共查询到20条相似文献,搜索用时 15 毫秒
1.
Michael Engel Daniele Penna Giacomo Bertoldi Andrea Dell'Agnese Chris Soulsby Francesco Comiti 《水文研究》2016,30(3):343-364
We analysed contributions to run‐off using hourly stream water samples from seven individual melt‐induced run‐off events (plus one rainfall event) during 2011, 2012 and 2013 in two nested glacierized catchments in the Eastern Italian Alps. Electrical conductivity and stable isotopes of water were used for mixing analysis and two‐component and three‐component hydrograph separation. High‐elevation snowmelt, glacier melt and autumn groundwater were identified as major end‐members. Discharge and tracers in the stream followed the diurnal variations of air temperature but markedly reacted to rainfall inputs. Hysteresis patterns between discharge and electrical conductivity during the melt‐induced run‐off events revealed contrasting loop directions at the two monitored stream sections. Snowmelt contribution to run‐off was highest in June and July (up to 33%), whereas the maximum contribution of glacier melt was reached in August (up to 65%). The maximum groundwater and rainfall contributions were 62% and 11%, respectively. Run‐off events were generally characterized by decreasing snowmelt and increasing glacier melt fractions from the beginning to the end of the summer 2012, while run‐off events in 2013 showed less variable snowmelt and lower glacier melt contributions than in 2012. The results provided essential insights into the complex dynamics of melt‐induced run‐off events and may be of further use in the context of water resource management in alpine catchments. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
2.
Tracing variability of run‐off generation in mountainous permafrost of semi‐arid north‐eastern Mongolia 下载免费PDF全文
The headwaters of mountainous, discontinuous permafrost regions in north‐eastern Mongolia are important water resources for the semi‐arid country, but little is known about hydrological processes there. Run‐off generation on south‐facing slopes, which are devoid of permafrost, has so far been neglected and is totally unknown for areas that have been affected by recent forest fires. To fill this knowledge gap, the present study applied artificial tracers on a steppe‐vegetated south‐facing and on two north‐facing slopes, burned and unburned. Combined sprinkling and dye tracer experiments were used to visualize processes of infiltration and water fluxes in the unsaturated zone. On the unburned north‐facing slope, rapid and widespread infiltration through a wet organic layer was observed down to the permafrost. On the burned profile, rapid infiltration occurred through a combusted organic and underlying mineral layer. Stained water seeped out at the bottom of both profiles suggesting a general tendency to subsurface stormflow (SSF). Ongoing SSF could directly be studied 24 h after a high‐intensity rainfall event on a 55‐m hillslope section in the burned forest. Measurements of water temperature proved the role of the permafrost layer as a base horizon for SSF. Repeated tracer injections allowed direct insights into SSF dynamics: A first injection suggested rather slow dispersive subsurface flow paths; whereas 18 h later, a second injection traced a more preferential flow system with 20 times quicker flow velocities. We speculate that these pronounced SSF dynamics are limited to burned slopes where a thermally insulating organic layer is absent. On three south‐facing soil profiles, the applied tracer remained in the uppermost 5 cm of a silt‐rich mineral soil horizon. No signs of preferential infiltration could be found, which suggested reduced biological activity under a harsh, dry and cold climate. Instead, direct observations, distributed tracers and charcoal samples provided evidence for the occurrence of overland flow. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
3.
Solute transport in overland flow is considered as one of the main contributors to water pollution. Although many models of pollutant transport mechanism from soil to run‐off water have been proposed, the characteristics of solute transport accompanying the water run‐off over vegetated surface have not been well studied. In this study, a series of laboratory experiments were conducted to study the solute transport over vegetated surfaces. Based on the experimental results, an idea of the “stationary water layer” in run‐off was proposed. Applying the complete mixing theory in the stationary water layer, an analytical solute transport model was developed with the assumption that the upper run‐off completely mixes with the underlying water in the stationary water layer for each site. The results show that the predictions made by the present model are in good agreement with the measured experimental data. For the vegetated surfaces, the depth of stationary water layer is related to the rainfall intensity, bed slope, and vegetation density. The analytical solution shows that the maximum solute transport occurs at the time of concentration. This study advances our understanding of the mechanisms of solute transport over vegetated areas. 相似文献
4.
This study examines the effect of water repellency on controlling temporal variability of runoff generation mechanisms and soil detachment on metamorphic derived soils under dry‐Mediterranean climate. The research is carried out in an unburnt Mediterranean hillslope in souther Spain characterized by a patchy vegetation pattern and shallow soils. The Water Drop Penetration Time test (WDPT) is applied to measure water repellency at the end of summer (Sep‐2008), mid autumn (Nov‐2008) and mid winter (Feb‐2009). Rainfall simulations were used to obtain runoff generation and soil detachment in the same periods of time. The main shrub specie is Cistus monspeliensis which leaves a load of litter during the summer due to the lack of water. This great amount of organic material is accumulated under the shrubs triggering an extreme water repellence (WDPT > 6,000 s) that limits infiltration processes. This process is enforced due to the low soil water content at the end of dry season. Certain water repellency (WDPT > 1,500 s) is also observed on bare soil as consequence of their sandier texture and the accumulation of annual plants which die at the end of the wet season. Soil moisture increases during the autumn and water repellency disappears in both shrub and bare soil at the middle of the wet season (WDPT < 5 s). The main consequence is that the temporal trend of water repellency controls the mechanism and frequency of runoff generation and, hence, soil detachment. At the end of the summer, Hortonian mechanisms predominates when water repellency is extreme, even in soils under Cistus monspeliensis where runoff generation can reach higher peaks of overland flow and sediment concentration. Conversely, only the saturation of soil could generate runoff during the wet season being this quite less frequent in bare soil and absent in shrub. Copyright © 2010 John Wiley & Sons, Ltd. 相似文献
5.
Surface hydrological behaviour is important in drylands because it affects the distribution of soil moisture and vegetation and the hydrological functioning of slopes and catchments. Microplot scale run‐off can be relatively easily measured, i.e. by rainfall simulations. However, slope or catchment run‐off cannot be deduced from microplots, requiring long‐time monitoring, because run‐off coefficients decrease with increasing drainage area. Therefore, to determine the slope length covered by run‐off (run‐off length) is crucial to connect scales. Biological soil crusts (BSCs) are good model systems, and their hydrology at slope scale is insufficiently known. This study provides run‐off lengths from BSCs, by field factorial experiments using rainfall simulation, including two BSC types, three rain types, three antecedent soil moistures and four plot lengths. Data were analysed by generalized linear modelling, including vascular plant cover as covariates. Results were the following: (i) the real contributing area is almost always much smaller than the topographical contributing area; (ii) the BSC type is key to controlling run‐off; run‐off length reached 3 m on cyanobacterial crust, but hardly over 1 m on lichen crust; this pattern remained through rain type or soil moisture; (iii) run‐off decreased with BSC development because soil sealing disappears; porosity, biomass and roughness increase and some changes occur in the uppermost soil layer; and (iv) run‐off flow increased with both rain type and soil moisture but run‐off coefficient only with soil moisture (as larger rains increased both run‐off and infiltration); vascular plant cover had a slight effect on run‐off because it was low and random. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
6.
Glaciers are significant freshwater storage systems in western China and contribute substantially to the summertime run‐off of many large rivers in the Tibetan Plateau. Under the scenario of climate change, discussions of glacier variability and melting contributions in alpine basins are important for understanding the run‐off composition and ensuring that water resources are adequately managed and protected in the downstream areas. Based on the multisource spatial data and long‐term ground observation of climatic and hydrologic data, using the remote sensing interpretation, degree‐day model, and ice volume method, we presented a comprehensive study of the glacier changes in number, area, and termini and their impacts on summertime run‐off and water resource in the Tuotuo River basin, located in the source region of the Yangtze River. The results indicated that climate change, especially rising temperature, accelerated the glacier melting and consequently led to hydrological change. From 1969 to 2009, the glacier retreat showed an absolutely dominant tendency with 13 reduced glaciers and lost glacier area of 45.05 km2, accompanied by limited growing glaciers in the study area. Meanwhile, it indicated that annual glacial run‐off was averagely 0.38 × 108 m3, accounting for 4.96% of the total summertime run‐off, followed by the supply from precipitation and snowmelt. The reliability of this magnitude was assessed by the classic volume method, which also showed that the water resources from glacier melting in the Tuotuo River basin increased by approximate 17.11 × 108 m3, accounting for about 3.77% of the total run‐off over the whole period of 1969–2009. Findings from this study will serve as a reference for future research about glacier hydrology in regions where observational data are deficient. Also, it can help the planning of future water management strategies in the source region of the Yangtze River. 相似文献
7.
Stone covers on loessial slopes can increase the time of infiltration by slowing the velocity of the overland flow, which reduces the transport of solutes, but few mechanistic models have been tested under water‐scouring conditions. We carried out field experiments to test a previously proposed, physically based model of water and solute transport. The area of soil infiltration was calculated from the uncovered surface area, and Richards' equation and the kinematic wave equation were used to describe water infiltration and flow along slopes with stone covers. The transport of chemicals into the run‐off from the surface soil, presumably by diffusion, and their movement in the soil profile could be described by the convection–diffusion equations of the model. The simulated and measured data correlated well. The stones on the soil surface reduced the area available for infiltration but increased the Manning coefficient, eventually leading to increased water infiltration and decreased solute loss with run‐off. Our results indicated that the traditional model of water movement and solute migration could be used to simulate water transport and solute migration for stone‐covered soil on loessial slopes. 相似文献
8.
Hydrological fluxes and associated nutrient budget were studied during a 2 year period (1998–99) in a montane moist evergreen broad‐leaved forest at Ailao Mountain, Yunnan. Water samples of rainfall, throughfall, and stemflow, and of surface runoff, soil water, and stream flow were collected bimonthly to determine the concentration and fluxes of nutrients. Soil budgets were determined from the difference between precipitation input (including nutrient leaching from canopy) and output via runoff and drainage. The forest was characterized by low canopy interception and surface runoff, and high percolation and stream flow. Concentrations of nutrients were increased in throughfall and stemflow compared with precipitation. Surface runoff and drainage water had higher nutrient concentrations than precipitation and stream water. Total nitrogen and NH4+‐N concentrations were higher in soil water than stream water, whereas K+, Ca2+, and Mg2+ concentrations were lower in the former than the latter. Annual nutrient fluxes decreased with soil depth following the pattern of water flux. Annual losses of most nutrient elements via stream flow were less than the corresponding inputs via throughfall and stemflow, except for calcium, for which solute loss was greater than the inputs via precipitation. Leaching losses of that element may be compensated by weathering. Losses of nitrogen, phosphorus, potassium, magnesium, sodium, and sulphur could be replaced through atmospheric inputs. Copyright © 2002 John Wiley & Sons, Ltd. 相似文献
9.
This paper presents the use of stable isotopes of water for hydrological characterization and flow component partitioning in the Red River Delta (RRD), the downstream section of the Red River. Water samples were collected monthly during 2015 from the mainstream section of the river and its right bank tributaries flowing through the RRD. In general, δ18O and δ2H river signatures were depleted in summer–autumn (May–October) and elevated in winter–spring (November–April), displaying seasonal variation in response to regional monsoon air mass contest. The Pacific equatorial–maritime air mass dominates in summer and the northern Asia continental air mass controls in winter. Results show that water of the RRD tributaries stems solely from local sources and is completely separated from water arriving from upstream subbasins. This separation is due to the extensive management of the RRD (e.g., dykes and dams) for the purposes of irrigation and inundation prevention. Mainstream river section δ18O and δ2H compositions range from ?10.58 and ?73.74‰ to ?6.80 and ?43.40‰, respectively, and the corresponding ranges inside the RRD were from ?9.35 and ?64.27‰ to ?2.09 and ?15.80‰. A combination of data analysis and hydrological simulation confirms the role of upstream hydropower reservoirs in retaining and mixing upstream water. River water inside the RRD experienced strong evaporation characterized by depleted d‐excess values, becoming negative in summer. On the other hand, the main stream of the Red River has d‐excess values around 10‰, indicating moderate evaporation. Hydrograph separation shows that in upstream subbasins, the groundwater fraction dominates the river flow composition, especially during low flow regimes. Inside the RRD, the river receives groundwater during the dry season, whereas groundwater replenishment occurs in the rainy season. Annual evaporation obtained from this hydrograph separation computation was about 6.3% of catchment discharge, the same order as deduced from the difference between subbasin precipitation and discharge values. This study shows the necessity to re‐evaluate empirical approaches in large river hydrology assessment schemes, especially in the context of climate change. 相似文献
10.
This work introduces water–air two‐phase flow into integrated surface–subsurface flow by simulating rainfall infiltration and run‐off production on a soil slope with the finite element method. The numerical model is formulated by partial differential equations for hydrostatic shallow flow and water–air two‐phase flow in the shallow subsurface. Finite element computing formats and solution strategies are presented to obtain a numerical solution for the coupled model. An unsaturated seepage flow process is first simulated by water–air two‐phase flow under the atmospheric pressure boundary condition to obtain the rainfall infiltration rate. Then, the rainfall infiltration rate is used as an input parameter to solve the surface run‐off equations and determine the value of the surface run‐off depth. In the next iteration, the pressure boundary condition of unsaturated seepage flow is adjusted by the surface run‐off depth. The coupling process is achieved by updating the rainfall infiltration rate and surface run‐off depth sequentially until the convergence criteria are reached in a time step. A well‐conducted surface run‐off experiment and traditional surface–subsurface model are used to validate the new model. Comparisons with the traditional surface–subsurface model show that the initiation time of surface run‐off calculated by the proposed model is earlier and that the water depth is larger, thus providing values that are closer to the experimental results. 相似文献
11.
Throughfall and stemflow vary seasonally in different land‐use types in a lower montane tropical region of Panama 下载免费PDF全文
Catriona M.O. Macinnis‐Ng Eric E. Flores Henry Müller Luitgard Schwendenmann 《水文研究》2014,28(4):2174-2184
Catchment hydrology is influenced by land‐use change through alteration of rainfall partitioning processes. We compared rainfall partitioning (throughfall, stemflow and interception) and soil water content in three land‐use types (primary forest, secondary forest and agriculture) in the Santa Fe region of Panama. Seasonal patterns were typified by larger volumes of throughfall and stemflow in the wet season, and the size of precipitation events was the main driver of variation in rainfall redistribution. Land‐use‐related differences in rainfall partitioning were difficult to identify due to the high variability of throughfall. However, annual throughfall in agricultural sites made up a larger proportion of gross precipitation than throughfall in forest sites (94 ± 1, 83 ± 6 and 81 ± 1% for agriculture, primary and secondary forests, respectively). Proportional throughfall (% of gross precipitation becoming throughfall) was consistent throughout the year for primary forest, but for secondary forest, it was larger in the dry season than the wet season. Furthermore, proportional stemflow in the dry season was larger in secondary forest than primary forest. Stemflow, measured only in primary and secondary forests, ranged between 0.9 and 3.2% of gross precipitation. Relative soil moisture content in agricultural plots was generally elevated during the first half of the dry season in comparison to primary and secondary forests. Because throughfall is elevated in agricultural plots, we suggest careful management of the spatial distribution and spread of this land‐use type to mitigate potential negative impacts in the form of floods and high erosion rates in the catchment. Copyright © 2013 John Wiley & Sons, Ltd. 相似文献
12.
María Guadalupe Ares Mauro Holzman Ilda Entraigas Marcelo Varni Luisa Fajardo Natalia Vercelli 《水文研究》2018,32(10):1351-1362
The understanding of the hydrology of plain basins may be improved by the combined analysis of rainfall–run‐off records and remote sensed surface moisture data. Our work evaluates the surface moisture area (SMA) produced during rainfall–run‐off events in a plain watershed of the Argentine Pampas Region, and studies which hydrological variables are related to the generated SMA. The study area is located in the upper and middle basins of the Del Azul stream, characterized by the presence of small gently hilly areas surrounded by flat landscapes. Data from 9 rainfall–run‐off events were analysed. MODIS surface reflectance data were processed to calculate SMA subsequent to the peak discharge (post‐SMA), and previous to the rainfall events (prev‐SMA), to consider the antecedent wetness. Rainfall–run‐off data included total precipitation depth (P), maximum intensity of rainfall over 6 hr (I6max), surface run‐off registered between the beginning of the event and the day previous to the analysed MODIS scene (R), peak flow (Qp), and flood intensity (IF). In contrast with other works, post‐SMA showed a negative relationship with the R. Three groups of cases were identified: (a) Events of low I6max, high prev‐SMA, and low R were associated with slow and weakly channelized flow over plain areas, leading to saturated overland flow (SOF), with large SMA; (b) events of high I6max, low prev‐SMA, and medium to high R were rapidly transported along the gentle slopes of the basin, related to Hortonian overland flow (HOF) and low post‐SMA; and (c) events of medium to high I6max and prev‐SMA with medium R were related to heterogeneous input‐antecedent‐run‐off conditions combined: Local spatial conditions may have produced HOF or SOF, leading to an averaged response with medium SMA. The interactions between the geomorphology of the basin, the characteristics of the events, and the antecedent conditions may explain the obtained results. This analysis is relevant for the general knowledge of the hydrology of large plains, whose functioning studies are still in their early stages. 相似文献
13.
Canopy interception by a spruce forest in the upper reach of Heihe River basin,Northwestern China 总被引:2,自引:0,他引:2 下载免费PDF全文
The aim of this study is to understand the canopy interception of Qinghai spruce forest under conditions of different precipitation characteristics and canopy structures in the upper reach of Heihe River basin, northwestern China. On the basis of a continuous record covering our investigating period by an automatic throughfall‐collecting system, we analysed the relationships between the canopy interception and the precipitation characteristics. Our results support the well‐established exponential decay relationship between the gross precipitation and the interception percentage after the canopy is saturated. But our results sufficiently illustrate a notable point that the variations in the interception percentage are almost independent from the variations in the gross precipitation before the canopy is saturated. Our examination into the relationship between the interception and the 10‐min average intensity of precipitation demonstrates a divergent relationship, and the divergent relationship is bracketed by an upper ‘dry line’ indicating that 100% of gross precipitation was intercepted before saturation and by a lower ‘wet line’ suggesting that the actual canopy storage capacity reached the maximum and evaporation was the only component of the interception. To search for the relationship between canopy structures and interception, we grouped the canopy covers over the 90 throughfall‐collecting tanks into ten categories ranging from 0 (no cover) to 0.9 (nearly completely covered), and the corresponding canopy interception was calculated by subtracting the averaged throughfall of each canopy‐cover category from the gross precipitation. The results show that the interception percentage increases faster with increasing canopy cover under intermediate rainfall conditions than that under heavy rainfall conditions. Unexpectedly, under light rainfall conditions the increasing rate of interception percentage with increasing canopy cover and also with increasing plant area index is not faster than that under the intermediate rainfall conditions simply because the tank‐measured percentage of interception was extremely high at near‐zero canopy cover conditions. Copyright © 2013 John Wiley & Sons, Ltd. 相似文献
14.
Our work analyses the intra‐annual variability of the volume of water stored in 15 forested headwater catchments from south‐central Chile, aiming at understanding how forest management, hydrology, and climate influence the dynamic components of catchment storage. Thus, we address the following questions: (a) How does the annual water storage vary in catchments located in diverse hydroclimatic conditions and subject to variable forest management? (b) Which natural (i.e., hydrologic regime and physiographic setting) and anthropogenic factors explain the variance in water storage? Results show that the annual catchment storage increases at the beginning of each hydrological year in direct response to increases in rainfall. The maximum water storage ranges from 666 to 1,272 mm in these catchments. The catchments with Pinus or Eucalyptus spp. cover store less water than the catchments with mixed forest species cover. Forest cover (biomass volume, plantation density, and percentage of plantation and age) has the primary control on dynamic storage in all catchments. These results indicate that forest management may alter the catchment water storage. 相似文献
15.
Mauro Rossi Annette Witt Fausto Guzzetti Bruce D. Malamud Silvia Peruccacci 《地球表面变化过程与地形》2010,35(10):1123-1137
A catalogue of historical landslides, 1951–2002, for three provinces in the Emilia‐Romagna region of northern Italy is presented and its statistical properties studied. The catalogue consists of 2255 reported landslides and is based on historical archives and chronicles. We use two measures for the intensity of landsliding over time: (i) the number of reported landslides in a day (DL) and (ii) the number of reported landslides in an event (Sevent), where an event is one or more consecutive days with landsliding. From 1951–2002 in our study area there were 1057 days with 1 ≤ DL ≤?45 landslides per day, and 596 events with 1 ≤ Sevent ≤ 129 landslides per event. In the first set of analyses, we find that the probability density of landslide intensities in the time series are power‐law distributed over at least two‐orders of magnitude, with exponent of about ?2·0. Although our data is a proxy for landsliding built from newspaper reports, it is the first tentative evidence that the frequency‐size of triggered landslide events over time (not just the landslides in a given triggered event), like earthquakes, scale as a power‐law or other heavy‐tailed distributions. If confirmed, this could have important implications for risk assessment and erosion modelling in a given area. In our second set of analyses, we find that for short antecedent rainfall periods, the minimum amount of rainfall necessary to trigger landslides varies considerably with the intensity of the landsliding (DL and Sevent); whereas for long antecedent periods the magnitude is largely independent of the cumulative amount of rainfall, and the largest values of landslide intensity are always preceded by abundant rainfall. Further, the analysis of the rainfall trend suggests that the trigger of landslides in the study area is related to seasonal rainfall. Copyright © 2010 John Wiley & Sons, Ltd. 相似文献
16.
The critical zone features that control run‐off generation, specifically at the regional watershed scale, are not well understood. Here, we addressed this knowledge gap by quantitatively and conceptually linking regional watershed‐scale run‐off regimes with critical zone structure and climate gradients across two physiographic provinces in the Southeastern United States. We characterized long‐term (~20 years) discharge and precipitation regimes for 73 watersheds with United States Geological Survey in‐stream gaging stations across the Appalachian Mountain and Piedmont physiographic provinces of North Carolina. Watersheds included in this analysis had <10% developed land and ranged in size from 14.1–4,390 km2. Thirty‐four watersheds were located in the Piedmont physiographic province, which is typically classified as a low relief landscape with deep, highly weathered soils and regolith. Thirty‐nine watersheds were located in the Appalachian Mountain physiographic province, which is typically classified as a steeper landscape with highly weathered, but shallower soils and regolith. From the United States Geological Survey daily mean run‐off time series, we calculated annual and seasonal baseflow indices (BFI), minimum, mean, and maximum daily run‐off, and Pearson's correlation coefficients between precipitation and baseflow. Our results showed that Appalachian Mountain watersheds systematically had higher minimum daily flows and BFI values. Piedmont watersheds displayed much larger deviations from mean annual BFI in response to year‐to‐year variability in precipitation. A series of linear regression models between 21 landscape metrics and annual BFIs showed non‐linear and complex terrestrial–hydrological relationships across the two provinces. From these results, we discuss how distinct features of critical zone architecture, with specific focus on soil depth and stratigraphy, may be dominating the regulation of hydrological processes and run‐off regimes across these provinces. 相似文献
17.
Xiaoping Zhang Pengfei Lin Hao Chen Rui Yan Jianjun Zhang Yipeng Yu Erjia Liu Yahui Yang Wenhui Zhao Du Lv Siyue Lei Baoyuan Liu Xihua Yang Zhiguang Li 《水文研究》2018,32(4):576-589
The Loess Plateau has been experiencing large‐scale land use and cover changes (LUCCs) over the past 50 years. It is well known about the significant decreasing trend of annual streamflow and sediment load in the catchments in this area. However, how surface run‐off and sediment load behaved in response to LUCC at flood events remained a research question. We investigated 371 flood events from 1963 to 2011 in a typical medium‐sized catchment within the Plateau in order to understand how LUCC affected the surface run‐off generation and sediment load and their behaviours based on the analysis of return periods. The results showed that the mean annual surface run‐off and sediment load from flood events accounted for 49.6% and 91.8% of their mean annual totals. The reduction of surface run‐off and associated sediment yield in floods explained about 85.0% and 89.2% of declines in the total annual streamflow and sediment load, respectively. The occurrences of flood events and peak sediment concentrations greater than 500 kg/m3 showed a significantly downward trend, yet the counterclockwise loop events still dominated the flood event processes in the catchment. The results suggest that LUCC over the past 50 years resulted in significant changes in the water balance components and associated soil erosion and sediment transportation in the catchment. This was achieved mainly by reducing surface run‐off and sediment yield during floods with return period of less than 5 years. Run‐off–sediment load behaviour during the extreme events with greater than 10‐year return periods has not changed. Outcomes from this study are useful in understanding the eco‐hydrological processes and assisting the sustainable catchment management and land use planning on the Loess Plateau, and the methodologies are general and applicable to similar areas worldwide. 相似文献
18.
Application of the WEPP model to determine sources of run‐off and sediment in a forested watershed 下载免费PDF全文
This study investigates critical run‐off and sediment production sources in a forested Kasilian watershed located in northern Iran. The Water Erosion Prediction Project (WEPP) watershed model was set up to simulate the run‐off and sediment yields. WEPP was calibrated and validated against measured rainfall–run‐off–sediment data. Results showed that simulated run‐off and sediment yields of the watershed were in agreement with the measured data for the calibration and validation periods. While low and medium values of run‐off and sediment yields were adequately simulated by the WEPP model, high run‐off and sediment yield values were underestimated. Performance of the model was evaluated as very good and satisfactory during the calibration and validation stages, respectively. Total soil erosion and sediment load of the study watershed during the study period were determined to be 10 108 t yr?1 and 8735 t yr?1, respectively. The northern areas of the watershed with dry farming were identified as the critical erosion prone zones. To prioritize the subwatersheds based on their contribution to the run‐off and sediment production at the watershed's main outlet, unit response approach (URA) was applied. In this regard, subwatersheds close to the main outlet were found to have the highest contribution to sediment yield of the whole watershed. Results indicated that depending on the objective of land and water conservation practices, particularly, for controlling sediment yield at the main outlet, critical areas for implementing the best management practices may be identified through conjunctive application of WEPP and URA. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
19.
In this study, we investigated rainfall, run‐off, and sediment transport dynamics (414 run‐off events and 231 events with sediment information) of a humid mountain badland area—the Araguás catchment (Central Pyrenees, Spain)—from October 2005 to September 2016. Use of this long‐term database allows characterization of the hydrological response, which consist of low‐magnitude/high‐frequency events and high‐magnitude/low‐frequency events, and identification of seasonal dynamics and rainfall‐run‐off thresholds. Our results indicate that the Araguás catchment, similarly to other humid badlands, had high hydrological responsiveness (mean annual run‐off coefficient: 0.52), a non‐linear relationship of rainfall with run‐off (common in Mediterranean environments), and seasonal hydrological and sedimentological dynamics. We created and validated a multivariate regression model to characterize the hydrological variables (stormflow and peak discharge) and sedimentological variables (mean and maximum suspended sediment concentrations and total suspended sediment load). In summer and at the beginning of autumn, the response was mainly related to rainfall intensity, suggesting a predomination of Hortonian flows. In contrast, in spring and winter, the responses were mainly related to the antecedent conditions (previous rainfall and baseflow), suggesting the occurrence of saturated excess flow processes, and the contribution of neighbouring vegetated areas. The multivariate analysis also showed that total sediment load is better predicted by a multivariate regression model that integrates pre‐event, rainfall, and run‐off variables. In general, our models provided more accurate predictions of small‐magnitude/high‐frequency events than high‐magnitude/low‐frequency events. This study highlights the high inter‐ and intra‐annual variability response in humid badland areas and that long‐term records are needed to reduce the uncertainty of hydrological and sedimentological responses in Mediterranean badland areas. 相似文献
20.
To investigate the impacts of the invasion by bamboo on fluxes of nutrients and pollutants, the nutrient/pollutant fluxes and canopy interactions, including neutralization of acidity, leaching and uptake of nitrogen (N), were characterized in conjunction with rainfall partitioning in a Moso‐bamboo (Phyllostachys pubescens) forest. Measurements of precipitation volume, pH, major ions, and silicate (SiO2) in rainfall, throughfall and stemflow were collected weekly in a Moso‐bamboo forest located in Munakata City, Western Japan for 1 year. Results showed that rainfall partitioning into stemflow was larger than that for other types of forest, which may be due to the properties of Moso‐bamboo forest structure, such as a straight and smooth culm. Inorganic N (NO3− + NH4+) and S (SO42−) fluxes of throughfall and stemflow were approximately 1·6 and 1·3 times higher than that of rainfall, respectively. Contribution of stemflow flux to inorganic N and S fluxes to the forest floor was high. This could be due to lower uptake of inorganic N through culm and a higher rainfall partitioning into stemflow than that for other types of forest. The Moso‐bamboo canopy neutralized rainfall acidity, reducing the fluxes of potentially acidifying compounds via throughfall and stemflow. Canopy leaching of K+ was distinctly higher than that of Mg2+ and Ca2+ and could be related to the high mobility of K+ in plant tissues. Cl− and SiO2 were readily leached as for K+. The impact of the invasion by bamboo on nutrient cycling was discussed. Copyright © 2010 John Wiley & Sons, Ltd. 相似文献