首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 311 毫秒
1.
Negative superhumps in cataclysmic variable systems result when the accretion disc is tilted with respect to the orbital plane. The line of nodes of the tilted disc precesses slowly in the retrograde direction, resulting in a photometric signal with a period slightly less than the orbital period. We use the method of smoothed particle hydrodynamics to simulate a series of models of differing mass ratio and effective viscosity to determine the retrograde precession period and superhump period deficit  ɛ  as a function of system mass ratio q . We tabulate our results and present fits to both  ɛ  and  ɛ+  versus q , as well as compare the numerical results with those compiled from the literature of negative superhump observations. One surprising result is that while we find negative superhumps most clearly in simulations with an accretion stream present, we also find evidence for negative superhumps in simulations in which we shut off the mass transfer stream completely, indicating that the origin of the photometric signal is more complicated than previously believed.  相似文献   

2.
We investigate the growth of tidal instabilities in accretion discs in a binary star potential, using three-dimensional numerical simulations. As expected from analytic work, the disc is prone to an eccentric instability provided that it is large enough to extend to the 3:1 resonance. The eccentric disc leads to positive superhumps in the light curve. It has been proposed that negative superhumps might arise from a tilted disc, but we find no evidence that the companion gravitational tilt instability can grow fast enough in a fluid disc to create a measurable inclination. The origin of negative superhumps in the light curves of cataclysmic variables remains a puzzle.  相似文献   

3.
We present three-dimensional smoothed particle hydrodynamics calculations of warped accretion discs in X-ray binary systems. Geometrically thin, optically thick accretion discs are illuminated by a central radiation source. This illumination exerts a non-axisymmetric radiation pressure on the surface of the disc, resulting in a torque that acts on the disc to induce a twist or warp. Initially planar discs are unstable to warping driven by the radiation torque and, in general, the warps also precess in a retrograde direction relative to the orbital flow. We simulate a number of X-ray binary systems which have different mass ratios, using a number of different luminosities for each. Radiation-driven warping occurs for all systems simulated. For mass ratios   q ∼ 0.1  a moderate warp occurs in the inner disc while the outer disc remains in the orbital plane (cf. X 1916−053). For less extreme mass ratios, the entire disc tilts out of the orbital plane (cf. Her X–1). For discs that are tilted out of the orbital plane in which the outer edge material of the disc is precessing in a prograde direction, we obtain both positive and negative superhumps simultaneously in the dissipation light curve (cf. V603 Aql).  相似文献   

4.
A time-resolved spectroscopic study of V603 Aql (Nova Aquilae 1918) is presented. An orbital period of P orb=01385±00002, consistent with previous results, and a radial velocity semi-amplitude of K =20±3 km s1 are obtained from the radial velocity variations of the H emission line. Similar K values are also found in H , H , and He  i emission lines. Using the measured FWHM of the H line and assuming that the derived semi-amplitude is that of the white dwarf, we deduce a most likely mass ratio of q =0.24±0.05 and stellar masses of M 2=0.29±0.04 M and M 1=1.2±0.2 M for the secondary and primary (the white dwarf) star, respectively. The dynamical solution also indicates a very low orbital inclination, i =13°±2°. We find that the continuum and line variations are modulated with both the positive and the negative superhump periods, indicating that they arise from similar regions of the accretion disc. Moreover, we find, for the first time from spectroscopy, evidence of negative superhumps in addition to the positive superhumps. Positive superhumps are explained within the disc instability model as caused by an eccentric disc surrounding the white dwarf, which is precessing (apsidal advance) because of tidal instabilities, causing the observed positive superhumps. A nodal precession in the accretion disc is currently believed to be the cause of the observed negative superhumps. The low value of q is consistent with the expected value for systems that show superhumps, in accordance with the eccentric disc model. We find no evidence of periodicity associated with the spin period.  相似文献   

5.
We present phase resolved optical photometry and spectroscopy of the accreting millisecond pulsar HETE J1900.1−2455. Our R -band light curves exhibit a sinusoidal modulation, at close to the orbital period, which we initially attributed to X-ray heating of the irradiated face of the secondary star. However, further analysis reveals that the source of the modulation is more likely due to superhumps caused by a precessing accretion disc. Doppler tomography of a broad Hα emission line reveals an emission ring, consistent with that expected from an accretion disc. Using the velocity of the emission ring as an estimate for the projected outer disc velocity, we constrain the maximum projected velocity of the secondary to be 200 km s−1, placing a lower limit of  0.05 M  on the secondary mass. For a  1.4 M  primary, this implies that the orbital inclination is low, ≲20°. Utilizing the observed relationship between the secondary mass and the orbital period in short-period cataclysmic variables, we estimate the secondary mass to be ∼0.085  M  , which implies an upper limit of  ∼2.4 M  for the primary mass.  相似文献   

6.
The eclipsing nova-like cataclysmic variable star V348 Pup exhibits a persistent luminosity modulation with a period 6 per cent longer than its 2.44-h orbital period ( P orb). This has been interpreted as a 'positive superhump' resulting from a slowly precessing non-axisymmetric accretion disc gravitationally interacting with the secondary. We find a clear modulation of mid-eclipse times on the superhump period, which agrees well with the predictions of a simple precessing eccentric disc model. Our modelling shows that the disc light centre is on the far side of the disc from the donor star when the superhump reaches maximum light. This phasing suggests a link between superhumps in V348 Pup and late superhumps in SU UMa systems. Modelling of the full light curve and maximum entropy eclipse mapping both show that the disc emission is concentrated closer to the white dwarf at superhump maximum than at superhump minimum. We detect additional signals consistent with the beat periods between the implied disc precession period and both and  相似文献   

7.
We compare analytical expressions of precession rates from apsidal (positive) superhumps in close binary systems with numerical disc simulation results and observed values. In the analytical expressions, we include both the dynamical effects on the precession of the disc and effects caused by pressure forces that have been theorized to provide a retrograde effect (i.e. slowing) on the prograde disc precession. We establish new limits on density wave pitch angle to a normalized disc sound speed 60≥Ωorb  d  tan  i / c >2.214 . Using average values for the density wave pitch angle i and speed of sound c , we find good correlation between numerical simulations and the analytical expression for the apsidal superhump period excess, which includes both the prograde and retrograde effects, for mass ratios of 0.025≤ q ≤0.33 . We also show good correlations with the four known eclipsing systems, OY Car, Z Cha, HT Cas, and WZ Sge. Our analytical expression for apsidal superhump period excess as a function of orbital period is consistent with the trend found in observed systems.  相似文献   

8.
We consider the effect of a supernova (SN) explosion in a very massive binary that is expected to form in a portion of Population III stars with the mass higher than  100 M  . In a Population III binary system, a more massive star can result in the formation of a black hole (BH) and a surrounding accretion disc. Such BH accretion could be a significant source of the cosmic reionization in the early Universe. However, a less massive companion star evolves belatedly and eventually undergoes a SN explosion, so that the accretion disc around a BH might be blown off in a lifetime of companion star. In this paper, we explore the dynamical impact of a SN explosion on an accretion disc around a massive BH, and elucidate whether the BH accretion disc is totally demolished or not. For the purpose, we perform three-dimensional hydrodynamic simulations of a very massive binary system, where we assume a BH of  103 M  that results from a direct collapse of a very massive star and a companion star of  100 M  that undergoes a SN explosion. We calculate the remaining mass of a BH accretion disc as a function of time. As a result, it is found that a significant portion of gas disc can survive through three-dimensional geometrical effects even after the SN explosion of a companion star. Even if the SN explosion energy is higher by two orders of magnitude than the binding energy of gas disc, about a half of disc can be left over. The results imply that the Population III BH accretion disc can be a long-lived luminous source, and therefore could be an important ionizing source in the early Universe.  相似文献   

9.
We present the first of two papers describing an in-depth study of multiwaveband phase-resolved spectroscopy of the unusual dwarf nova WZ Sge. In this paper we present an extensive set of Doppler maps of WZ Sge covering optical and infrared emission lines, and describe a new technique for studying the accretion discs of cataclysmic variables using ratioed Doppler maps. Applying the ratioed Doppler map technique to our WZ Sge data shows that the radial temperature profile of the disc is unlike that predicted for a steady state α disc. Time-averaged spectra of the accretion disc line flux (with the bright spot contribution removed) show evidence in the shapes of the line profiles for the presence of shear broadening in a quiescent non-turbulent accretion disc. From the positions of the bright spots in the Doppler maps of different lines, we conclude that the bright spot region is elongated along the ballistic stream, and that the density of the outer disc is low. The velocity of the outer edge of the accretion disc measured from the H α line is found to be 723±23 km s−1. Assuming that the accretion disc reaches to the 3:1 tidal resonance radius, we derive a value for the primary star mass of 0.82 M. We discuss the implications of our results on the present theories of WZ Sge type dwarf nova outbursts.  相似文献   

10.
The 2001 outburst of WZ Sagittae has shown the most compelling evidence yet for an enhancement of the mass-transfer rate from the donor star during a dwarf nova outburst in the form of hotspot brightening. I show that, even in this extreme case, the brightening can be attributed to tidal heating near the interaction point of an accretion stream with the expanding edge of an eccentric accretion disc, with no need at all for an increase in the mass-transfer rate. Furthermore, I confirm previous suggestions that an increase in mass-transfer rate through the stream damps any eccentricity in an accretion disc and suppresses the appearance of superhumps, in contradiction to observations. Tidal heating is expected to be most significant in systems with small mass ratios. It follows that systems like WZ Sagittae – which has a tiny mass ratio – are those most likely to show a brightening in the hotspot region.  相似文献   

11.
12.
We consider the effects of accretion stream overflow on the viscous dynamics of accretion discs in dwarf novae. If the stream from the secondary star is geometrically thick enough, some fraction of its material can flow over and under the disc. The mass and specific angular momentum of the stream are then deposited not only at the point of collision with the outer disc, but also at those radii in the inner disc with geometric heights that are large enough to intercept the residual stream, or near the radius where the disc has the same specific angular momentum as the stream. The overflowing stream can alter the behaviour of heating fronts and cooling fronts in the disc. If the mass fraction of the overflowing stream is of order tens of per cent, the deposition of mass in the inner parts of the disc is sufficient to change the character of the eruption light curves significantly.  相似文献   

13.
14.
Young massive stars in the central parsec of our Galaxy are best explained by star formation within at least one, and possibly two, massive self-gravitating gaseous discs. With help of numerical simulations, we here consider whether the observed population of young stars could have originated from a large angle collision of two massive gaseous clouds at   R ≃ 1 pc  from Sgr A*. In all the simulations performed, the post-collision gas flow forms an inner, nearly circular gaseous disc and one or two eccentric outer filaments, consistent with the observations. Furthermore, the radial stellar mass distribution is always very steep,  Σ*∝ R −2  , again consistent with the observations. All of our simulations produce discs that are warped by between 30° and 60°, in accordance with the most recent observations. The three-dimensional velocity structure of the stellar distribution is sensitive to initial conditions (e.g. the impact parameter of the clouds) and gas cooling details. For example, the runs in which the inner disc is fed intermittently with material possessing fluctuating angular momentum result in multiple stellar discs with different orbital orientations, contradicting the observed data. In all the cases the amount of gas accreted by our inner boundary condition is large, enough to allow Sgr A* to radiate near its Eddington limit over ∼105 yr. This suggests that a refined model would have physically larger clouds (or a cloud and a disc such as the circumnuclear disc) colliding at a distance of a few parsecs rather than 1 pc as in our simulations.  相似文献   

15.
We present results from three XMM–Newton observations of the M31 low mass X-ray binary (LMXB) XMMU J004314.4+410726.3 (Bo 158), spaced over 3 d in 2004 July. Bo 158 was the first dipping LMXB to be discovered in M31. Periodic intensity dips were previously seen to occur on a 2.78-h period, due to absorption in material that is raised out of the plane of the accretion disc. The report of these observations stated that the dip depth was anticorrelated with source intensity. In light of the 2004 XMM–Newton observations of Bo 158, we suggest that the dip variation is due to precession of the accretion disc. This is to be expected in LMXBs with a mass ratio ≲0.3 (period ≲4 h), as the disc reaches the 3:1 resonance with the binary companion, causing elongation and precession of the disc. A smoothed particle hydrodynamics simulation of the disc in this system shows retrograde rotation of a disc warp on a period of  ∼11 P orb  , and prograde disc precession on a period of  29 ± 1 P orb  . This is consistent with the observed variation in the depth of the dips. We find that the dipping behaviour is most likely to be modified by the disc precession, hence we predict that the dipping behaviour repeats on an  81 ± 3 h  cycle.  相似文献   

16.
We present phase resolved optical spectroscopy and Doppler tomography of V1341 Cygni, the optical counterpart to the neutron star low-mass X-ray binary (LMXB) Cygnus X-2 (Cyg X-2). We derive a radial velocity (RV) curve for the secondary star, finding a projected RV semi-amplitude of   K 2= 79 ± 3 km s−1  , leading to a mass function of  0.51 ± 0.06 M, ∼30  per cent lower than the previous estimate. We tentatively attribute the lower value of K 2 (compared to that obtained by other authors) to variations in the X-ray irradiation of the secondary star at different epochs of observations. The limited phase coverage and/or longer timebase of previous observations may also contribute to the difference in K 2. Our value for the mass function implies a primary mass of  1.5 ± 0.3 M  , somewhat lower than previous dynamical estimates, but consistent with the value found by analysis of type-I X-ray bursts from this system. Our Doppler tomography of the broad He  ii λ4686 line reveals that most of the emission from this line is produced on the irradiated face of the donor star, with little emission from the accretion disc. In contrast, the Doppler tomogram of the N  iii λ4640.64 Bowen blend line shows bright emission from near the gas stream/accretion disc impact region, with fainter emission from the gas stream and secondary star. This is the first LMXB for which the Bowen blend is dominated by emission from the gas stream/accretion disc impact region, without comparable emission from the secondary star. This has implications for the interpretation of Bowen blend Doppler tomograms of other LMXBs for which the ephemeris may not be accurately known.  相似文献   

17.
Since its discovery in 1990, UW CrB (also known as MS1603+2600) has remained a peculiar source without firm classification. Our current understanding is that it is an accretion disc corona (ADC) low-mass X-ray binary. In this paper, we present results from our photometric campaign dedicated to studying the changing morphology of the optical light curves. We find that the optical light curves show remarkable evidence for strongly evolving light curve shapes. In addition, we find that these changes show a modulation at a period of ∼5 d. We interpret these changes as either due to strong periodic accretion disc warping or due to other geometrical changes because of disc precession at a period of 5 d. Finally, we have detected 11 new optical bursts, the phase distribution of which supports the idea of a vertically extended asymmetric accretion disc.  相似文献   

18.
We present spectroscopic and high-speed photometric data of the eclipsing polar V895 Cen. We find that the eclipsed component is consistent with it being the accretion regions on the white dwarf. This is in contrast to Stobie et al. who concluded that the eclipsed component was not the white dwarf. Further, we find no evidence for an accretion disc in our data. From our Doppler tomography results, we find that the white dwarf has   M ≳0.7 M  . Our indirect imaging of the accretion stream suggests that the stream is brightest close to the white dwarf. When we observed V895 Cen in its highest accretion state, emission was concentrated along field lines leading to the upper pole. There is no evidence for enhanced emission at the magnetic coupling region.  相似文献   

19.
We perform 2D and 3D numerical simulations of an accretion disc in a close binary system using the simplified flux vector splitting (SFS) finite volume method. In our calculations, the gas is assumed to be ideal with γ =1.01, 1.05, 1.1 and 1.2 . The mass ratio of the mass-losing star to the mass-accreting star is unity. Our results show that spiral shocks are formed on the accretion disc in all cases. In 2D calculations we find that the smaller γ is, the more tightly the spiral winds. We observe this trend in 3D calculations as well in a somewhat weaker sense. Mach numbers in our discs are less than 10. These values are lower than the values in observed accretion discs in close binary systems.
Recently, Steeghs, Harlaftis & Horne found the first convincing evidence for spiral structure in the accretion disc of the eclipsing dwarf nova binary IP Pegasi, using the technique known as Doppler tomography. Although the Mach numbers in present calculations are rather low, we may claim that the spiral structure that we discovered in earlier numerical simulations is now found observationally.  相似文献   

20.
Superhumps in low-mass X-ray binaries   总被引:1,自引:0,他引:1  
We propose a mechanism for the superhump modulations observed in optical photometry of at least two black-hole X-ray transients (SXTs). As in extreme mass-ratio cataclysmic variables (CVs), superhumps are assumed to result from the presence of the 3:1 orbital resonance in the accretion disc. This causes the disc to become non-axisymmetric and precess. However, the mechanism for superhump luminosity variations in low-mass X-ray binaries (LMXBs) must differ from that in CVs, where it is attributed to a tidally-driven modulation of the disc's viscous dissipation, varying on the beat between the orbital and disc precession period. By contrast in LMXBs, tidal dissipation in the outer accretion disc is negligible: the optical emission is overwhelmingly dominated by reprocessing of intercepted central X-rays. Thus a different origin for the superhump modulation is required. Recent observations and numerical simulations indicate that in an extreme mass-ratio system the disc area changes on the superhump period. We deduce that the superhumps observed in SXTs arise from a modulation of the reprocessed flux by the changing area. Therefore, unlike the situation in CVs, where the superhump amplitude is inclination-independent, superhumps should be best seen in low-inclination LMXBs, whereas an orbital modulation from the heated face of the secondary star should be more prominent at high inclinations. Modulation at the disc precession period (10 s of days) may indicate disc asymmetries such as warping. We comment on the orbital period determinations of LMXBs, and the possibility and significance of possible permanent superhump LMXBs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号