首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 482 毫秒
1.
Changes in potential evapotranspiration and surface runoff can have profound implications for hydrological processes in arid and semiarid regions. In this study, we investigated the response of hydrological processes to climate change in Upper Heihe River Basin in Northwest China for the period from 1981 to 2010. We used agronomic, climatic and hydrological data to drive the Soil and Water Assessment Tool model for changes in potential evapotranspiration (ET0) and surface runoff and the driving factors in the study area. The results showed that increasing autumn temperature increased snow melt, resulting in increased surface runoff, especially in September and October. The spatial distribution of annual runoff was different from that of seasonal runoff, with the highest runoff in Yeniugou River, followed by Babaohe River and then the tributaries in the northern of the basin. There was no evaporation paradox at annual and seasonal time scales, and annual ET0 was driven mainly by wind speed. ET0 was driven by relative humidity in spring, sunshine hour duration in autumn and both sunshine hour duration and relative humility in summer. Surface runoff was controlled by temperature in spring and winter and by precipitation in summer (flood season). Although surface runoff increased in autumn with increasing temperature, it depended on rainfall in September and on temperature in October and November. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
The magnitude, occurrence rate and occurrence timing of floods in the Poyang Lake basin were analysed. The flood series were acquired by annual and seasonal maximum flow (AMF) sampling and peaks-over-threshold (POT) sampling. Nonstationarity and uncertainty were analysed using kernel density estimation and the bootstrap resampling methods. Using the relationships between flood indices and climate indices, i.e. El Niño/Southern Oscillation (ENSO), North Atlantic Oscillation (NAO), Indian Ocean Dipole (IOD) and Pacific Decadal Oscillation (PDO), the potential causes of flooding were investigated. The results indicate that (1) the magnitudes of annual and seasonal AMF- and POT-based sampled floods generally exhibit an increasing tendency; (2) the highest occurrence rates of floods identified were during the 1990s, when the flood-affected crop area, flood-damaged crop area and crop failure area reached the highest levels; and (3) ENSO and IOD are the major climate indices that significantly correlate with the magnitude and frequency of floods of the following year.

EDITOR A. Castellarin ASSOCIATE EDITOR T. Kjeldsen  相似文献   

3.
Trend analysis of reference evapotranspiration (ET0), as a key factor in irrigation programming, has an important role in water resources management. Many parameters affect ET0 and their variations can change its values. In this paper, the effect of temporal variation of meteorological variables including wind speed, temperature, solar radiation and saturation vapor pressure deficit on temporal variations of ET0 was analyzed. Trend analysis of ET0 and its more effective meteorological parameters was accomplished in 30 synoptic stations which are located in Iran using Spearman’s Rho test. The multiple linear regressions were also used to determine the relationship between ET0 trend and the trend of its more effective parameters. Increasing and decreasing trends in ET0 were obtained at annual and seasonal scales. Many studied stations which had decreasing trend in the annual and seasonal periods have been located in the arid climates while all stations which have been located in humid and very-humid climates, had an increasing trend in annual and seasonal periods. The trend results in studied variables showed that annual and seasonal values of wind speed, temperature and saturation vapor pressure deficit decrease however the values of solar radiation increases in most studied stations. Multiple linear regressions results demonstrated that ET0 trend can be calculated by the trend of two more effective variables including wind speed and saturation vapor pressure deficit.  相似文献   

4.
The Georgia Basin–Puget Sound Lowland region of British Columbia (Canada) and Washington State (USA) presents a crucial test in environmental management due to its combination of abundant salmonid habitat, rapid population growth and urbanization, and multiple national jurisdictions. It is also hydrologically complex and heterogeneous, containing at least three streamflow regimes: pluvial (rainfall-driven winter freshet), nival (melt-driven summer freshet), and hybrid (both winter and summer freshets), reflecting differing elevation ranges within various watersheds. We performed bootstrapped composite analyses of river discharge, air temperature, and precipitation data to assess El Niño–Southern Oscillation (ENSO) and Pacific Decadal Oscillation (PDO) impacts upon annual hydrometeorological cycles across the study area. Canadian and American data were employed from a total of 21 hydrometric and four meteorological stations. The surface meteorological anomalies showed strong regional coherence. In contrast, the seasonal impacts of coherent modes of Pacific circulation variability were found to be fundamentally different between streamflow regimes. Thus, ENSO and PDO effects can vary from one stream to the next within this region, albeit in a systematic way. Furthermore, watershed glacial cover appeared to complicate such relationships locally; and an additional annual streamflow regime was identified that exhibits climatically driven non-linear phase transitions. The spatial heterogeneity of seasonal flow responses to climatic variability may have substantial implications to catchment-specific management and planning of water resources and hydroelectric power generation, and it may also have ecological consequences due to the matching or phase-locking of lotic and riparian biological activity and life cycles to the seasonal cycle. The results add to a growing body of literature suggesting that assessments of the streamflow impacts of ocean–atmosphere circulation modes must accommodate local hydrological characteristics and dynamics. Copyright © 2007 John Wiley & Sons, Ltd. The copyright in Paul H. Whitfield's contribution belongs to the Crown in right of Canada and such copyright material is reproduced with the permission of Environment Canada.  相似文献   

5.
Abstract

Statistically significant FAO-56 Penman-Monteith (FAO-56 PM) and adjusted Hargreaves (AHARG) reference evapotranspiration (ET0) trends at monthly, seasonal and annual time scales were analysed by using linear regression, Mann-Kendall and Spearman’s Rho tests at the 1 and 5% significance levels. Meteorological data were used from 12 meteorological stations in Serbia, which has a humid climate, for the period 1980–2010. Web-based software for conducting the trend analyses was developed. All of the trends significant at the 1 and 5% significance levels were increasing. The FAO-56 PM ET0 trends were almost similar to the AHARG trends. On the seasonal time scale, for the majority of stations significant increasing trends occurred in summer, while no significant positive or negative trends were detected by the trend tests in autumn for the AHARG series. Moreover, 70% of the stations were characterized by significant increasing trends for both annual ET0 series.

Editor Z.W. Kundzewicz; Associate editor S. Grimaldi

Citation Gocic, M. and Trajkovic, S., 2013. Analysis of trends in reference evapotranspiration data in a humid climate. Hydrological Sciences Journal, 59 (1), 165–180.  相似文献   

6.
Evapotranspiration (ET) plays an important role in integrated water resource planning, development and management. This process is particularly relevant in semiarid regions. The aim of this study is, hence, to compare spatial and temporal patterns of actual ET, as well as the temporal trends in two different semiarid forests, Caatinga (Brazil) and Tierra de Pinares (Spain). We used the surface energy balance algorithm for land (SEBAL) to assess actual evapotranspiration (ETa) in both areas. In the Brazilian semiarid forest, Caatinga is the main vegetation, while it is Pinares in Spain. For this purpose, 69 Landsat-5 and 42 Landsat-8 images (1995–2019) were used. The Mann–Kendall test was applied to assess the occurrence of trends in precipitation, temperature and potential ET data; and the Temporal Stability Index (TSI) to know which areas have greater seasonal ETa. The annual amplitude of the potential evapotranspiration (ET0) is the same in both areas, however, the Caatinga values are higher. In the Caatinga forest, when ET0 presents its highest values throughout the year, ETa presents the lowest, and vice versa. In the Pinares forest, ETa follows the ET0 dynamics during the year, and the difference between ET0 and ETa is maximum during the summer. The Caatinga forest showed a greater spatial variation of ETa than the Pinares forest as well as a greater extension with lower temporal stability of ETa than the Pinares forest. Both the Caatinga forest and the Pinares forest showed significant positive trends in annual ET0 and ETa. We estimate that the value of ETa increases more rapidly in Pinares than in the Brazilian Caatinga. Taking Caatinga as a hydrological mirror, some consequences are expected to Pinares, such as significant changes in the water balance, increase of biodiversity vulnerability, and reduction of water availability in soil and reservoirs.  相似文献   

7.
It is of importance to comprehensively investigate the spatial–temporal changes in potential evaporation patterns, which helps guide the long-term water resource allocation and irrigation managements. In this study, the Cloud model was adopted to quantify the average, uniformity, and stability of the annual potential evaporation in the Wei River Basin (WRB), a typical arid and semi-arid region in China, with the purpose of objectively and comprehensively characterizing its changing patterns. The cross wavelet analysis was then applied to explore the correlations between annual potential evaporation and Arctic Oscillation (AO)/El Niño Southern Oscillation (ENSO) with an aim to determine the possible causes of annual potential evaporation variations. Results indicated that: (1) the average of annual potential evaporation in the WRB first declined and then increased, and its stability also showed the same change characteristics, whilst its dispersion degree exhibited a decreasing trend, implying that potential evaporation has a smaller inter-annual variation; (2) the average of annual potential evaporation in the western basin was obviously smaller than that in the other areas, while its uniformity and stability in the Guanzhong plain and the Loess Plateau areas are larger than those in other areas, especially in the western basin where the uniformity and stability are the smallest; (3) both AO and ENSO exhibited strong correlations with annual potential evaporation variations, indicating that both AO and ENSO have played an important role in the annual potential evaporation variations in the WRB.  相似文献   

8.
We investigated the frequency domain relationships between four atmospheric teleconnections (Trans-Niño Index TNI, Pacific Decadal Oscillation PDO, Northern Annular Mode/Arctic Oscillation Index NAM/AO, and Pacific/North American PNA pattern) and water levels in the Great Lakes from 1948 to 2002 by quantifying the coherence between these time series. The levels in all Great Lakes are significantly correlated with the TNI in the frequency range (3–7)−1 cycles year−1, and with the PDO in interdecadal frequencies. The levels in Lakes Superior, Michigan, and Erie are significantly correlated with the PNA pattern in interdecadal frequencies, and the levels in all Great Lakes are significantly correlated with the NAM/AO in interannual frequencies.  相似文献   

9.
There is some evidence of rapid changes in the global atmosphere and hydrological cycle caused by the influence of climate variability. In West Africa, such changes impact directly on water resources leading to incessant extreme hydro‐meteorological conditions. This study examines the association of three global climate teleconnections—El‐Niño Southern Oscillation (ENSO), Indian Ocean Dipole (IOD), and Atlantic Multi‐decadal Oscillation (AMO) with changes in terrestrial water storage (TWS) derived from both Modern‐Era Retrospective Analysis for Research and Applications (MERRA, 1980–2015) and Gravity Recovery and Climate Experiment (GRACE, 2002–2014). In the Sahel region, positive phase of AMO coincided with above‐normal rainfall (wet conditions) and the negative phase with drought conditions and confirms the observed statistically significant association (r = 0.62) between AMO and the temporal evolutions of standardised precipitation index. This relationship corroborates the observed presence of AMO‐driven TWS in much of the Sahel region (though considerably weak in some areas). Although ENSO appears to be more associated with GRACE‐derived TWS over the Volta basin (r =?0.40), this study also shows a strong presence of AMO‐ and ENSO‐induced TWS derived from MERRA reanalysis data in the coastal West African countries and most of the regions below latitude 10°N. The observed presence of ENSO‐ and AMO‐driven TWS is noticeable in tropical areas with relatively high annual/bimodal rainfall and strong inter‐annual variations in surface water. The AMO has a wider footprint and sphere of influence on the region's TWS and suggests the important role of North Atlantic Ocean. IOD‐related TWS also exists in West Africa and its influence on the region's hydrology maybe secondary and somewhat complementary. Nonetheless, presumptive evidence from the study indicates that ENSO and AMO are the two major climatic indices more likely to impact on West Africa's TWS.  相似文献   

10.
Reference evapotranspiration (ET 0 ) is a key parameter in hydrological and meteorological studies. In this study, the FAO Penman–Monteith equation was used to estimate ET 0 , and the change in ET 0 was investigated in China from 1960 to 2011. The results show that a change point around the year 1993 was detected for the annual ET 0 series by the Cramer’s test. For the national average, annual ET 0 decreased significantly (P < 0.001) by ?14.35 mm/decade from 1960 to 1992, while ET 0 increased significantly (P < 0.05) by 22.40 mm/decade from 1993 to 2011. A differential equation method was used to attribute the change in ET 0 to climate variables. The attribution results indicate that ET 0 was most sensitive to change in vapor pressure, followed by solar radiation, air temperature and wind speed. However, the effective impact of change in climate variable on ET 0 was the product of the sensitivity and the change rate of climate variable. During 1960–1992, the decrease in solar radiation was the main reason of the decrease in ET 0 in humid region, while decrease in wind speed was the dominant factor of decreases in ET 0 in arid region and semi-arid/semi-humid region of China. Decrease in solar radiation and/or wind speed offset the effect of increasing air temperature on ET 0 , and together led to the decrease in ET 0 from 1960 to 1992. Since 1993, the rapidly increasing air temperature was the dominant factor to the change in ET 0 in all the three regions of China, which led to the increase in ET 0 . Furthermore, the future change in ET 0 was calculated under IPCC SRES A1B and B1 scenarios with projections from three GCMs. The results showed that increasing air temperature would dominate the change in ET 0 and ET 0 would increase by 2.13–10.77, 4.42–16.21 and 8.67–21.27 % during 2020s, 2050s and 2080s compared with the average annual ET 0 during 1960–1990, respectively. The increases in ET 0 would lead to the increase in agriculture water consumption in the 21st century and may aggravate the water shortage in China.  相似文献   

11.
In conjunction with available climate data, surface runoff is investigated at 12 gauges in the Quesnel watershed of British Columbia to develop its long‐term (1926–2004) hydroclimatology. At Quesnel itself, annual mean values of air temperature, precipitation and runoff are 4·6 °C, 517 and 648 mm, respectively. Climate data reveal increases in precipitation, no significant trend in mean annual air temperature, but an increasing trend in mean minimum temperatures that is greatest in winter. There is some evidence of decreases in winter snow depth. On the water year scale (October–September), a strong positive correlation is found between discharge and precipitation (r = 0·70, p < 0·01) and a weak negative correlation is found between precipitation and temperature (r = ? 0·36, p < 0·01). Long‐term trends using the Mann‐Kendall test indicate increasing annual discharge amounts that vary from 8 to 14% (12% for the Quesnel River, p = 0·03), and also a tendency toward an earlier spring freshet. River runoff increases at a rate of 1·26 mm yr?1 m?1 of elevation from west to east along the strong elevation gradient in the basin. Discharge, temperature and precipitation are correlated with the large‐scale climate indices of the Pacific Decadal Oscillation (PDO) and El‐Niño Southern Oscillation (ENSO). Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
Many applications in diverse disciplines require estimates of evapotranspiration (ET) at hourly or smaller time steps. The primary objectives of this study were to compare the American Society of Civil Engineers (ASCE) and FAO-56 Penman–Monteith equations for 15-min ET0 (ET0,15-min,ASCE and ET0,15-min,FAO) estimations for humid climate conditions and to compare the 24 h sum of ASCE (ET0,24 h,ASCE) and FAO-56 15-min ET0 (ET0,24 h,FAO) with the daily ET0 (ET0,d,FAO) computed from the daily FAO-56 equation, which is identical to ASCE daily ET0 equation. Ten-year, i.e., 1997–2006 continuous 15-min and daily weather data for 11 representative and well-distributed sites throughout Georgia, USA were used. It was evident that during the day, ET0,15-min,ASCE was higher than ET0,15-min,FAO due to a lower surface resistance parameter value, while at night ET0,15-min,ASCE was lower than ET0,15-min,FAO due to a higher surface resistance parameter value. The ET0,15-min,FAO was about 5% less than ET0,15-min,ASCE and ET0,24 h,FAO was about 5% lower than ET0,24 h,ASCE. The difference between ET0,15-min,ASCE and ET0,15-min,FAO during the day and night was highly dependent on wind speed. During the three summer months, i.e., June, July and August, on average, ET0,24 h,FAO was only 1% higher than ET0,d,FAO while ET0,24 h,ASCE was 5% higher than ET0,d,FAO. For the entire year, ET0,24 h,FAO was 8% higher than ET0,d,FAO while ET0,24 h,ASCE was 13% higher than ET0,d,FAO. The ET0,24 h,FAO and ET0,d,FAO had a better agreement than ET0,24 h,ASCE and ET0,d,FAO throughout the year and during the summer months. It is also worth noting that the daily calculations for FAO-56 and ASCE were identical. These results demonstrated that for applications that require 15-min time steps or daily ET0 for the entire year, the use of ET0,15-min,FAO and ET0,24 h,FAO, respectively, will yield more consistent outcomes. The use of ET0,d,FAO during the summer months can be as accurate as the use of ET0,24 h,FAO for applications that require daily time steps, such as irrigation scheduling.  相似文献   

13.
The Food and Agriculture Organizations' (FAO) Penman–Monteith reference evapotranspiration (ET0) is a crucial index in the research of water and energy balance. Temporal and spatial variations in ET0 from 1981–2017 were investigated in the Hengduan Mountains, China. The results showed a change point around the year 2000 in ET0 series. ET0 decreased and increased significantly by +3.200 mm/year (p < 0.01) from 1981–2000 and by +4.109 mm/year (p < 0.01) from 2001–2017, respectively. The contribution analysis shows that the positive significant contribution of air temperature (TA) was offset by negative effects of decreases in downward shortwave radiation (Rs) and wind speed (WS) and an increase in actual vapour pressure (ea), causing the decrease in ET0 from 1981 to 2000. WS was the largest contributing factor for the decrease in ET0 from 1981 to 2000 during spring, winter and annually, while Rs and ea were the largest negative contributors in summer and autumn, respectively. An increase in TA was responsible for the increase in ET0 in all seasons except winter and the annual scale in 2001–2017. The sensitivity analysis shows that ET0 was most sensitive to TA, and WS was the least sensitive variable. The trends of ET0 increased with elevation; we denote this as the elevation-dependence of ET0 changes. The elevation-dependence was also noted for the trends of WS and ea, with higher elevations showing larger changes in WS and lower changes in ea. Besides, the sensitivities of TA, Rs and ea decreased with elevation, while that of WS increased slightly with elevation. A comprehensive investigation into the trends of climatic drivers and their sensitivities revealed complex trends of the contributions of climatic variables on ET0 with elevation, with no uniform trend existed in seasons. The results will contribute to our understanding of the response of ET0 to climate change in a mountainous area, and provide a guideline for the water resources management under climate change.  相似文献   

14.
Fleming SW  Quilty EJ 《Ground water》2006,44(4):595-599
We used climatological composite analysis to investigate El Ni?o-Southern Oscillation (ENSO) signals in long-term shallow ground water level observations from four wells in the lower Fraser Valley of British Columbia. Significance of differences between warm-phase, cold-phase, and neutral climate states was assessed with a Monte Carlo bootstrap technique. We also considered time series of local precipitation and streamflow for comparison. Composite annual hyetographs suggest that ENSO precipitation impacts are largely limited to winter and spring, with higher and lower rainfall occurring, respectively, under cold-phase and warm-phase episodes. This is consistent with prior work in the region and is found to be directly reflected in both streamflow and ground water level data. The mean magnitude of ENSO terrestrial hydrologic anomalies can be up to approximately 50% of the average seasonal cycle amplitude. ENSO does not appear to systematically affect annual hydrometeorological cycle timing in this study area. However, relative to the surface hydrologic systems considered, aquifers are observed to retain a stronger memory of seasonal ENSO-related precipitation anomalies, with changes potentially extending through the following summer, presumably reflecting storage effects. Most responses appear to be somewhat nonlinear.  相似文献   

15.
The Western Boreal Plain of North Central Alberta comprises a mosaic of wetlands and aspen (Populus tremuloides) dominated uplands where precipitation (P) is normally exceeded by evapotranspiration (ET). As such these systems are highly susceptible to the climatic variability that may upset the balance between P and ET. Above canopy evapotranspiration (ETC) and understory evapotranspiration (ETB) were examined using the eddy covariance technique situated at 25.5 m (7.5 m above tree crown) and 4.0 m above the ground surface, respectively. During the peak period of the growing seasons (green periods), ETC averaged 3.08 mm d?1 and 3.45 mm d?1 in 2005 and 2006, respectively, while ETB averaged 1.56 mm d?1 and 1.95 mm d?1. Early in the growing season, ETB was equal to or greater than ETC once understory development had occurred. However, upon tree crown growth, ETB was lessened due to a reduction in available energy. ETB ranged from 42 to 56% of ETC over the remainder of the snow‐free seasons. Vapour pressure deficit (VPD) and soil moisture (θ) displayed strong controls on both ETC and ETB. ETC responded to precipitation events as the developed tree crown intercepted and held available water which contributed to peak ETC following precipitation events >10 mm. While both ETC and ETB were shown to respond to VPD, soil moisture in the rooting zone is shown to be the strongest control regardless of atmospheric demand. Further, soil moisture and tension data suggest that rooting zone soil moisture is controlled by the redistribution of soil water by the aspen root system. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
Abstract

To explore the spatial and temporal variations of the reference evapotranspiration (ETref) is helpful to understand the response of hydrological processes to climate changes. In this study, ETref was calculated by the Penman-Monteith method (P-M method) using air temperature, wind speed, relative humidity and sunshine hours at 89 meteorological stations during 1961–2006 in the Yellow River Basin (YRB), China. The spatial distribution and temporal variations of ETref were explored by means of the kriging method, the Mann-Kendall (M-K) method and the linear regression model, and the causes for the variations discussed. The contribution of main meteorological variables to the variations of ETref was explored. From the results we found that: (1) the spatial distributions of ETref display seasonal variation, with similar spatial patterns in spring, summer and autumn; (2) temporal trends for ETref showed large variation in the upper, middle and lower regions of the basin, most of the significant trends (P?=?0.05) were detected in the middle and lower regions, and, in particular, the upward and downward trends were mainly detected in the middle region and lower region of the basin, respectively; and (3) sensitivity analysis identified the most sensitive variable for ETref as relative humidity, followed by air temperature, sunshine hours and wind speed at the basin scale.

Citation Yang, Zhifeng, Liu, Qiang & Cui, Baoshan (2011) Spatial distribution and temporal variation of reference evapotranspiration during 1961–2006 in the Yellow River Basin, China. Hydrol. Sci. J. 56(6), 1015–1026.  相似文献   

17.
Relationships were examined between variability in tropical Atlantic sea level and major climate indices with the use of TOPEX/POSEIDON altimeter and island tide gauge data with the aim of learning more about the external influences on the variability of the tropical Atlantic ocean. Possible important connections were found between indices related to the El Niño–Southern Oscillation (ENSO) and the sea levels in all three tropical regions (north, equatorial, and south), although the existence of only one major ENSO event within the decade of available altimetry means that a more complete investigation of the ENSO-dependence of Atlantic sea level changes has to await for the compilation of longer data sets. An additional link was found with the Indian Ocean Dipole (IOD) in the equatorial region, this perhaps surprising observation is probably an artifact of the similarity between IOD and ENSO time series in the 1990s. No evidence was obtained for significant correlations between tropical Atlantic sea level and North Atlantic Oscillation or Antarctic Oscillation Index. The most intriguing relationship observed was between the Quasi-Biennial Oscillation and sea level in a band centered approximately on 10°S. A plausible explanation for the relationship is lacking, but possibilities for further research are suggested.  相似文献   

18.
In the present study, the trends in the reference evapotranspiration (ETO) estimated through the Penman‐Monteith method were investigated over the humid region of northeast (NE) India by using the Mann‐Kendall (MK) test after removing the effect of significant lag‐1 serial correlation from the time series of ETO by pre‐whitening. During the last 22 years, ETO has been found to decrease significantly at annual and seasonal time scales for 6 sites in NE India and NE India as a whole. The seasonal decreases in ETO have, however, been more significant in the pre‐monsoon season, indicating the presence of an element of a seasonal cycle. The decreases in ETO are mainly attributed to the net radiation and wind speed, which are also corroborated by the observed trends in these two parameters at almost all the times scales over most of the sites in NE India. The steady decrease in wind speed and decline in net radiation not only balanced the impact of the temperature increases on ETO, but may have actually caused the decreases in ETO over the humid region of northeast India. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
Sensitivity analysis is crucial in assessing the impact of climatic variables on reference evapotranspiration estimations. The sensitivity of the standardized ASCE–Penman–Monteith evapotranspiration equation for daily estimations to climatic variables has not yet been studied in Spain. Andalusia is located in southern Spain where almost 1 million ha are irrigated under quite different conditions; it has a high inter‐annual variability in rainfall. In this study, sensitivity analyses for this equation were carried out for temperature, relative humidity, solar radiation and wind speed data from 87 automatic weather stations, including coastal and inland locations, from 1999 to 2006. Topography and Mediterranean climate characterize the heterogeneous landscape and vegetation of this region. Simulated random and systematic errors have been added to meteorological data to obtain ET0 deviations and sensitivity coefficients for different time periods. BIAS and SEE (standard error of estimate) have been used to evaluate the effect of both types of errors. The results showed a large degree of daily and seasonal variability, especially for temperature and relative humidity. In general, the effect on ET0 values of introduced random errors was larger than that of systematic errors. ET0 overestimations were produced using positive errors in temperature, solar radiation and wind speed data, while these errors in relative humidity resulted in ET0 underestimations. The sensitivity of ET0 to the same climatic variables showed significant differences among locations. The geographical distribution of sensitivity coefficients across this region was also studied. As an example, during spring months, ET0 equation was more sensitive to temperature in stations located along the Guadalquivir Valley. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
X. Mo  S. Liu  Z. Lin  S. Wang  S. Hu 《水文科学杂志》2013,58(12):2163-2177
Abstract

Using satellite observations of Normalized Difference Vegetation Index (NDVI) from NOAA-AVHRR and Terra-MODIS, together with climatic data in a physical evapotranspiration (ET) model, the spatio-temporal variability of ET is investigated in terrestrial China from 1981 to 2010. The model predictions of actual ET (ETa) are validated with ET values from in situ eddy covariance flux measurements and from basin water balance calculations. The national averaged crop reference ET (ETp) and ETa values are 916 ± 21 and 415 ± 12 mm year-1, respectively. The annual ETa pattern is closely associated with vegetation conditions in the eastern part of China, whereas ETa is low in the sparsely-vegetated areas and deserts in the northwestern region, corresponding to scarce rainfall events and amounts. The trends of ETp and ETa are remarkably different over the country, and the complementary relationship between ETp and ETa is revealed for the study period. Averaged over the whole country, ETa showed an increasing trend from the 1980s to the mid-1990s, followed by a decreasing trend, consistent with the precipitation anomaly. Across the main vegetation types, annual ETa amounts are found to correspond clearly with the bands of precipitation and ETp.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号