首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Freeze-thaw processes in soils,including changes in frost and thaw fronts(FTFs),are important physical processes.The movement of FTFs affects soil hydrothermal characteristics,as well as energy and water exchanges between the land surface and the atmosphere and hydrothermal processes in the land surface.This paper reduces the issue of soil freezing and thawing to a multiple moving-boundary problem and develops a soil water and heat transfer model which considers the effects of FTF on soil hydrothermal processes.A local adaptive variable-grid method is used to discretize the model.Sensitivity tests based on the hierarchical structure of the Community Land Model(CLM)show that multiple FTFs can be continuously tracked,which overcomes the difficulties of isotherms that cannot simultaneously simulate multiple FTFs in the same soil layer.The local adaptive variable-grid method is stable and offers computational efficiency several times greater than the high-resolution case.The simulated FTF depths,soil temperatures,and soil moisture values fit well with the observed data,which further demonstrates the potential application of this simulation to the land-surface process model.  相似文献   

2.
The variation in snowmelt energy and energy components were evaluated with respect to forest density. Surface snowmelt rates, surface evaporation from snow cover and meteorological elements were measured in the open and under sparse (411 trees/ha) and dense (1433 trees/ha) larch canopies. The surface snowmelt rate decreased as the forest density increased. Based on the observations and energy balance analyses, we concluded the following. (1) Albedo decreased while the bulk coefficient for latent heat increased with forest density. (2) The duration of snowmelt increased with forest density because the energy for nocturnal cooling of the snow cover decreased. (3) When comparing the open and forested sites, the changes in snowmelt energy with forest density were caused by sensible heat flux. However, the contribution of net radiation was highest in the forested sites. Therefore, the effects of forest cover on the snowmelt energy were different when comparing both the open and forested sites and the sparse and densely forested sites. (4) The ratio of net radiation to snowmelt energy increased with forest density; although both snowmelt energy and net radiation decreased with increased forest density, the snowmelt energy decreased more rapidly. Sensible heat also decreased as forest density increased. Both albedo and downward long‐wave radiation influenced net radiation. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

3.
运用国际能量平衡实验(EBEX-2000)的湍流、净辐射和土壤观测资料,运用涡动相关法分析了非均匀灌溉引起的热内边界层发展条件下近地层感热、潜热通量特征,并对有无灌溉两种条件下的能量闭合度进行了对比分析.在计算感热、潜热通量过程中,分别将Schotanus订正和Webb订正纳入了考虑范围,研究了两种订正方法对计算湍流热通量的影响.研究结果发现,由于非均匀灌溉生成的热内边界层使得近地层感热通量受到抑制,潜热通量出现波动,该现象在8.7 m比2.7 m 更为显著.非均匀灌溉导致的热内边界层的存在使得近地层能量闭合度偏低,能量平衡比率约为0.65;而没有热内边界层存在时,近地层能量平衡比率约为0.70.本实验中,Schotanus订正使得感热通量显著减小,其订正量日平均值约为-8 W/m2,占净辐射的近4%;Webb订正量日平均值约为2 W/m2,对能量平衡的影响较小.  相似文献   

4.
Flume experiments simulating concentrated runoff were carried out on remolded silt loam soil samples (0·36 × 0·09 × 0·09 m3) to measure the effect of rainfall‐induced soil consolidation and soil surface sealing on soil erosion by concentrated flow for loess‐derived soils and to establish a relationship between soil erodibility and soil bulk density. Soil consolidation and sealing were simulated by successive simulated rainfall events (0–600 mm of cumulative rainfall) alternated by periods of drying. Soil detachment measurements were repeated for four different soil moisture contents (0·04, 0·14, 0·20 and 0·31 g g?1). Whereas no effect of soil consolidation and sealing is observed for critical flow shear stress (τcr), soil erodibility (Kc) decreases exponentially with increasing cumulative rainfall depth. The erosion‐reducing effect of soil consolidation and sealing decreases with a decreasing soil moisture content prior to erosion due to slaking effects occurring during rapid wetting of the dry topsoil. After about 100 mm of rainfall, Kc attains its minimum value for all moisture conditions, corresponding to a reduction of about 70% compared with the initial Kc value for the moist soil samples and only a 10% reduction for the driest soil samples. The relationship estimating relative Kc values from soil moisture content and cumulative rainfall depth predicts Kc values measured on a gradually consolidating cropland field in the Belgian Loess Belt reasonably well (MEF = 0·54). Kc is also shown to decrease linearly with increasing soil bulk density for all moisture treatments, suggesting that the compaction of thalwegs where concentrated flow erosion often occurs might be an alternative soil erosion control measure in addition to grassed waterways and double drilling. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

5.
The data reflecting the change in density are obtained, with computer tomograph scanning through the sample of freezing soil section by section at intervals without destruction. Combined with the changing characteristics of water content along the sample during test, the dynamic coupled process of moisture and density fields under the effect of temperature gradient on the freezing soil in closed system is discussed. The result reflects the internal process of frost heave improvement resulting from the transfer of mass and heat. Project supported by the National Natural Science Foundation of China (Grant No. 49401003).  相似文献   

6.
To develop geosciences quantification and multi-dimensional researches will be an inevitable trend in the 21st century. The interaction between the land surface and the atmosphere not only serves as an important component in geosciences quantification, bu…  相似文献   

7.
In the context of the heterogeneity in the unsaturated or vadose zone, accurately representing the analytical mechanisms and in-situ water content within the soil layer poses a significant challenge. Particularly in shallow layers, thermal conditions exhibit rapid changes in response to evolving surface temperatures. This study proposes a hypothesis suggesting that the in situ heat mechanism may notably impact the soil water layer. The research introduces an innovative approach to theoretically uncover thermal conditions, including soil temperature, soil temperature gradients, and heat flux, within the shallow Quaternary gravel layer at various depths through spectral analysis of temporal observations. The study presents a stochastic inverse solution to estimate thermal conductivity by leveraging spectral analysis of soil heat flux and temperature gradients. The findings reveal that thermal conditions exhibit the most prominent periodic fluctuations during the diurnal process over a 24-hour cycle. The soil temperature gradients and heat flux measurements at depths of 0.1, 0.3, 0.6, and 1.2 m demonstrate their ability to capture changes in soil temperature and air temperature to a certain extent within the frequency domain. Furthermore, the analysis highlights the intrinsic uncertainty and sensitivity of estimating thermal conductivity in heterogeneous soil environments. The wide variability observed in thermal conductivity values, coupled with their dependence on soil type and environmental conditions, underscores the need for careful consideration of these factors in future studies and modeling efforts. Applying the derived inverse spectral solution allows for determining thermal conductivity throughout the soil-water system across depths ranging from 0.1 to 1.2 m. As a result, this research demonstrates the feasibility and practicality of assessing the thermal conductivity of the soil layer in conjunction with heat flux and temperature gradients through spectral analysis.  相似文献   

8.
Here we use Richards Equation models of variably saturated soil and bedrock groundwater flow to investigate first-order patterns of the coupling between soil and bedrock flow systems. We utilize a Monte Carlo sensitivity analysis to identify important hillslope parameters controlling bedrock recharge and then model the transient response of bedrock and soil flow to seasonal precipitation. Our results suggest that hillslopes can be divided into three conceptual zones of groundwater interaction, (a) the zone of lateral unsaturated soil moisture accumulation (upper portion of hillslope), (b) the zone of soil saturation and bedrock recharge (middle of hillslope) and (c) the zone of saturated-soil lateral flow and bedrock groundwater exfiltration (bottom of hillslope). Zones of groundwater interaction expand upslope during periods of precipitation and drain downslope during dry periods. The amount of water partitioned to the bedrock groundwater system a can be predicted by the ratio of bedrock to soil saturated hydraulic conductivity across a variety of hillslope configurations. Our modelled processes are qualitatively consistent with observations of shallow subsurface saturation and groundwater fluctuation on hillslopes studied in our two experimental watersheds and support a conceptual model of tightly coupled shallow and deep subsurface circulation where groundwater recharge and discharge continuously stores and releases water from longer residence time storage.  相似文献   

9.
Plants have been shown to affect soil water content and temperature. Previous studies were conducted mainly in forestry and agricultural soils, where conditions of soil and vegetation are different from those in an urban landscape. In an urban landscape, the influence of plant roots on electrical conductivity, soil water content and temperature is still not clear. This study aims to investigate the effects of soil water content and temperature on electrical conductivity in vegetated soils through an integrated field monitoring and computational modelling approach. A new relationship between soil electrical conductivity and water content as well as temperature is proposed. Field monitoring was conducted in both vegetated (tree species) and bare soils. The monitoring included measurements of soil water content, soil temperature and soil electrical conductivity. This was followed by response surface regression modelling. Measured results show that soil temperature at shallow depths was lower in vegetated soil than that in the bare soil. This observation was also consistent with the higher soil water content and hence, higher electrical conductivity under tree canopy. The model developed could predict nonlinear relationships between electrical conductivity and soil temperature and water content. Uncertainty analysis indicated normal distribution for electrical conductivity under variation of soil temperature and water content. © 2018 John Wiley & Sons, Ltd.  相似文献   

10.
The effects of soil water content (SWC) on the formation of run‐off in grass swales draining into a storm sewer system were studied in two 30‐m test swales with trapezoidal cross sections. Swale 1 was built in a loamy fine‐sand soil, on a slope of 1.5%, and Swale 2 was built in a sandy loam soil, on a slope of 0.7%. In experimental runs, the swales were irrigated with 2 flow rates reproducing run‐off from block rainfalls with intensities approximately corresponding to 2‐month and 3‐year events. Run‐off experiments were conducted for initial SWC (SWCini) ranging from 0.18 to 0.43 m3/m3. For low SWCini, the run‐off volume was greatly reduced by up to 82%, but at high SWCini, the volume reduction was as low as 15%. The relative swale flow volume reductions decreased with increasing SWCini and, for the conditions studied, indicated a transition of the dominating swale functions from run‐off dissipation to conveyance. Run‐off flow peaks were reduced proportionally to the flow volume reductions, in the range from 4% to 55%. The swale outflow hydrograph lag times varied from 5 to 15 min, with the high values corresponding to low SWCini. Analysis of swale inflow/outflow hydrographs for high SWCini allowed estimations of the saturated hydraulic conductivities as 3.27 and 4.84 cm/hr in Swales 1 and 2, respectively. Such estimates differed from averages (N = 9) of double‐ring infiltrometer measurements (9.41 and 1.78 cm/hr). Irregularities in swale bottom slopes created bottom surface depression storage of 0.35 and 0.61 m3 for Swales 1 and 2, respectively, and functioned similarly as check berms contributing to run‐off attenuation. The experimental findings offer implications for drainage swale planning and design: (a) SWCini strongly affect swale functioning in run‐off dissipation and conveyance during the early phase of run‐off, which is particularly important for design storms and their antecedent moisture conditions, and (b) concerning the longevity of swale operation, Swale 1 remains fully functional even after almost 60 years of operation, as judged from its attractive appearance, good infiltration rates (3.27 cm/hr), and high flow capacity.  相似文献   

11.
Often the soil hydraulic parameters are obtained by the inversion of measured data (e.g. soil moisture, pressure head, and cumulative infiltration, etc.). However, the inverse problem in unsaturated zone is ill‐posed due to various reasons, and hence the parameters become non‐unique. The presence of multiple soil layers brings the additional complexities in the inverse modelling. The generalized likelihood uncertainty estimate (GLUE) is a useful approach to estimate the parameters and their uncertainty when dealing with soil moisture dynamics which is a highly non‐linear problem. Because the estimated parameters depend on the modelling scale, inverse modelling carried out on laboratory data and field data may provide independent estimates. The objective of this paper is to compare the parameters and their uncertainty estimated through experiments in the laboratory and in the field and to assess which of the soil hydraulic parameters are independent of the experiment. The first two layers in the field site are characterized by Loamy sand and Loamy. The mean soil moisture and pressure head at three depths are measured with an interval of half hour for a period of 1 week using the evaporation method for the laboratory experiment, whereas soil moisture at three different depths (60, 110, and 200 cm) is measured with an interval of 1 h for 2 years for the field experiment. A one‐dimensional soil moisture model on the basis of the finite difference method was used. The calibration and validation are approximately for 1 year each. The model performance was found to be good with root mean square error (RMSE) varying from 2 to 4 cm3 cm?3. It is found from the two experiments that mean and uncertainty in the saturated soil moisture (θs) and shape parameter (n) of van Genuchten equations are similar for both the soil types. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
13.
During past decades, a diverse system of subsistence agriculture in south‐east Spain (annual rainfall of less than 300 mm) has been overturned in favour of large‐scale plantations of almond trees without consideration for topography and related spatial patterns in soil hydrological properties. The objective of this paper is to investigate the spatial pattern in soil physical properties induced by this cultivation system, and to highlight its impact on the water balance. Soil properties were recorded along hillslopes with shallow soils developed on slates and greywackes in the upper part of the Guadelentin drainage basin (Murcia region). Frequent tillage of these almond plantations covering entire hillslopes has resulted in denudation by tillage erosion on the topographic convexities, as well as transport of rock fragments and fine earth along the slopes. These processes have created a systematic spatial pattern of soil thickness and rock fragment content: shallow and stony soils on the topographic convexities and deep soils with a rock fragment mulch in the concavities at the foot of the slopes. At the same time, a negative relationship between rock fragment content and fine earth bulk density was observed. The impact of this spatial pattern in soil properties on the water balance was evaluated using the PATTERN one‐dimensional hydrological and plant growth model. The model simulates the water balance of soil profiles covering the observed variation in soil thickness, stoniness and bulk density. The model results indicate that the highest rates of infiltration, evaporation and drainage, as well as the lowest rates of overland flow are restricted to shallow soils on the hilltops. In contrast, the deeper soils in the valley bottoms produce a more stable moisture regime than shallower soils, which tend to saturate and dry out quickly. These model results are in agreement with the spatial patterns of almond productivity: an asymptotic increase with soil thickness. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

14.
The Oak Ridges Moraine (ORM) is a key hydrogeologic feature in southern Ontario. Previous research has emphasized the importance of depression‐focused recharge (DFR) for the timing and location of water recharge to the ORM's aquifers. However, the significance of DFR has not been empirically demonstrated, and the ORM's permeable surficial deposits imply that rainfall and snowmelt will largely recharge vertically rather than move laterally to topographic depressions. The exception may be during winter and spring, when concrete soil frost limits infiltration and encourages overland flow. The potential for DFR was examined for closed depressions under forest and agricultural land covers with similar soils and surficial geology. Air temperatures, precipitation, snow depth and water equivalent, soil water contents, soil freezing, and depression surface‐water levels were monitored during the winter and spring of 2012–2013 and 2013–2014. Recharge (R) was estimated at the crest and base of each depression using a 1‐dimensional water balance approach and surface‐applied Br? tracing. Both forest and agricultural land covers experienced soil freezing; however, forest soils did not develop concrete frost. Conversely, agricultural fields saw concrete frost, overland flow, episodic ponding, and subsequent drainage of rain‐on‐snow and snowmelt inputs in open depressions. Recharge at the base of open depressions exceeded that in surrounding areas by an order of magnitude, suggesting that DFR is a significant hydrologic process during winter and spring under agricultural land cover on the ORM. Closed topographic depressions under agricultural land cover on the ORM crest may serve as critical recharge “hot spots” during winter and spring, and the ability of the unsaturated zone beneath these depressions to modify the chemistry of recharging water deserves further attention.  相似文献   

15.
Extensive pumping to extract water from Mexico City's subsoil has caused regional sinking. Water pumping produces regional consolidation which increases effective stresses acting on the subsoil modifying its static and dynamic properties. As the soil properties change, so does their dynamic response. Approximate expressions to estimate the future changes in soil properties are proposed. Also, this paper puts forth new evidence to illustrate these changes and presents estimates of future settlements in central Mexico City, using a soil consolidation model that overcomes some of the limitations of Terzaghi's theory. Results of an analysis to estimate the effects of the evolution of the subsoil's dynamic properties are illustrated by means of seismic analyses performed on a couple of sites in an old lake bed in Mexico City.  相似文献   

16.
The thermal diffusivity is the key parameter that controls near‐surface temperature where periodic temperature variation is progressively attenuated and delayed with depth. This article presents the results of apparent thermal diffusivity using temperatures recorded by a bedrock temperature measurement network in the fault zones of western Sichuan. High sensitivity temperature sensors (10?4 K) were installed at a maximum depth reaching 30 m. The apparent thermal diffusivities were deduced from both amplitude damping and phase shifting of annual temperature variations between two different depths. Under pure conduction, the thermal diffusivity determined through the phase method (αΦ) should be equivalent to that determined through the amplitude method (αA), whereas effects of the upward (downward) water flow are evidently reflected in the amplitude decay to make αΦ larger (lesser) than αA. The discrepancy between αΦ and αA can thus be a tracer of water movement or convective heat transfer. The calculated αΦ of the measurement stations varies from 1.22 × 10?6 to 3.00 × 10?6 m2/s, and the estimated αA ranges from 0.93 × 10?6 to 2.41 × 10?6 m2/s. Two regimes of heat transfer underground were suggested from the results. Conductive heat transport prevails over the nonconductive processes at five stations, which is characterized by αΦ coincident with αA for the same depth pair. On the contrary, the values of αΦ differ from αA at six stations in the intersection area of the Y‐shaped fault system, implying that convective heat transfer also plays a comparably important role. This finding is consistent with the hot springs distribution of the area. The results also indicate that water moves upward with an average Darcy velocity of approximately ?1 × 10?7 m/s in this region. Our research provides new evidence for the hydrothermal activity in the fault zones at the eastern margin of the Tibetan Plateau.  相似文献   

17.

珠江三角洲位于华夏板块南部, 虽然已发现多个水热型地热田, 但地热研究仍然较为薄弱.岩石热物性研究是地热研究中最为基础和重要的工作之一.本研究采集并测量了珠江三角洲与周边典型地区100块地表岩石的密度、热导率、热扩散率, 以及50块岩浆岩的U、Th、K2O含量, 并分别计算了体积热容和放射性生热率.实测结果表明, 碎屑岩中细砂岩的热导率最高(3.94±0.92 W·(m·K)-1), 页岩的热导率最低(2.68±0.55 W·(m·K)-1).岩石热导率和热扩散率具有明显的正相关性.结合地层厚度建立了地层热物性柱, 其中古近系的热导率最低, 地层热物性与沉积环境有关.岩浆岩中玄武岩的热导率最低(2.17±0.13 W·(m·K)-1), 花岗岩平均热导率为3.87±0.59 W·(m·K)-1.花岗岩放射性生热率在0.36~14.23 μW·m-3之间, 平均值为5.23±3.03 μW·m-3, 属于高产热花岗岩.结合前人对研究区岩石放射性元素含量的测试结果, 我们发现, 相对于K2O, U、Th与生热率具有更强的相关性, 并对产热的贡献更高.相对于花岗岩, 玄武岩的生热率较低, K2O对产热的贡献较高.新的资料为区域热流的确定和地热资源评价提供了新的视角.模拟和计算结果表明, 三水盆地沉积层能对深部热量起到聚集和保存的作用, 并在基底附近形成高温区(>150 ℃); 上地壳中花岗岩体产生的热流超过45 mW·m-2, 占地表热流的一半以上.盆地和花岗岩体均具有形成高温地热资源的地质条件.此外, 酸性岩浆岩放射性生热率随时间逐渐降低的特征与幔源基性岩浆的混合作用有关.

  相似文献   

18.
Land surface process is of great importance in global climate change, moisture and heat exchange in the interface of the earth and atmosphere, human impacts on the environment and eco- system, etc. Soil freeze/thaw plays an important role in cold land surface processes. In this work the diurnal freeze/thaw effects on energy partition in the context of GAME/Tibet are studied. A sophisti- cated land surface model is developed, the particular aspect of which is its physical consideration of soil freeze/thaw and vapor flux. The simultaneous water and heat transfer soil sub-model not only reflects the water flow from unfrozen zone to frozen fringe in freezing/thawing soil, but also demon- strates the change of moisture and temperature field induced by vapor flux from high temperature zone to low temperature zone, which makes the model applicable for various circumstances. The modified Picard numerical method is employed to help with the water balance and convergence of the numerical scheme. Finally, the model is applied to analyze the diurnal energy and water cycle char- acteristics over the Tibetan Plateau using the Game/Tibet datasets observed in May and July of 1998. Heat and energy transfer simulation shows that: (i) There exists a negative feedback mechanism between soil freeze/thaw and soil temperature/ground heat flux; (ii) during freezing period all three heat fluxes do not vary apparently, in spite of the fact that the negative soil temperature is higher than that not considering soil freeze; (iii) during thawing period, ground heat flux increases, and sensible heat flux decreases, but latent heat flux does not change much; and (iv) during freezing period, soil temperature decreases, though ground heat flux increases.  相似文献   

19.
热分层对水库水质的季节性影响——以西安黑河水库为例   总被引:2,自引:1,他引:2  
卢金锁  李志龙 《湖泊科学》2014,26(5):698-706
深水水库作为城市的重要供水水源,通常由于热量在垂向水体上的不均匀分配形成热分层.热分层会阻碍垂向上水体交换引发水质分层现象,在冬季水库发生“翻库”之后,水体混合导致水库的整体水质下降.结合热分层指数可以客观、直接地表达水库热分层的稳定程度.综合水库的气温、水体更新率和水质参数(溶解氧、pH、总磷、氨氮)的年度变化,对陕西黑河水库2008-2010年的热分层状况进行研究.研究表明:水库的热分层形成会直接恶化底部水质尤其会加速底部水体中溶解氧的消耗;热分层的年度变化主要受气温控制,但在特定时期较大的水体更新率可以在一定程度上弱化水体热分层,减缓底部水质恶化.该结果可使水库管理者在水库分层最稳定、水质恶化最严重时期以人工调节水体更新率的方式弱化热分层,为保证水质安全提供参考.  相似文献   

20.
Particles eroded from hillslopes and exported to rivers are recognized to be composite particles of high internal complexity. Their architecture and composition are known to influence their transport behaviour within the water column relative to discrete particles. To‐date, hillslope erosion studies consider aggregates to be stable once they are detached from the soil matrix. However, lowland rivers and estuaries studies often suggest that particle structure and dynamics are controlled by flocculation within the water column. In order to improve the understanding of particle dynamics along the continuum from hillslopes to the lowland river environment, soil particle behaviour was tested under controlled laboratory conditions. Seven flume erosion and deposition experiments, designed to simulate a natural erosive event, and five shear cell experiments were performed using three contrasting materials: two of them were poorly developed and as such can not be considered as soils, whilst the third one was a calcareous brown soil. These experiments revealed that soil aggregates were prone to disaggregation within the water column and that flocculation may affect their size distribution during transport. Large differences in effective particle size were found between soil types during the rising limb of the bed shear stress sequence. Indeed, at the maximum applied bed shear stress, the aggregated particles median diameter was found to be three times larger for the well‐developed soil than for the two others. Differences were smaller in the falling limb, suggesting that soil aggregates underwent structural changes. However, characterization of particles strength parameters showed that these changes did not fully turn soil aggregates into flocs, but rather into hybrid soil aggregate–floc particles. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号