首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Resumen Presentamos una solución numérica del problema del efecto de embalse con ayuda de una ecuación lineal inhomogénea en diferencias finitas de primer orden, suponiendo una ley lineal del desagüe. Este método numérico es de maneje cómodo para un cálculo aproximado.
Zusammenfassung Es wird die numerische Bestimmung der Seeretention mittels der Lösung einer linearen inhomogenen Differenzengleichung 1. Ordnung dargelegt. Dieses numerische Verfahren ist für eine Näherungsrechnung besonders geeignet.
  相似文献   

2.
The volcano-tectonic evolution of Concepción,Nicaragua   总被引:1,自引:1,他引:0  
We describe the evolution of Concepción volcano by integrating regional geology, eruptive activity, morphology, stratigraphy, petrology, structure and active deformation data. This Nicaraguan volcano is set close to the back limb of the northwest-trending Tertiary Rivas anticline, a regional structure that bounds the southwest side of Lake Nicaragua. Concepción rises 1,600 m above a 1-km-thick sequence of Quaternary lacustrine mud-stones. There is no record of volcanism in the lake prior to Concepción. In addition, the only nearby volcano, Maderas volcano, has not deposited material on Concepción because of the trade winds. Thus, Concepción (and Made ras, too) can be considered as pristine volcanic environments, unaffected by other centres. A topographic rise forms an annulus 20 km in diameter around the cone. The rise is created by thrust-related folds at the western base, where the trade winds have accumulated a thick sequence of tephra, and by mud diapirs at the eastern base where only lake mudstones are present. Four magmatic-eruptive episodes exist in the stratigraphic record. The first begins with primitive low-alumina basalt and subsequently evolves to dacitic compositions. The following three episodes begin with high-alumina basalts and evolve only to silicic andesites. The occurrence of the high-alumina basalt after the first episode is indicative of crystal fractionation at lower crustal depths. The first episode may be associated with a compressive phase of volcano evolution. In this phase, the edifice load compresses substrata, allowing a longer magma residence time and differentiation in a shallow reservoir (possibly located at the density contrast between the lake sediments and the Tertiary flysch). During the next three episodes the weak sediments below the volcano started to rupture and yield under its increasing load, beginning a thrusting/diapiring phase of volcano evolution. Because of outward thrusting, vertical and horizontal stresses above the chamber were reduced, allowing magma to erupt more easily and to reach a lesser degree of evolution. If we consider the future evolution of Concepción, the differentiation in the shallow reservoir has probably generated a cumulitic complex, which eventually will start to deform and spread, beginning another, this time plutonic, spreading phase. This phase, which may be beginning now, could allow less evolved magmas to be erupted again. Four components influence the phases of volcano evolution: (1) the regional geology that is the boundary condition of the environment, (2) the substrata rheology that controls deformation, (3) the load of the volcanic edifice and (4) the magma, which provides the input of mass and energy. Our model of volcanic evolution suggests that Concepción is a complex geologic environment. The volcanic activity, tectonics and hazards can only be constrained through a complete knowledge of the many components of this environment. Published online: 20 February 2003 Editorial responsibility: R. Cioni  相似文献   

3.
We report the results of a rock magnetic and archeointensity study on pottery fragments recovered at the archaeological site of Puertas de Rolón, Capacha culture (Colima), that is considered one of the most important pre-Classic cultural developments of western Mesoamerica, Mexico. Standard rock magnetic experiments were carried out in order to investigate the reliability of the ancient field strength recovered from studied materials. Six out of the seven analyzed fragments gave reliable intensity determinations. The mean archeointensity value obtained in this study is 35.3 ± 3.4 μT. It is in good agreement with another contemporaneous Mesoamerican mean archeointensity of 34.3 ± 1.1 μT obtained for El Opeño. Statistically similar rock-magnetic parameters between ceramics from El Opeño and Puertas de Rolón potsherds appear to be related to clay-sources with similar geological settings and weathering processes. Alternatively, ancient trade or interexchange between western (Capacha Culture) and eastern Mesoamerica locations, as it has been proposed earlier, seem to be supported by results obtained in this study.  相似文献   

4.
The Pucón eruption was the largest Holocene explosive outburst of Volcán Villarrica, Chile. It discharged >1.0 km3 of basaltic-andesite magma and >0.8 km3 of pre-existing rock, forming a thin scoria-fall deposit overlain by voluminous ignimbrite intercalated with pyroclastic surge beds. The deposits are up to 70 m thick and are preserved up to 21 km from the present-day summit, post-eruptive lahar deposits extending farther. Two ignimbrite units are distinguished: a lower one (P1) in which all accidental lithic clasts are of volcanic origin and an upper unit (P2) in which basement granitoids also occur, both as free clasts and as xenoliths in scoria. P2 accounts for ∼80% of the erupted products. Following the initial scoria fallout phase, P1 pyroclastic flows swept down the northern and western flanks of the volcano, magma fragmentation during this phase being confined to within the volcanic edifice. Following a pause of at least a couple of days sufficient for wood devolatilization, eruption recommenced, the fragmentation level dropped to within the granitoid basement, and the pyroclastic flows of P2 were erupted. The first P2 flow had a highly turbulent front, laid down ignimbrite with large-scale cross-stratification and regressive bedforms, and sheared the ground; flow then waned and became confined to the southeastern flank. Following emplacement of pyroclastic surge deposits all across the volcano, the eruption terminated with pyroclastic flows down the northern flank. Multiple lahars were generated prior to the onset of a new eruptive cycle. Charcoal samples yield a probable eruption age of 3,510 ± 60 14C years BP.  相似文献   

5.
Long-period seismicity during magma movement at Volcán de Colima   总被引:1,自引:1,他引:0  
During the period from February to September 2005, Volcán de Colima produced 30 Vulcanian explosions of sufficient magnitude to produce pyroclastic flows of variable size, with a total volume of at least 2.5 × 106 m3. Swarms of long-period events were associated with each event, their duration ranging from about 6 h to 3 days and each swarm containing up to 886 events. The characteristics of the swarms have been studied to understand the source mechanism and their relationship with the Vulcanian explosions. In total, 12,548 long-period events were analysed using various comparative and statistical methods. Patterns were not apparent in the data with no correlation between different properties of the swarms (duration, magnitude or frequency of occurrence of LP events) and the magnitude of the associated Vulcanian explosion, whether recorded by seismicity, volume of pyroclastics or altitude of the eruption column. This, along with other characteristics of the swarms, such as the continuation of the swarm after the explosion, with an increase in long-period event amplitude in some cases, suggests that the mechanism is not merely associated with the pressurization under an impermeable cap and resulting pressure differentials between adjacent volumes within the system. It is more likely that the production of long-period events is dominated by brittle fracturing on the margins of an ascending magma body. A model is proposed whereby the unloading above the ascending magma column produced by a Vulcanian explosion resulted in an increase in ascent rate, reflected in the increasing amplitude of long-period events. The results reflect the complexity of non-linear processes involved during magma ascent, degassing, crystallization and rupture of the impermeable plug during the Vulcanian process. At Volcán de Colima, as at many volcanoes, long-period events represent a useful precursor for eruptive activity. For monitoring, this paper highlights some useful analyses that can be carried out, which could illustrate certain characteristics of an eruptive episode. A preliminary model is presented of the conduit processes at work during the cyclic extrusive and explosive activity during 2005.  相似文献   

6.
Resumen Como aplicación hidrodinámica de un problema más general, tratado al principio, demostraremos el siguiente teorema:El rotacional del campo de la variación unitaria del torbellino de las partículas que se mueven rotacionalmente en líquidos ideales y homogéneos puede representarse por medio de paréntesis deLagrange.
Zusammenfassung Als hydrodynamische Anwendung eines eingangs behandelten allgemeineren Problems wird folgender Satz bewiesen:Der Rotor des Feldes der individuellen Ableitung des Wirbelvektors der sich drehend bewegenden Partikel idealer und homogener inkompressibler Flüssigkeiten läßt sich mittels der Klammersymbole vonLagrange darstellen.
  相似文献   

7.
Cristobalite is a low-pressure high-temperature polymorph of SiO2 found in many volcanic rocks. Its volcanogenic formation has received attention because (1) pure particulate cristobalite can be toxic when inhaled, and its dispersal in volcanic ash is therefore a potential hazard; and (2) its nominal stability field is at temperatures higher than those of magmatic systems, making it an interesting example of metastable crystallization. We present analyses (by XRD, SEM, EPMA, Laser Raman, and synchrotron μ-cT) of representative rhyolitic pyroclasts and of samples from different facies of the compound lava flow from the 2011–2012 eruption of Cordón Caulle (Chile). Cristobalite was not detected in pyroclasts, negating any concern for respiratory hazards, but it makes up 0–23 wt% of lava samples, occurring as prismatic vapour-deposited crystals in vesicles and/or as a groundmass phase in microcrystalline samples. Textures of lava collected near the vent, which best represent those generated in the conduit, indicate that pore isolation promotes vapour deposition of cristobalite. Mass balance shows that the SiO2 deposited in isolated pore space can have originated from corrosion of the adjacent groundmass. Textures of lava collected down-flow were modified during transport in the insulated interior of the flow, where protracted cooling, additional vesiculation events, and shearing overprint original textures. In the most slowly cooled and intensely sheared samples from the core of the flow, nearly all original pore space is lost, and vapour-deposited cristobalite crystals are crushed and incorporated into the groundmass as the vesicles in which they formed collapse by strain and compaction of the surrounding matrix. Holocrystalline lava from the core of the flow achieves high mass concentrations of cristobalite as slow cooling allows extensive microlite crystallization and devitrification to form groundmass cristobalite. Vapour deposition and devitrification act concurrently but semi-independently. Both are promoted by slow cooling, and it is ultimately devitrification that most strongly contributes to total cristobalite content in a given flow facies. Our findings provide a new field context in which to address questions that have arisen from the study of cristobalite in dome eruptions, with insight afforded by the fundamentally different emplacement geometries of flows and domes.  相似文献   

8.
9.
10.
11.
While working to construct a geological map. A.Almela, an Engineer of Mines, discovered in Alhama de Murcia a previously unknown volcanic crater. This volcano erupted through the miocene layers and extended above them, thus establishing the date of this eruption as being post-miocene. Since there are no sedimentary rocks in this region of a more recent date it is impossible to fix the date of the eruption any more exactly. The crater is about 1Km. In the surface of the crater one finds slag, scoriaceous lava and compact rocks. The rock is composed of phlogopite, olivine and diopside in phenocrysts in a hyaloid cement with tiny grains of sanidine, olivine and diopside; and a thin layer of phlogopite in a glassy brownish black. A study was made of the chemical constituency of the rocks on the basis of three complete analyses and a comparison was made with the findings already made by Vera-Garrucha and those of Fortuna. All of the data as compiled in the five tables and four diagrams graphically represents the obtained results. The volcanic rocks have a close analogy to those ofOsann’s « Verita » type, which are shown not only by the analytical value of the magmatic parameters but also by the positions of the points shown in diagramsK-mg andLs-Fs-Ks of the three types already analized. In all the samples which have been studied from Barqueros the value of the K2O is superior to that of Na2O; it is also greater than that of Vera-Garrucha and less than in that of Fortuna.  相似文献   

12.
 The 1982 eruption of El Chichón volcano ejected more than 1 km3 of anhydrite-bearing trachyandesite pyroclastic material to form a new 1-km-wide and 300-m-deep crater and uncovered the upper 500 m of an active volcano-hydrothermal system. Instead of the weak boiling-point temperature fumaroles of the former lava dome, a vigorously boiling crater spring now discharges  / 20 kg/s of Cl-rich (∼15 000 mg/kg) and sulphur-poor ( / 200 mg/kg of SO4), almost neutral (pH up to 6.7) water with an isotopic composition close to that of subduction-type magmatic water (δD=–15‰, δ18O=+6.5‰). This spring, as well as numerous Cl-free boiling springs discharging a mixture of meteoric water with fumarolic condensates, feed the crater lake, which, compared with values in 1983, is now much more diluted (∼3000 mg/kg of Cl vs 24 030 mg/kg), less acidic (pH=2.6 vs 0.56) and contains much lower amounts of S ( / 200 mg/kg of SO4, vs 3550 mg/kg) with δ34S=0.5–4.2‰ (+17‰ in 1983). Agua Caliente thermal waters, on the southeast slope of the volcano, have an outflow rate of approximately 100 kg/s of 71  °C Na–Ca–Cl water and are five times more concentrated than before the eruption (B. R. Molina, unpublished data). Relative N2, Ar and He gas concentrations suggest extensional tectonics for the El Chichón volcanic centre. The 3He/4He and 4He/20Ne ratios in gases from the crater fumaroles (7.3Ra, 2560) and Agua Caliente hot springs (5.3Ra, 44) indicate a strong magmatic contribution. However, relative concentrations of reactive species are typical of equilibrium in a two-phase boiling aquifer. Sulphur and C isotopic data indicate highly reducing conditions within the system, probably associated with the presence of buried vegetation resulting from the 1982 eruption. All Cl-rich waters at El Chichón have a common source. This water has the appearence of a "partially matured" magmatic fluid: condensed magmatic vapour neutralized by interaction with fresh volcaniclastic deposits and depleted in S due to anhydrite precipitation. Shallow ground waters emerging around the volcano from the thick cover of fresh pumice deposits (Red waters) are Ca–SO4–rich and have a negative oxygen isotopic shift, probably due to ongoing formation of clay at low temperatures. Received: 21 July 1997 / Accepted: 4 December 1997  相似文献   

13.
14.
Optically stimulated luminescence (OSL) techniques have been applied to investigate the potential for dating the deposition of upcast mounds associated with qanat ventilation shafts at the site of a medieval qanat located in Aragón, Spain. Coarse quartz grains, extracted from sediment samples taken from excavated sections of several mounds, possessed sufficiently strong OSL to enable an evaluation of equivalent dose by applying the single aliquot regenerative procedure to small aliquots, each containing an individual bright grain. The OSL dates for both palaeosol and overlying upcast indicate that a chronostratigraphic record has been preserved within the mounds investigated, and micromorphological analysis of thin sections of sediment blocks taken from the mounds is shown to provide an essential means of verifying the characteristics of the strata, in particular, the critical interface of upcast and the ancient ground surface. The earliest OSL dates for basal deposits taken from two separate sections of the same mound are in agreement, placing the mound construction during the first half of the 13th century A.D. However, in two other mounds the OSL dates for the deposition of upcast are internally consistent with the stratigraphy but significantly later, dating to the 16th and 17th centuries A.D. We interpret the differences between the dates for the upcast deposition to be the result of partial erosion of the upper shaft and later repair of the mounds, and this finding underlines the importance of both examining multiple mounds in the same qanat system and the internal structure of each sampled mound. This exploratory work demonstrates the potential for wider application of OSL for dating this important type of subterranean irrigation feature in the study of both the archaeology of human settlement and palaeoenvironmental change in arid regions.  相似文献   

15.
Quantitative hazard assessments of active volcanoes require an accurate knowledge of the past eruptive activity in terms of eruption dynamics and the stratified products of eruption. Teide–Pico Viejo (TPV) is one of the largest volcanic complexes in Europe, but the associated eruptive history has only been constrained based on very general stratigraphic and geochronological data. In particular, recent studies have shown that explosive activity has been significantly more frequently common than previously thought. Our study contributes to characterization of explosive activity of TPV by describing for the first time the subplinian eruption of El Boquerón (5,660?yBP), a satellite dome located on the northern slope of the Pico Viejo stratovolcano. Stratigraphic data suggest complex shifting from effusive phases with lava flows to highly explosive phase that generated a relatively thick and widespread pumice fallout deposit. This explosive phase is classified as a subplinian eruption of VEI 3 that lasted for about 9–15?h and produced a plume with a height of up to 9?km above sea level (i.e. 7?km above the vent; MER of 6.9–8.2?×?105?kg/s). The tephra deposit (minimum bulk volume of 4–6?×?107?m3) was dispersed to the NE by up to 10?m/s winds. A similar eruption today would significantly impact the economy of Tenerife (e.g. tourism and aviation), with major consequences mainly for the communities around the Icod Valley, and to a minor extent, the Orotava Valley. This vulnerability shows that a better knowledge of the past explosive history of TPV and an accurate estimate of future potentials to generate violent eruptions is required in order to quantify and mitigate the associated volcanic risk.  相似文献   

16.
Pyroclastic flow deposits of the 1991 eruption of Volcán de Colima,Mexico   总被引:1,自引:1,他引:0  
The April 16, 1991, eruption of Volcán de Colima represents a classical example of partial dome collapse with the generation of progressively longer-runout, Merapi-type pyroclastic flows that traveled up to 4 km along the El Cordoban gullies (East, Central and West). The flows filled the gullies with block-and-ash flow deposits up to 10 m thick, of which, after 7 years of erosion, only remnants remained in the El Cordoban West and East gullies. The El Cordoban Central gully, however, provided a well-preserved and incised longitudinal section of the 1991 deposits. The deposits were emplaced as proximal and distal facies, separated by a change in slope angle from >30° to <20°. The proximal facies consists of massive, clast-supported flow units (up to 1 m thick) with andesite blocks locally supported by a matrix of coarse ash and devoid of segregation structures or grading. The distal facies consists of a massive, matrix-supported deposit up to 8 m thick, which contains dispersed andesite blocks in a fine ash matrix. In the distal facies, a train of blocks marks flow-unit upper boundaries and, although sorting is poor, some grading is present. Thin, finely stratified, or dune-bedded layers of fine ash material are locally present above or below units of both facies. Sedimentologic parameters show that the size or fraction of large pyroclasts (larger than –1 ) decreases from proximal to distal facies, as the percentage of matrix (0 to 4 ) increases, especially immediately beyond the break in slope. We propose that the propagation of the Colima pyroclastic flows is critically dependent on local slope angle, the presence of erodible slope debris, and the decrease in grain size with distance from the vent. The progressive fining is probably caused by some combination of erosion, clast breakup and deposition of larger pyroclasts, and is itself influenced by the slope angle. In the proximal region, the flows moved as granular avalanches, in which interacting grains ground each other and erosion occurred to produce an overriding dilute ash cloud. The maximum runout distance of the avalanches was controlled by the angle of repose of the material, and the volume and grain size of source and eroded material. Because the slope angle is close to the repose angle for this debris, granular avalanches were not able to propagate far beyond the change in slope. If, however, an avalanche had enough mass in finer grain size fractions, at least part of the flow continued beyond the break in slope and across the volcano apron, propagating in a turbulent state and depositing surge layers, or in an otherwise settling-modified state and depositing block-and-ash flow layers.Editorial responsibility: T Druitt  相似文献   

17.
18.
Source location of long period seismicity at Volcàn de Colima,México   总被引:1,自引:0,他引:1  
This paper presents an analysis of seismicity associated with the volcanic activity of Volcàn de Colima (México) and recorded in the period November 2005–April 2006 during a field survey by the Istituto Nazionale di Geofisica e Vulcanologia (INGV)–Osservatorio Vesuviano, the Observatorio Vulcanologico de Colima of Colima University and the Instituto Andaluz de Geofisica, University of Granada. Three different types of volcanic earthquakes have been identified on the basis of their spectral properties: Type A (0.3–1 Hz), Type B (1–5 Hz) and Type C (3–4 Hz). Results of polarization analysis applied to Type A events show a predominance of radial motion, indicating that the wavefield comprises compressional waves (P) and shear waves polarized in the vertical plane (SV), while the signal always begins with a negative polarity. Type A, B and C earthquakes have been located using both a flat layered model and a 3D model including topography. Hypocentre distributions indicate that the source of Type A signals is very shallow and confined to a small volume lying about 1 km below the crater. In contrast, the source of Type B and C events is significantly deeper, with most hypocentres located in a volume of about 1 km3 centred at 2.5–3 km depth. A cluster analysis based on the cross-correlation among the waveforms of different events recorded at the same station was applied to Type A earthquakes. Only two clusters, which include only a small percentage of events were found, indicating that earthquake families were uncommon during the period of our survey.  相似文献   

19.
Résumé

Le modèle proposé est un générateur stochastique d'averses couplé à un modèle empirique de calcul de leurs érosivités, calé à une série pluviographique de 15 ans d'observations. Notre objectif est de développer une démarche probabiliste, qui permettrait d'étudier les conséquences érosives des pluies dans le temps, en cumulant l'érosivité consécutive des pluies simulées durant plusieurs années, supposée proportionnelle à la dégradation des sols, ou au transport solide en suspension sur la même période. Cette génération peut en effet se faire sur plusieurs années calendaires, et nous permettrait de ce fait d'éviter d'être limité par la taille des échantillons. L'ensemble pouvant être utilisé en mode opérationnel, pour reconstituer de très longus séries d'épisodes pluvieux dans l'objectif d'étudier le cumul de leur érosivité dans le temps. Cette démarche ne contredit pas les approches expérimentales, qui ont une réalité concrète de terrain, bien au contraire elle les conforte et permet d'avancer davantage dans la réflexion posée par la problématique de l'érosion hydrique.  相似文献   

20.
After decades of repose, Puyehue-Cordón Caulle Volcano (Chile) erupted in June 2011 following a month of continuously increasing seismic activity. The eruption dispersed a large volume of rhyolitic tephra over a wide area and was characterized by complex dynamics. During the initial climactic phase of the eruption (24–30 h on 4–5 June), 11–14-km-high plumes dispersed most of the erupted tephra eastward towards Argentina, reaching as far as the Atlantic Ocean. This first eruptive phase was followed by activity of lower intensity, leading to the development of a complex stratigraphic sequence, mainly due to rapid shifts in wind direction and eruptive style. The resulting tephra deposits consist of 13 main layers grouped into four units. Each layer was characterized based on its dispersal direction, sedimentological features, and on the main characteristics of the juvenile fraction (texture, density, petrography, chemistry). The lowest part of the eruptive sequence (Unit I), corresponding to the tephra emitted between 4 and 5 June, is composed of alternating lapilli layers with a total estimated volume of ca. 0.75 km3; these layers record the highest intensity phase, during which a bent-over plume dispersed tephra towards the southeast-east, with negligible up-wind sedimentation. Products emitted during 5–6 June (Unit II) signaled an abrupt shift in wind direction towards the north, leading to the deposition of a coarse ash deposit in the northern sector (ca. 0.21 km3 in volume), followed by a resumption of easterly directed winds. A third phase (Unit III) began on 7 June and resulted in tephra deposits in the eastern sector and ballistic bombs around the vent area. A final phase (Unit IV) started after 15 June and was characterized by the emission of fine-grained white tephra from ash-charged plumes during low-level activity and the extrusion of a viscous lava flow. Timing and duration of the first eruptive phases were constrained based on comparison of the dispersal of the main tephra layers with satellite images, showing that most of the tephra was emitted during the first 72 h of the event. The analyzed juvenile material tightly clusters within the rhyolitic field, with negligible chemical variations through the eruptive sequence. Textural observations reveal that changes in eruption intensity (and consequently in magma ascent velocity within the conduit) and complex interactions between gas-rich and gas-depleted magma portions during ascent resulted in vesicular clasts with variable degrees of shear localization, and possibly in the large heterogeneity of the juvenile material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号