首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The status of the cosmic distance scale problem in early 1989 is reviewed. Internally consistent distances to Local Group galaxies are given in Tables 5 and 6. Within the Local Group the distance scale is found to be 11±5% smaller than that previously adopted by Sandage and Tammann. Distances to nearby galaxies are used as stepping stones to the Virgo cluster. The interpretation of the Tully-Fisher observations of Virgo spirals is found to be ambiguous because it is not yet clear which spirals are cluster members and which are background objects. Distance estimates of the Virgo cluster obtained by different techniques are listed in Table 11. The distance modulus of the Virgo cluster is found to be 31.5±0.2, corresponding to a distance of 20±2 Mpc. The elliptical galaxies in the core of the Virgo cluster haveV 0=1200±46 kms–1, which corresponds toV LG=1082±48 km s–1. With an infall velocity of 250±50 km s–1 this yields a cosmological redshiftV=1332±69 km s–1, from which a Hubble parameter H0=67±8 km s–1 Mpc–1 is obtained. Space Telescope observations of distant Cepheids, Tully-Fisher observations of spirals in the Hercules eluster, and interference filter observations of Virgo planetary nebulae in the light of [OIII], should soon result in a major improvement in the accuracy with which H0 is known.  相似文献   

2.
By processing 494 observations of Comet Harrington–Abell, we obtained a unified system of elements that includes its turn around the Sun during which it closely approached Jupiter to a minimum distance of 0.037 AU in 1974. A study of the cometary orbit before and after the approach showed that, probably, at the approach of the comet to Jupiter, apart from the well-known gravitational perturbations, its motion was affected by an additional force. An improvement of the cometary orbit by assuming that an additional acceleration inversely proportional to the square of the distance to Jupiter exists in its motion yielded the following values: (4.57 ± 0.42) × 10–10 and (–7.20 ± 0.42) × 10–10 AU day–2 for the radial and transversal acceleration components, respectively. As a plausible explanation of the changes in the cometary orbit, we additionally considered a model based on the hypothesis of partial disintegration of the cometary nucleus. The parameter that characterizes the instant displacement of the center of inertia along the jovicentric radius vector was estimated to be –1.83 ± 0.75 km. Based on a unified numerical theory of cometary motion, we determined the nongravitational parameters using Marsden's model for two periods: A 1 = (11.68 ± 1.74) × 10–10 AU day–2, A 2 = (0.53 ± 0.0357) × 10–10 AU day–2 for 1975–1999 and A 1 = (5.92 ± 5.86) × 10–10 AU day–2, A 2 = (0.08 ± 0.028) × 10–10 AU day–2 for 1955–1969, under the assumption that the nongravitational acceleration changed at the approach of the comet to Jupiter.  相似文献   

3.
BUSS observations of the profiles of two well observed spectral lines in the ultraviolet spectrum of CMi (Procyon; F5 IV–V) are analysed with a Fourier transform method in order to determine values of various parameters of the velocity field of the upper photosphere. We find a microturbulent line-of-sight velocity componentL = 0.9 ± 0.4 km s–1, a macroturbulent velocity componentL M = 5.3 ± 0.2 km s–1, and a rotational velocity componentv R sini=10.0±1.2 km s–1. In these calculations a single-moded sinusoidal isotropic macroturbulent velocity function was assumed. The result appears to be sensitive to the assumed shape of the macroturbulence function: for an assumed Gaussian shape the observations can be described withv R sini=4 km s–1 andL M = 11.6 ± 2.7 km s–1. A comparison is made with other results and theoretical predictions.  相似文献   

4.
Diffuse cosmic X-rays in the energy range 20–125 keV were measured in four balloon flights from Hyderabad, India during 1968–70 using almost identical X-ray telescopes mounted on oriented platforms. The results from these flights show that the spectrum of the diffuse cosmic X-rays can be represented by the form dN/dE=29E –2.1±0.3 photons/(cm2 sr s keV) in 20–125 keV interval after corrections for photoelectric absorption and Compton scattering effects in the atmosphere. The best fit spectrum of all published results in the energy interval 20–200 keV can be represented by the form dN/dE=36E –2.1±0.1 photons/(cm2 sr s keV) after similar corrections are effected, and there is no need for a change of spectral index in this energy interval. The intensity at 20 keV obtained from the above spectrum agrees well with that given by the spectral form dN/dE=10E –1.7±0.1 photons/(cm2 sr s keV) in the energy interval 1–20 keV in several rocket experiments. Therefore it is concluded that if there is a break in the spectrum, it occurs between 10 and 20 keV with a change of spectral index by about 0.5, or the index is continuously changing from 1.7±0.1 to 2.1±0.1 in 10–20 keV interval. The implications of the results are briefly discussed.  相似文献   

5.
Using the archival ROSAT PSPC observations, AB Dor is found to be variable in X-rays. The periodic variations are consistent with previously reported rotational period of 0 d .514. The average spectrum of AB Dor is best represented with two-temperature Raymond-Smith model with kT values of 0.19±0.07 and 1.17±0.02 keV. The quiescent luminosity of the system is found to be 4.36±0.6×1030 ergs s–1. A flare with a rise time of 350 seconds is detected during which X-ray luminosity rises from 5.8±1.6×1030 to 15.8±4.9×1030 ergs s–1. We conclude that AB Dor is very similar to the active components of RS CVn binaries and other active classes. In view of the wide separation from the binary companion Rst 137B, this activity must be intrinsic to the active star.  相似文献   

6.
In a previous paper Lyttleton (1976) has shown that the apparent secular accelerations of the Sun and Moon, as given by de Sitter, can be largely explained if the Earth is contracting at the rate required by the phase-change hypothesis for the nature of the core. More reliable values for these accelerations have since become available which warrant a redetermination of the various effects concerned on the basis of constantG, and this is first carried out in the present paper. The lunar tidal couple, which is the same whetherG is changing or not, is found to be (4.74±0.38)×1023 cgs, about three-quarters that yielded by the de Sitter values, while within the theory the Moon would take correspondingly longer to reach close proximity to the Earth at about 1.5×109 years ago.The more accurate values of the accelerations enable examination to be made of the effects that a decreasingG would have, and it is shown that a valueG/G=–3×10–11 yr–1 can be weakly satisfied compared with the close agreement found on the basis of constantG, while a value as large numerically asG/G=–6×10–11 yr–1 seems to be definitely ruled out. On the iron-core model, an intrinsic positive component of acceleration of the angular velocity cannot be reconciled at all with the secular accelerations even for constantG, and far less so ifG is decreasing at a rate suggested by any recent cosmological theory.ItG=0, the amount of contraction available for mountain-building would correspond to a reduction of surface area of about 49×106 km2 and a volume to be redistributed of 160×109 km3 if the time of collapse were 2.5×109 years ago. For earlier times, the values are only slightly reduced. IfG/G=–3×10–11 yr–1, the corresponding values are 44×106 km2 and 138×109 km3 for collapse at –2.5×109 yr, and not importantly smaller at 38×106 km2 and 122×109 km3 for collapse at –4.5×109 yr. Any of these values would suffice to account in order of magnitude for all the eras of mountain-building. An intense brief period of mountain-building on an immense scale would result from the Ramsey-collapse at whatever time past it may have occurred.  相似文献   

7.
Experimental results on the intensity, energy spectrum and time variations in hard X-ray emission from Cyg X-1 based on a balloon observation made on 1971, April 6 from Hyderabad (India) are described. The average energy spectrum of Cyg X-1 in the 22–154 keV interval on 1971 April 6 is best represented by a power law dN/dE=(5.41±1.53)E –(1.92±0.10) photons cm–2s–1 keV–1 which is in very good agreement with the spectrum of Cyg X-1 derived from an earlier observation made by us on 1969 April 16 in the 25–151 keV band and given by dN/dE=(3.54±2.44)E –(1.89±0.22) photons cm–2s–1 keV–1. A thermal bremsstrahlung spectrum fails to give a good fit over the entire energy range for both the observations. Comparison with the observations of other investigators shows that almost all balloon experiments consistently give a spectrum of E –2, while below 20 keV the spectrum varies fromE –1.7 toE –5. There is some indication of a break in the Cyg X-1 spectrum around 20 keV. Spectral analysis of data in different time intervals for the 1971 April 6 flight demonstrates that while the source intensity varies over time scales of a few minutes, there is no appreciable variation in the spectral slope. Analysis of various hard X-ray observations for long term variations shows that over a period of about a week the intensity of Cyg X-1 varies upto a factor of four. The binary model proposed by Dolan is examined and the difficulties in explaining the observed features of Cyg X-1 by this model are pointed out.  相似文献   

8.
We have carried out an analysis of the (0, 0) vibrational band of the CN molecule in Comet Mrkos 1957d, including the effect of collisions. We found that the sum of the squares of the residuals can be reduced by a factor of ten, if collisions account for 46±3% of the population of the lower level. A rotational temperature can be assigned to the cometary gas. The best value found was 410±40 K. The best fit for the constantR 1 was (1.07±0.10)×10–4. The velocity of the comet was left as a free parameter. We found for it a value of 34.38±0.10 km s–1. This result is in disagreement with the nuclear orbital velocity of 34.74 km s–1. The discrepancy can be explained, if the CN molecules are ejected from the cometary nucleus preferentially in the sunward direction, with a mean velocity that corresponds to the above temperature.  相似文献   

9.
On December 15, 1978, an omnidirectional gamma-ray detector for the energy range 0.3 to 10 MeV was flown from São José dos Campos, Brazil at a latitude of about -23°. Around noon time, when the Sun was in the field of view of the detector, various solar flares of importance SN and SF occurred. The 2.2 MeV line flux was monitored during this time. A statistically significant line flux of (1.55 ± 0.50) × 10–2 photons cm–2 s–1 and (9.97 ± 4.85) × 10–3 photons cm–2 s–1 was observed within a few minutes of t maxima of the two long-duration SN flares respectively, whereas during SF flares only upper limits were obtained.  相似文献   

10.
During the last half of 1977 the UCSD/MIT Hard X-Ray and Low Energy Gamma-Ray Experiment of HEAO-1 observed two of the three gamma-ray bursts detected by at least three satellites. The first of these bursts (20 October, 1977) had a fluence of (3.1±0.5)×10–5 erg cm–2 integrated over the energy range 0.135–2.05 MeV and over its duration of 38.7 s, placing it among the largest bursts observed. The second (10 November, 1977) had a fluence of (2.1±0.8)×10–5 erg cm–2 integrated over the energy range 0.125–3 MeV and over its duration of 2.8 s. The light curves of both bursts exhibit time fluctuations down to the limiting time resolution of the detectors (0.1 s). The spectrum of the 20 October, 1977 burst can be fitted with a power law (index –1.93±0.16), which is harder than other reported gamma-ray burst spectral fits. This burst was detected up to 2.05 MeV, and approximately half of its energy was emitted at photon energies above 0.5 MeV. The spectrum of the 10 November, 1977 burst is softer (index –2.4±0.7) and is similar to the spectrum of the 27 April, 1972 burst.Paper presented at the Symposium on Cosmic Gamma-Ray Bursts held at Toulouse, France, 26–29 November, 1979.  相似文献   

11.
We report the first results on the determination of the ionization states of oxygen ions in the anomalous cosmic rays (ACR) from the measurements of their flux in the cosmic-ray experiment in Spacelab-3 (SL-3) mission of NASA flown at 350 km altitude during 29 April–6 May, 1985. The detectors used were specially prepared CR-39 plastics of very high sensitivity for recording tracks of ions withZ>2. The measured orbit averaged flux of ACR oxygen is (2.9±1.3)×10–4 particles m–2sr–1s–1 (MeV N–1) at an energy of 23 MeV N–1. We made an independent estimate of the expected ACR oxygen flux at SL-3 orbit from interplanetary data and compared this with the measured flux to infer the ionization states of ACR oxygen ions. The flux and energy spectra of ACR oxygen at 1 AU outside the magnetosphere is obtained from the data of Voyager-2, during the same epoch as the SL-3 flight, and using the measured radial intensity gradient of 15%/AU for ACR oxygen between 1–17 AU. We calculate the geomagnetic transmission factors for ACR oxygen ions of charge states O+1, O+2, etc., from the known cut-off rigidities in the world grid and using the SL-3 trajectories for 116 orbits in the 6-day mission to obtain the expected flux at SL-3 for different charge states. When these flux values are compared with our measured flux, the averge ionization state of ACR oxygen ions in the energy interval of 20–26 MeV N–1 is obtained as O+1.  相似文献   

12.
Pyrheliometry, definition of the radiation scale in the International System of Units and monitoring the variability of solar total irradiance have been a focus of research at the Jet Propulsion Laboratory since the mid 1960's. A series of automated, electrically self-calibrating, cavity pyrheliometers known as Active Cavity Radiometers (ACR's) was developed as part of this program. A series of ground based experiments in 1968–69 led to the discovery of a systematic error in the International Pyrheliometric Scale. ACR's were among the instruments used to define the World Radiometric Reference in 1975.ACR flight experiments have been conducted to determine the 1 AU total solar irradiance and monitor its variability in time. A 1969 balloon experiment yielded a 1366 W m-2 result. The value from a 1976 sounding rocket experiment was 1368.1 W m-2. The results for two additional rocket experiments in 1978 and 80, revised in accordance with recent calibrations of ACR response to elevated pressures during these flights are: 1367.6 and 1367.8 W m-2, respectively. An ACR experiment (ACRIM) on the Solar Maximum Mission satellite has shown continuous variability of the total solar flux below the ±0.05% level and two large, temporary decreases of 0.1–0.2% lasting more than a week. The mean 1 AU total flux for ACRIM's first five months' observations was 1367.7 W m-2. Inflight comparison of ACR rocket and satellite measurements in May, 1980 demonstrated agreement to within ±0.05%. The 1 AU total solar irradiance results from ACR rocket and satellite experiments between 1976 and 1980 differ from their mean of 1367.8 W m-2 by no more than ±0.02%. The less precise 1969 balloon result is 0.1% lower. Although no observations were made from 1970–75, if solar behaviour in those five years was similar to that observed since 1976 then the upper limits of long term solar total irradiance variability are ±0.2% for the 1969–1980 period and ±0.1% between 1976 and 1980, based on the set of ACR observations.Proceedings of the 14th ESLAB Symposium on Physics of Solar Variations, 16–19 September 1980, Scheveningen, The Netherlands.  相似文献   

13.
We present the results from a search of pulsed emission in low-energy gamma-rays from GX 1+4 source observed during zenith transit in a balloon experiment in April, 1982. The observed pulsar period is 120.6±0.2 s with pulsed emission flux of (1.3±0.4)×10–5 photons cm–2 s–1 keV–1 at an average energy 342 keV. These pulsations, observed at gamma-ray energies perhaps for the first time from any X-ray pulsar, in conjunction with the period determined in X-rays, indicate a spin-down in contrast with the spin-up behaviour observed by others at earlier epochs.  相似文献   

14.
We have previously studied large-scale motions using high-resolution magnetograms taken from 1978 to 1990 with the NSO Vacuum Telescope on Kitt Peak. Latitudinal and longitudinal motions were determined by a two-dimensional crosscorrelation analysis of pairs of consecutive daily observations using small magnetic features as tracers. Here we examine the shape and amplitude of the crosscorrelation functions. We find a characteristic length scale as indicated by the FWHM of the crosscorrelation functions of 16.6 ± 0.2 Mm. The length scale is constant within ±45° latitude and decreases by about 5% at 52.5° latitude; i.e., the characteristic size is almost latitude independent. The characteristic scale is within 3% of the average value during most times of the solar cycle, but it increases during cycle maximum at latitudes where active regions are present. For the time period 1978–1981 (solar cycle maximum), the length scale increases up to 1.7 Mm or 10% at 30° latitude. In addition, we derive the average amplitude of the crosscorrelation functions, which reflects the diffusion of magnetic elements and their evolutionary changes (including formation and decay). We find an average value of 0.091 ± 0.003 for the crosscorrelation amplitude at a time lag of one day, which we interpret as being caused by the combined effect of the lifetime of magnetic features and a diffusion process. Assuming a lifetime of one day, we find a value of 120 km2 s–1 for the diffusion constant, while a lifetime of two days leads to 230 km2 s–1.Operated by the Association of Universities for Research in Astronomy, Inc. under cooperative agreement with the National Science Foundation.  相似文献   

15.
Measurements of charged particle fluxes at energies >-13 MeV (if protons), by means of a detector system of high geometrical factor (950 cm2 sr), flown on OGO-6 satellite, reveals a ring of low energy charged particles around equator with fluxes of the order of 50–70 particles (m–2 s–1 sr–1), in the altitude range of 400–1100 km. The ring of charged particles exists below the inner radiation belt and is restricted to ±4° of the geomagnetic equator. Distribution of the maximum flux with geomagnetic latitude andL is presented. Comparison of the observed fluxes with earlier measurements of low energy particles, reveals a differential energy spectrum of the type KE with the exponent nearly equal to 2.4 to 3.  相似文献   

16.
An empirically derived lunar gravity field   总被引:1,自引:0,他引:1  
The heat-flow experiment is one of the Apollo Lunar Surface Experiment Package (ALSEP) instruments that was emplaced on the lunar surface on Apollo 15. This experiment is designed to make temperature and thermal property measurements in the lunar subsurface so as to determine the rate of heat loss from the lunar interior through the surface. About 45 days (1 1/2 lunations) of data has been analyzed in a preliminary way. This analysis indicates that the vertical heat flow through the regolith at one probe site is 3.3 × 10–6 W/cm2 (±15%). This value is approximately one-half the Earth's average heat flow. Further analysis of data over several lunations is required to demonstrate that this value is representative of the heat flow at the Hadley Rille site. The mean subsurface temperature at a depth of 1 m is approximately 252.4K at one probe site and 250.7K at the other. These temperatures are approximately 35K above the mean surface temperature and indicate that conductivity in the surficial layer of the Moon is highly temperature dependent. Between 1 and 1.5m, the rate of temperature increase as a function of depth is 1.75K/m (±2%) at the probe 1 site. In situ measurements indicate that the thermal conductivity of the regolith increases with depth. Thermal-conductivity values between 1.4 × 10–4 and 2.5 × 10–4 W/cm K were determined; these values are a factor of 7 to 10 greater than the values of the surface conductivity. If the observed heat flow at Hadley Base is representative of the moonwide rate of heat loss (an assumption which is not fully justified at this time), it would imply that overall radioactive heat production in the Moon is greater than in classes of meteorites that have formed the basis of Earth and Moon bulk composition models in the past.Lamont-Doherty Geological Observatory Contribution Number 1800.  相似文献   

17.
The solar-wind interacts directly with the lunar surface due to tenuous atmosphere and magnetic field. The interaction results in an almost complete absorption of the solar-wind corpuscles producing no upstream bowshock but a cavity downstream. The solar-wind oxygen ionic species induce and undergo a complex set of reactions with the elements of the lunar minerals and the solar-wind derived trapped gases. The oxygen concentration indegeneous to the lunar surface material is about 60 at.%. Some of these oxygen are displaced from their crystal lattice locations by interactions of the solar-wind corpuscles. A small fraction of these displaced oxygen is in active state. The solar-wind oxygen species flux is about 6×104 cm–2 s–1. Besides inducing and undergoing various reactions these species become trapped as oxygen atoms in the lunar grains. Only a portion of these trapped oxygen atoms is in active state. For the contribution of oxygen atoms and molecules from the lunar surface grains to the atmosphere and their reactions with other species, the diffusion coefficients of oxygen atom and molecule should be known. However their values in the highly radiation-damaged lunar surface material are not known. The coefficients are calculated by using the apparent lifetimes of atomic and molecular oxygen in the lunar material. The atmospheric concentration of oxygen atoms and molecules near the lunar surface are found to be about 20 and 3 cm–3, respectively. These values appear to be very reasonable in comparison with the experimental data. The Apollo 17 lunar orbital UV spectrometer data indicate the atomic oxygen concentration is <8×101 cm–3. The Apollo 17 lunar surface mass spectrometer (sensitivity: 1 count=2×102 molecules cm–3) did not detect any oxygen molecules on the dayside of the Moon, but the sunrise concentration was reported to be 1±×103 cm–3. At the time of the sample collection on the Moon the oxygen content in the trapped gas layer was partly as oxygen atoms and partly as oxygen molecules. At the time of sample analysis on the Earth the concentrations of these two species did not change appreciably.  相似文献   

18.
A cavity type absolute radiometer was flown on Spacelab 1 in December 1983. We obtain a value of the solar constant of 1361.5 W m–2 with an estimated accuracy of ±2.3 W m–2 or 0.17%. When comparing this with other recent determinations, we find discrepancies which we consider indicative of metrological problems in present day absolute radiometry.  相似文献   

19.
The intensity of the diffuse component of cosmic X-rays was measured with use of a rotating collimator system borne on a sounding rocket. A part of background counts proportional to the field of view of proportional counters enabled us to determine the intensity of the diffuse component to be 0.66±0.07 photons cm–2 sec–1 keV–1 in the energy range between 3.6 and 9.0 keV. The spectrum in this energy range was found to be comparatively flat. The intensity of Sco X-1 was also measured and its time variation was investigated.  相似文献   

20.
A balloon-borne gemanium spectrometer was flown in an attempt to detect line-emission from Cyg X-1 and the Crab nebula in the energy range 30–270 keV. The experiment was carried out on 29–30 September, 1982. A line feature at 145 keV was observed from Cyg X-1. The intensity is (1.34±0.31)×10–2 photons cm–2 s–1 and the width is 14.3 keV FWHM. From the Crab nebula, a weak line feature with 1.8 excess was found around 78 keV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号