首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Hydrological processes of lakes in the Tibetan Plateau are an important indicator of climate change. Due to the high elevation, inaccessibility and limited availability of historical observations, water budget evaluation of typical lake basins has been inadequate. In this study, stable isotopes are used to trace the multiple water sources contributing to two adjacent lakes on the north slope of the Himalayas, Gongmo‐tso and Drem‐tso. The two lakes have nearly the same elevation, lake area and climatic condition. However, the isotopic composition of the two lakes presents significant differences. Qualitative observations attribute the differences to hydrological discrepancies: Gongmo‐tso is a through‐flow lake, whereas Drem‐tso is a terminal lake. Quantitative analyses, including water and isotope mass balance modelling, clarify the fluxes and isotopic compositions among the various hydrological elements. The isotopic composition of input water, calculated as the summation of rainfall and upstream runoff, is estimated using the local meteoric water line (LMWL) combined with the time series of lake water isotope values. The isotopic composition of evaporation is calculated with a linear resistance model using local meteorological data. The results show that Drem‐tso is a closed lake in a hydrological steady state with relatively more enriched lake water isotope values resulting mainly from evaporation. In contrast, through‐flow accounts for more than 88% of the water input into Gongmo‐tso. The large amount of upstream runoff with lower isotopic composition and enrichment due to evaporation are the major contributions to the observed lake water isotope values. Isotopic modelling of the two neighbouring lakes is effective for isotopic and hydrological research in this region with limited in situ observations. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
The numerous lakes on the Tibetan Plateau play an important role in the regional hydrological cycle and water resources, but systematic observations of the lake water balance are scarce on the Tibetan Plateau. Here, we present a detailed study on the water cycle of Cona Lake, at the headwaters of the Nujiang‐Salween River, based on 3 years (2011–2013) of observations of δ18O and δ2H, including samples from precipitation, lake water, and outlet surface water. Short‐term atmospheric water vapor was also sampled for isotope analyses. The δ2H–δ18O relationship in lake water (δ2H = 6.67δ18O ? 20.37) differed from that of local precipitation (δ2H = 8.29δ18O + 12.50), and the deuterium excess (d‐excess) in the lake water (?7.5‰) was significantly lower than in local precipitation (10.7‰), indicating an evaporative isotope enrichment in lake water. The ratio of evaporation to inflow (E /I ) of the lake water was calculated using both d‐excess and δ18O. The E /I ratios of Cona lake ranged from 0.24 to 0.27 during the 3 years. Observations of atmospheric water vapor isotopic composition (δ A ) improved the accuracy in E /I ratio estimate over a simple precipitation equilibrium model, though a correction factor method provided nearly identical estimates of E /I ratio. The work demonstrates the feasibility of d‐excess in the study of the water cycle for lakes in other regions of the world and provides recommendations on sampling strategies for accurate calculations of E /I ratio.  相似文献   

3.
The use of stable isotopes is a practical tool in the study of the lake water budget. This is an one way to study the hydrological cycle in the large numbers of inland lakes on the Tibetan Plateau, in which the isotope record of the sediment is believed to reflect the climatic and environmental changes. The monitoring of stable isotopes of the precipitation, river and lake waters during 2004 in the inland Yamdruk‐tso basin, southern Tibetan Plateau, reveals the lake water δ18O is over 10‰ higher than the local precipitation. This high difference indicates strong isotope enrichment due to lake water evaporation. The simulation results based on the isotope technique show that the present lake water δ18O level corresponds to an average relative humidity of around 54–58% during evaporation, which is very close to the instrumental observation. The simulation results also show that the inland lakes on the Tibetan Plateau have a strong adjustability to the isotope shift of input water δ18O. On average, the isotope component in the inland lake water is to a large extent controlled by the local relative humidity, and can also be impacted by a shift of the local precipitation isotope component. This is probably responsible for the large consistence in the isotope component in the extensive inland lakes on the Tibetan Plateau. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

4.
Lacustrine groundwater discharge (LGD) and the related water residence time are crucial parameters for quantifying lake matter budgets and assessing its vulnerability to contaminant input. Our approach utilizes the stable isotopes of water (δ18O, δ2H) and the radioisotope radon (222Rn) for determining long‐term average and short‐term snapshots in LGD. We conducted isotope balances for the 0.5‐km2 Lake Ammelshainer See (Germany) based on measurements of lake isotope inventories and groundwater composition accompanied by good quality and comprehensive long‐term meteorological and isotopic data (precipitation) from nearby monitoring stations. The results from the steady‐state annual isotope balances that rely on only two sampling campaigns are consistent for both δ18O and δ2H and suggested an overall long‐term average LGD rate that was used to infer the water residence time of the lake. These findings were supported by the good agreement of the simulated LGD‐driven annual cycles of δ18O and δ2H lake inventories with the observed lake isotope inventories. However, radon mass balances revealed lower values that might be the result of seasonal LGD variability. For obtaining further insights into possible seasonal variability of groundwater–lake interaction, stable water isotope and radon mass balances could be conducted more frequently (e.g., monthly) in order to use the derived groundwater discharge rates as input for time‐variant isotope balances.  相似文献   

5.
Abstract

Abstract The water balance of Lake Nainital in the Kumaun Himalaya, India was previously computed using water budgeting and other indirect methods. An important data set of stable oxygen and hydrogen isotopic composition of water sources of the lake region was also presented and used to verify the annual estimates of subsurface flow/water balance. In the present study, the same data set has been used to investigate the dynamics of this lake in terms of the seasonal processes operative during the annual hydrological cycle: increased inflow during the monsoon, delayed groundwater inflow, and stratification and mixing of water. Based on the available data, a simple two-box model was used to constrain the values of exchange coefficients between the hypolimnion and epilimnion layers and to estimate evaporation and outflow components from the isotopic data.  相似文献   

6.
R. K. SAXENA 《水文研究》1996,10(10):1273-1281
Lake evaporation has been estimated for a shallow lake using a combination of water and isotope mass balance, accounting for the isotopic non-steady state of lake water. The main feature of the isotope method is that inflows need not be measured. Knowledge of their isotopic content is sufficient. Oxygen-18 content, i.e. (δ18O), of lake water, inflows and outflow was measured on a weekly basis, whereas for precipitation it was monitored daily. The discharge from the lake was also recorded daily. Lake water level, relative humidity, air, and lake water surface temperatures were recorded by a logger. The weather data were recorded on a small island in the lake. It was observed that the lake is isotopically well mixed. Furthermore, the atmospheric moisture was not always in isotopic equilibrium with the precipitation. Daily lake evaporation was estimated as an average of six to eight days depending upon the field logistics. Lake evaporation varied from 0.6 to about 5.4 mm/day during the experimental period. It was found that evaporation estimates are very sensitive to small variations in δ18O of lake evaporate. Induced changes of 10% in δ18O of lake evaporate caused errors in evaporation estimates of 9–31%, while similar induced changes in δ18O of inflows caused errors of 8–18%. Thus, an accurate experimental determination of δ18O of lake evaporate is relatively more important.  相似文献   

7.
We present the results of a 3‐year monitoring programme of the stable isotope composition of lake water and precipitation at Taozi Lake, in the East Asian monsoon region of China. Our aims were to reveal the spatiotemporal pattern of variation of stable isotopes in a small closed‐basin lake and to quantitatively determine the impacts of precipitation and evaporation on the stable isotope composition of lake water under a humid monsoon climate. In the time domain, the stable oxygen isotopic ratio of the lake water (δ18OL) exhibited substantial seasonal and interannual variations, but the isotope variations between different precipitation events substantially exceeded seasonal and interannual variations. Compared with the stable isotopes in precipitation, δ18OL was substantially positive and dL was negative. In the space domains, the lake water was homogeneously mixed. Indicated by statistic analyses, precipitation plays a dominant role in dynamic of the lake stable isotope during precipitation events of relatively large magnitude, whereas the effect of evaporation is dominant during smaller precipitation events. Results advance our understanding of the stable isotope change rule in the process of lake water evaporation, and it is helpful to identify the climatic significance recorded in stable isotopic compositions of lake bottom sediments.  相似文献   

8.
Surface water oxygen and hydrogen isotopic values are commonly used as proxies of precipitation isotopic values to track modern hydrologic processes while proxies of water isotopic values preserved in lake and river sediments are used for paleoclimate and paleoaltimetry studies. Previous work has been able to explain variability in USA river‐water and meteoric‐precipitation oxygen isotope variability with geographic variables. These studies show that in the western United States, river‐water isotopic values are depleted relative to precipitation values. In comparison, the controls on lake‐water isotopic values are not well constrained. It has been documented that western United States lake‐water input values, unlike river water, reflect the monthly weighted mean isotopic value of precipitation. To understand the differing controls on lake‐ and river‐water isotopic values in the western United States, we examine the seasonal distribution of precipitation, evaporation and snowmelt across a range of seasonality regimes. We generate new predictive equations based on easily measured factors for western United States lake‐water, which are able to explain 69–63% of the variability in lake‐water hydrogen and oxygen isotopic values. In addition to the geographic factors that can explain river and precipitation values, lake‐water isotopic values need factors related to local hydrologic and climatic characteristics to explain variability. Study results suggest that the spring snowmelt runs off the landscape via rivers and streams, depleting river and stream‐water isotopic values. By contrast, lakes receive seasonal contributions of precipitation in proportion to the seasonal fraction of total annual precipitation within their watershed. Climate change may alter the ratio of snow to rain fall, affecting water resource partitioning between rivers and lakes and by implication of groundwater. Paleolimnological studies must account for the multiple drivers of water isotopic values; likewise, studies based on the isotopic composition of fossil material need to distinguish between species that are associated with rivers versus lakes. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
湖泊蒸发量的准确估算对于水文学、气象学和湖泊学等研究有重要的意义.基于2013-2015年太湖水量收支资料、气象观测数据和稳定同位素观测资料,采用稳定同位素质量守恒模型、水量平衡法和Priestley-Taylor模型估算太湖蒸发量,分析太湖蒸发量的季节变化和年际变化特征,并以Priestley-Taylor模型结果为参考值,评价水量平衡法和同位素质量守恒方程的计算精度.结果表明:5-9月太湖蒸发量较高,冬季最低.2013-2015年太湖年总蒸发量分别为1069、894和935 mm,蒸发量的年际变化受到天气条件的影响.2013年12月2014年11月期间,用Priestley-Taylor模型计算的湖泊蒸发量为885 mm;同位素质量守恒模型的估算结果较一致,为893 mm;而水量平衡方程的估算结果明显偏高,为1247 mm.  相似文献   

10.
全球变化下青藏高原湖泊在地表水循环中的作用   总被引:2,自引:2,他引:0  
青藏高原是地球上最重要的高海拔地区之一,对全球变化具有敏感响应.青藏高原作为"亚洲水塔",其地表水资源及其变化对高原本身及周边地区的经济社会发展具有重要的影响.然而,在气候变暖的情况下,构成高原地表水资源的各个组分,如冰川、湖泊、河流、降水等水体的相变及其转化却鲜为人知.湖泊是青藏高原地表水体相变和水循环的关键环节.湖泊面积、水位和水量对西风和印度季风的降水变化非常敏感,但湖泊面积和水量变化在不同区域和时段的响应也不尽相同.湖泊水温对气候变暖具有明显响应,湖泊水温和水下温跃层深度的变化能够对水—气的热量交换具有明显影响,从而影响了区域蒸发和降水等水循环过程.由于湖泊水量增加,高原中部色林错地区湖泊盐度自1970s以来普遍下降.根据60多个湖泊实地监测建立的遥感反演模型研究发现,2000—2019年湖泊透明度普遍升高.对不同补给类型的大湖水量平衡监测发现,影响湖泊变化的气象和水文要素具有较大差异.在目前的暖湿气候条件下,青藏高原的湖泊将会持续扩张.为了深入认识湖泊变化在青藏高原区域水循环和气候变化中的作用,需要全面了解湖泊水量赋存及连续的时间序列变化,需要深入了解湖泊理化参数变化及对湖泊...  相似文献   

11.
In Mediterranean regions, the marked climatic seasonality and uneven precipitation distribution complicate the application of isotope mass balances to obtain meaningful basin-wide annual average evaporation rates. In the present study, a mass balance approach carried out on the Tavignanu River watershed in Corsica (France), showed unrealistic evaporation rate estimates: 10% for 2017–2018 and 1% for 2018–2019. This suggests that not only does evaporation alter the seasonal isotopic composition in the river, but that there is complex variability of the dominant water reservoirs contributing to the streamflow. Therefore, we propose a modified mass balance approach, including monthly quantifications of different water sources contributing to the river discharge. This allows the discrimination of isotopic variation occurring by evaporation from that originating by mixing processes. By applying this modified approach, we estimated evaporation rates on the Tavignanu River watershed that were in good agreement with results obtained by hydrological modelling: 40% for 2017–2018 and 46% for 2018–2019, respectively. An uncertainty analysis showed that evaporation rates obtained with the modified isotopic approach are close to those obtained with the non-modified approach. Therefore, we recommend using this modified isotope mass balance approach to estimate evaporation rates in such regions as the Mediterranean with high seasonality in hydrological processes.  相似文献   

12.
湖泊热力结构不仅影响湖泊内部生态环境,而且与区域气象和气候系统相互影响,但目前对湖泊垂直温度的观测研究仍非常匮乏.本研究基于青藏高原拉昂错连续的湖温和气象观测,分析了小时尺度和日尺度热力分层规律和混合层深度的变化特征.结果表明:拉昂错为冷多次完全混合型湖泊;湖表温度8月达到最大值,湖面敞水区和沿岸的湖表温度季节震荡相同...  相似文献   

13.
The D/H and 18O/16O ratios of water in the active crater lake situated on the Kusatsu-Shirane volcano, Japan are about 20 and 6‰, respectively, higher than local meteoric water. The ratios show seasonal variations superimposed on a gradual change over nine years. The isotopic ratios started to increase in early 1990 and decrease in the spring of 1995. The seasonal variation which is high in winter and low in summer correlates with the temperature difference between lake water and ambient air. The large temperature difference in winter enhances the evaporation of lake water and produces the enriched isotopic ratios relative to the ratios in summer. The accumulation of snow and the decrease in the flux of meteoric water into the lake strengthens the winter-time isotopic enrichment. The enriched isotopic ratios of the lake water over a long time result from the addition of an end member with heavy isotopic ratios contained in a thermal fluid supplied to the lake. Considering the water balance in the lake, the isotopic ratios of the thermal fluid were found to be close to the lake water itself, suggesting the circulation of the lake water seeping through lake floor. Based on the correlation between Clconcentration and the isotopic ratios, the contribution by the heavy end member was estimated to be 25–36% relative to the enrichment by evaporation. The heavy end member could be a liquid phase evolved from a parental fluid, which is a mixture of local meteoric water and a magmatic fluid as found in high-temperature volcanic gases.  相似文献   

14.
近40a西藏羊卓雍错湖泊面积变化遥感分析   总被引:3,自引:8,他引:3  
羊卓雍错(以下简称羊湖)作为西藏高原三大圣湖之一和藏南重要的高原特色风景旅游景区,其具体面积众说纷纭.本文利用遥感和地理信息空间分析方法对1972-2010年羊湖面积变化进行了系统研究,并结合流域气象站资料对其原因进行初步分析.结果表明,1972-2010年湖泊平均面积为643.98 km2.1972-2010年羊湖面积呈波动式减少趋势,其中,1970s平均面积为658.78 km2,之后至1999年面积显著减少;1980s面积为636.55 km2;1990s为635.06 km2;1999-2004年面积有所增加;2004-2010年持续缩小,减幅为8.59 km2/a.湖泊空间变化特点是除了空母错和珍错两个小湖面积变化较小之外,羊湖整体面积呈现萎缩态势,其中东部嘎马林曲入口附近退缩程度最大,达1.62 km.流域气象站资料分析表明,湖泊面积和降水的变化波动存在显著耦合关系,降水变化是羊湖面积变化的主要原因;其次,流域蒸发量的明显增加,特别是2004年来连续较高的蒸发量是导致近期面积显著减少的重要原因,气温的升高进一步加剧了这一过程.羊湖的面积变化基本反映了西藏高原南部半干早季风气候区以降水补给为主的高原内陆湖泊对气候变化的响应.  相似文献   

15.
The level of Lake Tana, Ethiopia, fluctuates annually and seasonally following the patterns of changes in precipitation. In this study, a mass balance approach is used to estimate the hydrological balance of the lake. Water influx from four major rivers, subsurface inflow from the floodplains, precipitation, outflow from the lake constituting river discharge and evapotranspiration from the lake are analysed on monthly and annual bases. Spatial interpolation of precipitation using rain gauge data was conducted using kriging. Outflow from the lake was identified as the evaporation from the lake's surface as well as discharge at the outlet where the Blue Nile commences. Groundwater inflow is estimated using MODular three‐dimensional finite‐difference ground‐water FLOW model software that showed an aligned flow pattern to the river channels. The groundwater outflow is considered negligible based on the secondary sources that confirmed the absence of lake water geochemical mixing outside of the basin. Evaporation is estimated using Penman's, Meyer's and Thornwaite's methods to compare the mass balance and energy balance approaches. Meteorological data, satellite images and temperature perturbation simulations from Global Historical Climate Network of National Oceanographic and Atmospheric Administration are employed for estimation of evaporation input parameters. The difference of the inflow and outflow was taken as storage in depth and compared with the measured water level fluctuations. The study has shown that the monthly and annually calculated lake level replicates the observed values with root mean square error value of 0·17 and 0·15 m, respectively. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
Environmental isotopes (δ18O, δD and 3H) were used to understand the hydrodynamics of Lake Naini in the State of Uttar Pradesh, India. The data was correlated with the in situ physico‐chemical parameters, namely temperature, electrical conductivity and dissolved oxygen. The analysis of the data shows that Lake Naini is a warm monomictic lake [i.e. in a year, the lake is stratified during the summer months (March/April to October/November) and well mixed during the remaining months]. The presence of a centrally submerged ridge inhibits the mixing of deeper waters of the lake's two sub‐basins, and they exhibit differential behaviour. The rates of change of isotopic composition of hypolimnion and epilimnion waters of the lake indicate that the water retention time of the lake is very short, and the two have independent inflow components. A few groundwater inflow points to the lake are inferred along the existing fractures, fault planes and dykes. In addition to poor vertical mixing of the lake due to the temperature‐induced seasonal stratification, the lake also shows poor horizontal mixing at certain locations of the lake. The lake–groundwater system appears to be a flow‐through type. Also, a tritium and water‐balance model was developed to estimate the water retention time of well‐mixed and hydrologically steady state lakes. The model assumes a piston flow of groundwater contributing to the lake. The developed model was verified for (a) Finger Lakes, New York; (b) Lake Neusiedlersee, Austria; and (c) Blue Lake, Australia based on literature data. The predicted water retention times of the lakes were close to those reported or calculated from the hydrological parameters given in the references. On application of this model to Lake Naini, a water retention time of ~2 years and age of groundwater contributing to the lake ~14 years is obtained. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

17.
Discontinuous measurements of the isotopic composition of surface water samples of the Garda lake carried out between 1998 and 2006 showed almost constant δ18O, δD and d-excess values through time. During 2006 and 2007 monthly vertical profiles of water samples were collected in the northernmost section of the lake, not far from the main inflow (Sarca river) to check whether there was any detectable influence from this inflowing river and whether there was a vertical isotopic stratification of the lake water. The isotopic measurement of water samples from the vertical profiles yielded isotopic values which were almost equal to those obtained from surface waters showing no detectable effect of the inflowing river water and no isotopic vertical stratification. The attempt to evaluate the evaporation rate of lake water by means of current models was totally unsuccessful. Despite the marked summer warming of the surface layer no isotopic fractionation related to evaporation processes could be detected. This anomalous behaviour may be related to the large amount of spring and summer precipitation characteristic of this area. The water balance of the lake calculated according to the amount of the inflowing water (Sarca river water plus rain water on the lake plus 20% of the precipitations on the whole catchment basin) and to the amount of outflowing water (Mincio river) showed a large imbalance, the river outflow alone resulting on average, during the last decade, at least double the inflow. To explain this imbalance of the lake, a large recharge by concealed groundwater is suggested: its isotopic composition should be quite close to the mean isotopic composition of precipitations over that area. This would be in agreement with the almost constant isotopic composition of both surface and deep waters and with the lack of vertical isotopic stratification. A few measurements of the tritium concentration carried out on lake water show values that are considerably higher than modern tritium values either in precipitation or in the Sarca river water: these results are in good agreement with the hypothesis of a recharge of the lake by deep aquifers.  相似文献   

18.
Interactions between lakes and groundwater are of increasing concern for freshwater environmental management but are often poorly characterized. Groundwater inflow to lakes, even at low rates, has proven to be a key in both lake nutrient balances and in determining lake vulnerability to pollution. Although difficult to measure using standard hydrometric methods, significant insight into groundwater–lake interactions has been acquired by studies applying geochemical tracers. However, the use of simple steady‐state, well‐mixed models, and the lack of characterization of lake spatiotemporal variability remain important sources of uncertainty, preventing the characterization of the entire lake hydrological cycle, particularly during ice‐covered periods. In this study, a small groundwater‐connected lake was monitored to determine the annual dynamics of the natural tracers, water stable isotopes and radon‐222, through the implementation of a comprehensive sampling strategy. A multilayer mass balance model was found outperform a well‐mixed, one‐layer model in terms of quantifying groundwater fluxes and their temporal evolution, as well as characterizing vertical differences. Water stable isotopes and radon‐222 were found to provide complementary information on the lake water budget. Radon‐222 has a short response time, and highlights rapid and transient increases in groundwater inflow, but requires a thorough characterization of groundwater radon‐222 activity. Water stable isotopes follow the hydrological cycle of the lake closely and highlight periods when the lake budget is dominated by evaporation versus groundwater inflow, but continuous monitoring of local meteorological parameters is required. Careful compilation of tracer evolution throughout the water column and over the entire year is also very informative. The developed models, which are suitable for detailed, site‐specific studies, allow the quantification of groundwater inflow and internal dynamics during both ice‐free and ice‐covered periods, providing an improved tool for understanding the annual water cycle of lakes.  相似文献   

19.
Daily river inflow time series are highly valuable for water resources and water environment management of large lakes. However, the availability of continuous inflow data for large lakes is still relatively limited, especially for large lakes situated within humid plain regions with tens or even hundreds of tributaries. In this study, we choose the fifth largest freshwater Lake Chaohu in China as our study area to introduce a new approach to reconstruct historical daily inflows at ungauged subcatchments of large lakes. This approach makes use of water level, lake surface rainfall, evaporation from the lake, and catchment rainfall observations. Rainfall–runoff relationship at a reference catchment was analysed to select rainfall input and estimate run‐off coefficient firstly, and the run‐off coefficient was then transferred to ungauged subcatchments to initially estimate daily inflows. Run‐off coefficient was scaled to adjust daily inflows at ungauged subcatchments according to water balance of the lake. This approach was evaluated using sparsely measured inflows at eight subcatchments of Lake Chaohu and compared with the commonly used drainage area ratio method. Results suggest that the inflow time series reconstructed from this approach consistent well to corresponding observations, with mean R2 and Nash–Sutcliffe efficiency values of 0.69 and 0.6, respectively. This approach outperforms drainage area ratio method in terms of mean R2 and Nash–Sutcliffe efficiency values. Accuracy of this approach holds well when the number of water‐level station being used decreased from four to one.  相似文献   

20.
High‐altitude inland lakes in High Mountain Asia (HMA) are key indicators to climate change and variability as a result of mostly closed watersheds and minimal disturbance by human activities. However, examination of the spatial and temporal pattern of lake changes, especially for water‐level variations, is usually limited by poor accessibility of most lakes. Recently, satellite altimeters have demonstrated their potential to monitor water level changes of terrestrial water bodies including lakes and rivers. By combining multiple satellite altimetry data provided by the Laboratoire d'Etudes en Géophysique et Océanographie Spatiales (LEGOS) and Geoscience Laser Altimeter System (GLAS) instrument on the NASA Ice, Cloud and land Elevation satellite (ICESat), this study examined water level changes of typical lakes in HMA at a longer timescale (in the 1990s and 2000s) compared with earlier studies on Tibetan lakes. Cross‐evaluation of the radar altimetry data from LEGOS and laser altimetry data from ICESat/GLAS shows that they were in good agreement in depicting inter‐annual, seasonal and abrupt changes of lake level. The long‐term altimetry measurements reveal that water‐level changes of the 18 lakes showed remarkable spatial and temporal patterns that were characterized by different trends, onsets of rapid rises and magnitudes of inter‐annual variations for different lakes. During the study period, lakes in the central and northern HMA (15 lakes) showed a general growth tendency, while lakes in South Tibet (three lakes) showed significant shrinking tendency. Lakes in Central Tibet experienced rapid and stable water‐level rises around mid‐1990s followed by slowing growth rates after 2006. In contrast, the water‐level rises of lakes in the northern and north‐eastern Tibetan Plateau were characterized by abrupt increases in specific years rather than gradual growth. Meteorological data based on station observations indicate that the annual changes of water level showed strongly correlated with precipitation and evaporation but may not evidently related to the glacier melting induced by global warming. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号