper limit by a factor of 5. If ammonia exists at the ppb level or less in the lower atmosphere, it quickly dissociates in the mesosphere and weakly affects its photochemistry.  相似文献   

13.
The Franck–Condon (FC) factors and r-centroids are defined through elementary integrals that involve vibrational wave functions on which they depend in a sensitive manner. The FC factors and r-centroids have been evaluated by a reliable numerical integration procedure on the basis of RKR potential energy model, for the A2Π3/2 ? X2Σ+, A2Π1/2 ? X2Σ+ and B2Σ+ ? X2Σ+ band systems of the astrophysically important yttrium oxide molecule. RKR and Morse potential values have been generated for all the four electronic states of YO molecule. All of these three systems of YO show significant rotational independence.  相似文献   

14.
From a comparison between the different observations of Martian methane existing today, including the new TES methane maps (Fonti and Marzo, 2010), we show that all sets of data are globally consistent with each other, and that a well definite seasonal cycle of methane has been at work for at least 10 yr. With a simple model of the balance between the loss fluxes of H and O, using up-to-date values of the escape fluxes, we show that the long-standing enigma of the imbalance between H and O escape fluxes may be solved by assuming that the missing sink of oxygen is the oxidation of methane. If no H2 is released together with CH4, a good agreement is found between the present CH4 flux and the value imposed by the balance between H and O escape fluxes, an average over the last ≈103 yr. If H2 is released together with CH4, as expected if CH4 originates in serpentinization, the average level of CH4 during the last 103 yr should have been at least ten times lower than the present one. The lack of present H2 release could suggest a long-term storage of methane in the subsurface under the form of clathrates, whereas H2 has been lost to the atmosphere shortly after being produced. We suggest that the thin layer of CO2 ice covering the permanent southern polar cap could result from the release of methane since the end of the last obliquity transition (time scale: 1 Myr), at an average rate of 0.1 Mt yr?1, consistent with the values derived from: (i) the present observations of methane (time scale: 10 yr), (ii) the estimate from the observed imbalance between the H and O escape fluxes (time scale: 1 kyr). If so, the present release of methane from subsurface clathrates would have acted at a similar rate since at least 3 Myr.  相似文献   

15.
The transition 111 ? 110 at 4.829 GHz of formaldehyde (H2CO) was the first one showing the anomalous absorption, i.e., the absorption against the cosmic microwave background. Anomalous absorption is an unusual phenomena. Structure of H2CC is very similar to that of H2CO and H2CS. Both H2CO and H2CS have already been identified in a number of cosmic objects. Though H2CC is not yet identified in the cosmic objects, we propose that H2CC may be identified in cool cosmic objects through its transition 111 ? 110 at 4.85 GHz in anomalous absorption.  相似文献   

16.
We present the two-dimensional distribution of the O2 a1Δ–X3Σ (0–0) band at 1.27 μm and the OH Δv = 1 Meinel airglow measured simultaneously with the Visible and Infrared Thermal Imaging Spectrometer (VIRTIS) on board Venus Express. We show that the two emissions present very similar spatial structures. A cross-correlation analysis indicates that the highest level of correlation is reached with only very small relative shifts of the pairs of images. In spite of the strong spatial correlation between the morphology of the bright spots in the two emissions, we also show that their relative intensity is not constant, in agreement with earlier statistical studies of their limb profiles. We conclude that the two emissions have a common precursor that controls the production of both excited species. We argue that atomic oxygen, which produces O2 (1Δ) molecules by three-body recombination and is the precursor of ozone formation, also governs to a large extent the OH airglow morphology through the H + O3  OH* + O2 reaction.  相似文献   

17.
The ZrO molecule has been detected in sunspot umbrae through the identification of following laboratory molecular transitions: 1Σ+ ? X1Σ+ (0, 0), A3Φ2 ? X2Δ1 (0, 0), A3Φ3 ? X2Δ2 (0, 0), A3Φ4 ? X2Δ3 (0, 0), B3Π2 ? X3Δ3 (0, 0), B3Π1 ? X3Δ2 (0, 0) and B3Π0 ? X3Δ1 (0, 0) in red – infrared region using high resolution, visible range Fourier Transform Spectrum of sunspot umbra observed at the National Solar Observatory in Kitt Peak (NSO/KP). Much new identification has been made in the searched spectral wavenumber region from 16650 cm?1 to 18007 cm?1 of sunspot spectrum. Equivalent widths of well resolved lines, versus rotational quantum number J have been used to determine the effective rotational temperature for seven bands of the ZrO molecule. This result agrees well with the temperatures derived for other molecules’ presence in sunspot umbrae. It is evident that ZrO molecular lines are formed in higher layers of the atmosphere of relatively “cold” sunspots.  相似文献   

18.
Michael J.S. Belton 《Icarus》2010,210(2):881-897
The properties of 50 jet and jet-filament outflows from 27 active areas observed on the four comet nuclei that have been visited by spacecraft (1P/Halley, 19P/Borrelly, 81P/Wild 2, and 9P/Tempel 1) are investigated and we propose a taxonomic categorization in which there are three types of active areas: Type I that is dominated by the sublimation of H2O through the porous mantle; Type II that is controlled by the localized and persistent effusion of super-volatiles from the interior; and Type III that is characterized by episodic releases of super-volatiles.The zonally averaged distribution of active area locations associated with Type II outflows over the four comets is calculated and we find that they are distributed randomly in latitude. In longitude, the distribution shows a marginal tendency for active areas to occur more frequently in the region near the ends of the long axis or, alternatively, a tendency to avoid the region close to the ends of the intermediate axis.Combining observations of filamentary structure with exploratory hydrodynamic calculations we find that Type II outflows are likely to be relatively cold laminar flows (Re < 1000) of a mixture of CO2, CO and H2O that are highly collimated (6–10° full-cone angle) during the daytime as a result of being constrained by the ambient H2O atmosphere. We propose that they become visible as a result of the turbulent momentum flux at the base of the filamentary structure that causes the friable surface to release dust at a higher rate than in surrounding areas.We present evidence that indicates that geophysical flows occur on cometary nuclei other than 9P/Tempel 1 and discuss a possible scenario for the long-term evolution of cometary surfaces near the Sun. We conclude with an exposition of a cometary activity paradigm brought up-to-date with discoveries made with recent space missions, associated Earth-based investigations, and the results of this work.  相似文献   

19.
Building upon previous studies, we re-investigated the ethane spectrum between 1330 and 1610 cm?1 by combining unapodized spectra obtained at room temperature with a Bruker Fourier transform spectrometer (FTS) in Brussels and at 131 K with a Bruker FTS in Pasadena. The maximum optical path differences (MOPD) of the two datasets were 450 and 323.7 cm, corresponding to spectral resolutions of 0.0020 and 0.0028 cm?1, respectively. Of the 15,000 lines observed, over 4592 transitions were assigned to the ν6 (at 1379 cm?1), ν8 (at 1472 cm?1), ν412 (at 1481 cm?1) and 2ν49 (at 1388 cm?1) bands, and another 1044 transitions were located for the ν484 hot band (at 1472 cm?1). Our new analysis included an improved implementation of the Hamiltonian calculation needed to interpret the complex spectral structures caused by numerous interactions affecting these four modes of vibration. From these results, we created the first line-by-line database containing the molecular parameters for over 20,000 12C2H6 transitions at 7 μm.  相似文献   

20.
We present a multicolor photometry for the eclipsing binary WY Hydrae, observed on four nights of 2008 December. From our new observations and Carr’s data, the photometric solutions were deduced by using the updated W–D program. The results show that WY Hya is a detached binary with a mass ratio of q = 0.970(±0.005).By analyzing the OC curve, it is found that there exists either a continuous period increase or a cyclic variation. From Eq. (2), the orbital period of WY Hya secularly increases at a rate of dP/dt = +3.56(±0.37) × 10?7 days/yr, which may be interpreted by some mass transfer for the near-contact configuration or tidal dissipation. From Eq. (3), the period and semi-amplitude of the periodic oscillation are P3 = 95.4(±4.2) yr and A = 0d.0087(±0d.0003), respectively. This may be likely attributed by light-time effect via the presence of the assumed third body. Assumed in the coplanar orbit with the binary, the mass of the third body should be M3 = 0.18 M. If the unseen additional companion exists, it will extract angular momentum from the binary system. Finally, WY Hya with high fill-out factors (i.e., f1,2 > 80%), may evolve into a semi-detached configuration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号