首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The thermal regimes of alpine streams remain understudied and have important implications for cold‐water fish habitat, which is expected to decline due to climatic warming. Previous research has focused on the effects of distributed energy fluxes and meltwater from snowpacks and glaciers on the temperature of mountain streams. This study presents the effects of the groundwater spring discharge from an inactive rock glacier containing little ground ice on the temperature of an alpine stream. Rock glaciers are coarse blocky landforms that are ubiquitous in alpine environments and typically exhibit low groundwater discharge temperatures and resilience to climatic warming. Water temperature data indicate that the rock glacier spring cools the stream by an average of 3 °C during July and August and reduces maximum daily temperatures by an average of 5 °C during the peak temperature period of the first two weeks in August, producing a cold‐water refuge downstream of the spring. The distributed stream surface and streambed energy fluxes are calculated for the reach along the toe of the rock glacier, and solar radiation dominates the distributed stream energy budget. The lateral advective heat flux generated by the rock glacier spring is compared to the distributed energy fluxes over the study reach, and the spring advective heat flux is the dominant control on stream temperature at the reach scale. This study highlights the potential for coarse blocky landforms to generate climatically resilient cold‐water refuges in alpine streams.  相似文献   

2.
The Wind River Range (WRR) of Wyoming has the largest concentration of alpine glaciers in the American Rockies and contributes to several major river systems in the western United States. Declines in the areal extent and volume of these glaciers are well documented, and eventual loss of alpine glaciers will reduce the amount of water available for agricultural and domestic use. The contribution of glacial melt to streamflow remains largely unquantified in Wyoming. We used isotope measurements and Bayesian modeling to estimate the fractional contribution of glacier meltwater to Dinwoody Creek (DC) in the WRR on bi‐weekly and seasonal (spring, summer, and fall) time scales over 2 years. In 2007 and 2008, we made temporally intensive measurements of the stable isotope composition of water from the DC watershed. Samples of the primary sources of streamflow (snowmelt, glacier melt, rain, and baseflow) were collected during field campaigns, and automated collection of stream samples occurred over the melt season. Isotope data (D and 18O) were analyzed within a hierarchical Bayesian framework that incorporated temporal and spatial correlations. Glacial melt contributed a significant proportion (~53–59%) to streamflow in a low‐flow year (2007) or when streamflow was low during a high‐flow year (2008). In 2008, a large and persistent snowpack contributed significantly (~0·42–51%) to streamflow in mid‐summer. The large contribution of glacial melt to streamflow suggests that the loss of glaciers may impact riparian ecosystems and human water supplies in the late summer and in years with low snowpack. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
Inter‐basin differences in streamflow response to changes in regional hydroclimatology may reflect variations in storage characteristics that control the retention and release of water inputs. These aspects of storage could mediate a basin's sensitivity to climate change. The hypothesis that temporal trends in stream baseflow exhibit a more muted reaction to changes in precipitation and evapotranspiration for basins with greater storage was tested on the Oak Ridges Moraine (ORM) in Southern Ontario, Canada. Long‐term (>25 years) baseflow trends for 16 basins were compared to corresponding trends in precipitation amount and type and in potential evapotranspiration as well as shorter trends in groundwater levels for monitoring wells on the ORM. Inter‐basin differences in storage properties were characterized using physiographic, hydrogeologic, land use/land cover, and streamflow metrics. The latter included the slope of the basin's flow duration curve and basin dynamic storage. Most basins showed temporal increases in baseflow, consistent with limited evidence of increases and decreases in regional precipitation and snowfall: precipitation ratio, respectively, and recent increases in groundwater recharge along the crest of the ORM. Baseflow trend magnitude was uncorrelated to basin physiographic, hydrogeologic, land use/land cover, or flow duration curve characteristics. However, it was positively related to a basin's dynamic storage, particularly for basins with limited coverage of open water and wetlands. The dynamic storage approach assumes that a basin behaves as a first‐order dynamical system, and extensive open water and wetland areas in a basin may invalidate this assumption. Previous work suggested that smaller dynamic storage was linked to greater damping of temporal variations in water inputs and reduced interannual variability in streamflow regime. Storage and release of water inputs to a basin may assist in mediating baseflow response to temporal changes in regional hydroclimatology and may partly account for inter‐basin differences in that response. Such storage characteristics should be considered when forecasting the impacts of climate change on regional streamflow.  相似文献   

4.
Geochemical and isotopic tracers were often used in mixing models to estimate glacier melt contributions to streamflow, whereas the spatio‐temporal variability in the glacier melt tracer signature and its influence on tracer‐based hydrograph separation results received less attention. We present novel tracer data from a high‐elevation catchment (17 km2, glacierized area: 34%) in the Oetztal Alps (Austria) and investigated the spatial, as well as the subdaily to monthly tracer variability of supraglacial meltwater and the temporal tracer variability of winter baseflow to infer groundwater dynamics. The streamflow tracer variability during winter baseflow conditions was small, and the glacier melt tracer variation was higher, especially at the end of the ablation period. We applied a three‐component mixing model with electrical conductivity and oxygen‐18. Hydrograph separation (groundwater, glacier melt, and rain) was performed for 6 single glacier melt‐induced days (i.e., 6 events) during the ablation period 2016 (July to September). Median fractions (±uncertainty) of groundwater, glacier melt, and rain for the events were estimated at 49±2%, 35±11%, and 16±11%, respectively. Minimum and maximum glacier melt fractions at the subdaily scale ranged between 2±5% and 76±11%, respectively. A sensitivity analysis showed that the intraseasonal glacier melt tracer variability had a marked effect on the estimated glacier melt contribution during events with large glacier melt fractions of streamflow. Intra‐daily and spatial variation of the glacier melt tracer signature played a negligible role in applying the mixing model. The results of this study (a) show the necessity to apply a multiple sampling approach in order to characterize the glacier melt end‐member and (b) reveal the importance of groundwater and rainfall–runoff dynamics in catchments with a glacial flow regime.  相似文献   

5.
Identifying aquifer vulnerability to climate change is of vital importance in the Sierra Nevada and other snow‐dominated basins where groundwater systems are essential to water supply and ecosystem health. Quantifying the component of new (current year's) snowmelt in groundwater and surface water is useful in evaluating aquifer vulnerability because significant annual recharge may indicate that streamflow will respond rapidly to annual variability in precipitation, followed by more gradual decreases in recharge as recharge declines over decades. Hydrologic models and field‐based studies have indicated that young (<1 year) water is an important component of streamflow. The goal of this study was to utilize the short‐lived, naturally occurring cosmogenic isotope sulfur‐35 (35S) to quantify new snowmelt contribution to groundwater and surface waters in Sagehen Creek Basin (SCB) and Martis Valley Groundwater Basin (MVGB) located within the Tertiary volcanics of the central Sierra Nevada, CA. Activities of 35S were measured in dissolved sulfate (35SO42?) in SCB and MVGB snowpack, groundwater, springs, and streamflow. The percent of new snowmelt (PNS) in SCB streamflow ranged from 0.2 ± 6.6% during baseflow conditions to 14.0 ± 3.4% during high‐flow periods of snowmelt. Similar to SCB, the PNS in MVGB groundwater and streamflow was typically <30% with the largest fractions occurring in late spring or early summer following peak streamflow. The consistently low PNS suggests that a significant fraction of annual snowmelt in SCB and MVGB recharges groundwater, and groundwater contributions to streamflow in these systems have the potential to mitigate climate change impacts on runoff.  相似文献   

6.
The soil and water assessment tool (SWAT) has been widely used and thoroughly tested in many places in the world. The application of the SWAT model has pointed out that 2 of the major weaknesses of SWAT are related to the nonspatial reference of the hydrologic response unit concept and to the simplified groundwater concept, which contribute to its low performance in baseflow simulation and its inability to simulate regional groundwater flow. This study modified the groundwater module of SWAT to overcome the above limitations. The modified groundwater module has 2 aquifers. The local aquifer, which is the shallow aquifer in the original SWAT, represents a local groundwater flow system. The regional aquifer, which replaces the deep aquifer of the original SWAT, represents intermediate and regional groundwater flow systems. Groundwater recharge is partitioned into local and regional aquifer recharges. The regional aquifer is represented by a multicell aquifer (MCA) model. The regional aquifer is discretized into cells using the Thiessen polygon method, where centres of the cells are locations of groundwater observation wells. Groundwater flow between cells is modelled using Darcy's law. Return flow from cell to stream is conceptualized using a non‐linear storage–discharge relationship. The SWAT model with the modified aquifer module, the so‐called SWAT‐MCA, was tested in 2 basins (Wipperau and Neetze) with porous aquifers in a lowland area in Lower Saxony, Germany. Results from the Wipperau basin show that the SWAT‐MCA model is able (a) to simulate baseflow in a lowland area (where baseflow is a dominant source of streamflow) better than the original model and (b) to simulate regional groundwater flow, shown by the simulated groundwater levels in cells, quite well.  相似文献   

7.
Stable water isotope surveys have increasingly been integrated into river basins studies, but fewer have used them to evaluate impact of hydropower regulation. This study applies hydrologic and water isotope survey approaches to a Canadian Shield river basin with both regulated and natural flows. Historical streamflow records were used to evaluate the influence of three hydroelectric reservoirs and unregulated portions of the basin on downstream flows and changes in water level management implemented after an extreme flood year (1979). In 2013, water isotope surveys of surface and source waters (e.g., rainfall, groundwater, snowmelt) were conducted to examine spatial and temporal variation in contributions to river flow. Seasonal changes in relative groundwater contribution were assessed using a water‐isotope mass balance approach. Within the basin, two regulated reservoirs exhibited inverted hydrographs with augmented winter flows, whereas a third exhibited a hydrograph dominated by spring snowmelt. In 2013, spatial variation in rain‐on‐snow and air temperatures resulted in a critical lag in snowmelt initiation in the southern and northern portions of the basin resulting in a dispersed, double peak spring hydrograph, contrasting with 1979 when a combination of rain‐on‐snow and coincident snowmelt led to the highest flood on record. Although eastern basin reservoirs become seasonally enriched in δ18O and δ2H values, unregulated western basin flows remain less variable due to groundwater driven baseflow with increasing influence downstream. Combined analysis of historical streamflow (e.g., flood of 1979, drought of 2010) and the 2013 water isotope surveys illustrate extreme meteorological conditions that current management activities are unable to prevent. In this study, the influence of evaporative fractionation on large surface water reservoirs provides important evidence of streamflow partitioning, illustrating the value of stable water isotope tracers for study of larger catchments.  相似文献   

8.
The Las Liebres rock glacier is a large (~2.2 km long) Andean rock glacier whose internal composition and kinematics are known from previous studies. We investigate its development by posing and testing the following null hypothesis: the rock glacier has developed from a constant supply of debris and ground ice in periglacial conditions and resulting creep of the ice‐rock mixture. A rheological model was formulated based on recent advances in the study of ice‐rock mixture rheology, and calibrated on the known surface velocities and internal composition of the rock glacier. We show that the rock glacier viscosity is inversely related to both water and debris fractions, in agreement with recent field and theoretical studies of ice‐rock mixture rheology. Taking into account the possible variations in water fraction, the model was used to estimate the time spans of development (0.91–7.11 ka), rates of rock wall retreat (0.44–4.18 mm/a), and rates of ground ice formation (0.004–0.026 m/a) for the rock glacier. These results support the null hypothesis of a periglacial origin of the Las Liebres rock glacier. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
Hydrogeologic field work in remote settings is often challenging: assessing spring behaviour and aquifer characteristics can be expensive in both time commitment and resources needed to assess these systems. In this study, we document the hydrology and geochemistry of 47 perennial karst springs in the Kaweah River, a mountain river basin in the Sierra Nevada, California. After preliminary hydrogeochemical characterization and grouping, selected springs were continuously monitored to further assess aquifer characteristics in each group. Later, in areas without previous dye‐tracing work, traces were conducted to establish connections between large sinking streams and springs. The springs have a wide range of inter‐spring and intra‐spring variability in discharge and geochemistry. We assessed this variability by performing statistical comparisons with spring chemistry and principal components analysis of all measured variables. Results show that springs can be divided into two distinct groups: high elevation springs of the Mineral King Valley and lower elevation springs throughout the rest of the basin. Continuous discharge, temperature and specific conductivity data from four springs (two from each group) were then used to characterize the hydrograph recession behaviour of springs in each group. Both groups showed statistically similar baseflow recession slopes, suggesting that both groups contain baseflow storage compartments with similar hydrogeologic properties. The biggest difference between each group is the variability in amount of water remaining in the aquifer during baseflow conditions. High elevation springs have lower baseflow discharges, relative to peak flow, than lower elevation springs, despite the fact that more precipitation falls at higher elevation. This is likely caused by differences in the amount of soil and epikarst storage, which are related to recent geomorphic events: high elevation aquifers were glaciated as recent as 41 thousand years ago (kya), while there is no evidence that low elevation aquifers were glaciated. As a result, lower elevations have developed thicker soils, weathered bedrock and epikarst. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
Bruno Ambroise 《水文研究》2016,30(20):3560-3577
In the small Ringelbach research catchment, where studies on the water cycle components in a granitic mountainous environment have been conducted since 1976, the water‐saturated areas that are hydraulically connected to the outlet play a major role in the streamflow generation, as it is here that complex interactions between atmosphere, surface and ground waters take place. During baseflow recession periods, which may last several months between two groundwater recharge events, the atmospheric inputs of water and energy on these contributing areas only explain the streamflow fluctuations observed around the master recession curve, which defines the groundwater contribution: fluctuating above it in the case of precipitation input on these areas, below it in the case of evaporation output from these areas. Streamflow may therefore largely deviate from the master recession curve in the case of long, hot, dry spells. Detailed mapping has shown that their variable extent is well related to baseflow by a loglinear curve. On the other hand, a synthetic master recession curve, well fitted by a second‐order hyperbolic function, has been obtained from numerous pure recession periods. Both based on these two curves, a simple procedure and a simple model have been used to (i) validate the hypothesis that the connected saturated areas are the only permanent variable contributing areas and (ii) simulate the daily streamflow volumes over long baseflow recession periods by a water balance of the aquifer below these areas only. The storm runoff ratio for small to moderate rainfall events is indeed corresponding to the catchment saturated fraction at that time. The volume of daily streamflow oscillations is indeed corresponding to the evaporation at the potential rate from the saturated areas only. In both cases, streamflow naturally tends towards the master recession curve after the end of any atmospheric perturbation. Introducing these findings into TOPMODEL led to significantly improved simulation results during baseflow recession periods. The master recession curve may therefore be considered as a dynamic equilibrium curve. Together with the relationship between saturated extent and baseflow, it provides the main characteristics necessary to understand and model the interactions at this complex interface and the resulting daily streamflow variations during baseflow recession periods in this type of catchment. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
There has been increasing attention over the last decade to the potential effects of glacier retreat on downstream discharge and aquatic habitat. This study focused on streamflow variability downstream of Bridge Glacier in the southern Coast Mountains of BC between 1979 and 2014, prior to and during a period in which the glacier experienced enhanced calving and rapid retreat across a lake‐filled basin. Here we combined empirical trend detection and a conceptual‐parametric hydrological model to address the following hypotheses: (1) streamflow trends in late summer and early autumn should reflect the opposing influences of climatic warming (which would tend to increase unit‐area meltwater production) and the reduction in glacier area (which would tend to reduce the total volume of meltwater generated), and (2) winter streamflow should increase because of displacement of lake water as ice flows past the grounding line and calves into the lake basin. In relation to the first hypothesis, we found no significant trends in monthly discharge during summer. However, applying regression analysis to account for air temperature and precipitation variations, weak but statistically significant negative trends were detected for August and melt season discharge. The HBV‐EC model was applied using time‐varying glacier cover, as derived from Landsat imagery. Relative to simulations based on constant glacier extent, model results indicated that glacier recession caused a decline in mean monthly streamflow of 9% in August and 11% in September. These declines in late‐summer streamflow are consistent with the results from our empirical analysis. The second hypothesis is supported by the finding of positive trends for December, January, and February discharge. Despite the modelled declines in late‐summer mean monthly streamflow, recorded discharge data exhibited neither positive nor negative trends during the melt season, suggesting that Bridge Glacier may currently be at or close to the point of peak water. Further analysis of the impact of lake‐terminating glaciers on downstream discharge is needed to refine the peak water model. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
Previous work has shown that streamflow response during baseflow conditions is a function of storage, but also that this functional relationship varies among seasons and catchments. Traditionally, hydrological models incorporate conceptual groundwater models consisting of linear or non‐linear storage–outflow functions. Identification of the right model structure and model parameterization however is challenging. The aim of this paper is to systematically test different model structures in a set of catchments where different aquifer types govern baseflow generation processes. Nine different two‐parameter conceptual groundwater models are applied with multi‐objective calibration to transform two different groundwater recharge series derived from a soil‐atmosphere‐vegetation transfer model into baseflow separated from streamflow data. The relative performance differences of the model structures allow to systematically improve the understanding of baseflow generation processes and to identify most appropriate model structures for different aquifer types. We found more versatile and more aquifer‐specific optimal model structures and elucidate the role of interflow, flow paths, recharge regimes and partially contributing storages. Aquifer‐specific recommendations of storage models were found for fractured and karstic aquifers, whereas large storage capacities blur the identification of superior model structures for complex and porous aquifers. A model performance matrix is presented, which highlights the joint effects of different recharge inputs, calibration criteria, model structures and aquifer types. The matrix is a guidance to improve groundwater model structures towards their representation of the dominant baseflow generation processes of specific aquifer types. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
The processes by which climate change affects streamflow in alpine river basins are not entirely understood. This study evaluated the impacts of temperature and precipitation changes on runoff and streamflow using glacier‐enhanced Soil and Water Assessment Tool model. The study used observed and detrended historical meteorological data for recent decades (1961–2005) to analyse individual and combined effects of temperature and precipitation changes on snow and glacier melts and discharges in the Sary‐Djaz‐Kumaric River Basin (SRB), Tianshan Mountains. The results showed a 1.3% increase in annual snowmelt in the basin, mainly because of an increase in precipitation. Snowmelt in the basin varied seasonally, increasing from April through May because of increasing precipitation and decreasing from July through September because of rising temperature. Glacier melt increased by 5.4%, 5.0% of which was due to rising temperature and only 0.4% due to increasing precipitation. Annual streamflow increased by 4.4%, of which temperature and precipitation increases accounted for 2.5% and 1.9%, respectively. The impacts of temperature and precipitation changes on streamflow were especially significant after 1980 and even more so in September. Glacier melt, due to temperature rise, was the dominant driver of increasing streamflow in the glacier‐dominated SRB, Tianshan Mountains. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
Separating impacts of human activities and climate change on hydrology is essential for watershed and ecosystem management. Many previous studies have focused on the impacts on total streamflow, however, with little attentions paid to its components (i.e., baseflow and surface run‐off). This study distinguished the contributions of climate change and human activities to the variations in streamflow, baseflow, and surface run‐off in the upstream area of the Heihe River Basin, a typical inland river basin in northwest China, by using eight different forms of time‐trend methods. The isolated contributions to streamflow variation were also compared with those obtained by two Budyko‐based approaches. Our results showed that the time‐trend methods consistently estimated positive contributions of climate variability and human activities to the increases in streamflow and its components but with obviously varying magnitudes. With regard to streamflow, the time‐trend method double‐mass‐curve–Wei, with a physical basis, produced a reasonable smaller contribution of human activities than climate changes, inconsistent with the Budyko‐based approaches. However, all the other time‐trend methods led to contrary results. The contributions to baseflow variation diverged more significantly than those to streamflow and surface run‐off, ranging from 24% to 92% for human activities and from 8% to 76% for climate variability. In terms of surface run‐off, most of the time‐trend approaches produced smaller contributions of human activities (ranging from 21% to 49%) than climate change. The uncertainties associated with the various time‐trend approaches and the baseflow separation algorithm were revealed and discussed, along with some recommendations for future work.  相似文献   

15.
16.
High‐elevation mountain catchments are often subject to large climatic and topographic gradients. Therefore, high‐density hydrogeochemical observations are needed to understand water sources to streamflow and the temporal and spatial behaviour of flow paths. These sources and flow paths vary seasonally, which dictates short‐term storage and the flux of water in the critical zone (CZ) and affect long‐term CZ evolution. This study utilizes multiyear observations of chemical compositions and water residence times from the Santa Catalina Mountains Critical Zone Observatory, Tucson, Arizona to develop and evaluate competing conceptual models of seasonal streamflow generation. These models were tested using endmember mixing analysis, baseflow recession analysis, and tritium model “ages” of various catchment water sources. A conceptual model involving four endmembers (precipitation, soil water, shallow, and deep groundwater) provided the best match to observations. On average, precipitation contributes 39–69% (55 ± 16%), soil water contributes 25–56% (41 ± 16%), shallow groundwater contributes 1–5% (3 ± 2%), and deep groundwater contributes ~0–3% (1 ± 1%) towards annual streamflow. The mixing space comprised two principal planes formed by (a) precipitation‐soil water‐deep groundwater (dry and summer monsoon season samples) and (b) precipitation‐soil water‐shallow groundwater (winter season samples). Groundwater contribution was most important during the wet winter season. During periods of high dynamic groundwater storage and increased hydrologic connectivity (i.e., spring snowmelt), stream water was more geochemically heterogeneous, that is, geochemical heterogeneity of stream water is storage‐dependent. Endmember mixing analysis and 3H model age results indicate that only 1.4 ± 0.3% of the long‐term annual precipitation becomes deep CZ groundwater flux that influences long‐term deep CZ development through both intercatchment and intracatchment deep groundwater flows.  相似文献   

17.
Low streamflow statistic estimators at ungauged river sites generally have large errors and uncertainties. This can be due to many reasons, including lack of data, complex hydrologic processes, and the inadequate or improper characterization of watershed hydrogeology. One potential solution is to take a small number of streamflow measurements at an ungauged site to either estimate hydrogeologic indices or transfer information from a nearby site using concurrent streamflow measurements. An analysis of four low streamflow estimation techniques, regional regression, regional plus hydrogeologic indices, baseflow correlation, and scaling, was performed within the Apalachicola–Chattahoochee–Flint watershed, a U.S. Geological Survey WaterSMART region in the south‐eastern United States. The latter three methods employ a nominal number of spot measurements at the ungauged site to improve low streamflow estimation. Results indicate that baseflow correlation and scaling methods, which transfer information from a donor site, can produce improved low streamflow estimators when spot measurements are available. Estimation of hydrogeologic indices from spot measurements improves regional regression models, with the baseflow recession constant having more explanatory power than the aquifer time constant, but these models are generally outperformed by baseflow correlation and scaling.  相似文献   

18.
Surface water and groundwater in the Heihe river basin of China are interconnected and the pattern of water resources exploitation has a direct effect on the interaction of groundwater and surface water, especially on a downstream oasis. A three‐dimensional groundwater flow simulation model with eight model layers was established to simulate the regional groundwater flow in the multilayered aquifer system and the interaction among the rivers, springs, and groundwater. The model was calibrated not only with historical water levels but also with the investigated baseflow and spring flux. The simulation results of the numerical model match reasonably well with the observed groundwater levels, baseflow to rivers, and spring flux. The numerical simulation also demonstrates that the hydraulic connection between the river and the aquifers has transferred from the coupling to decoupling at some reaches. It is suggested that there is a vital need to reduce groundwater withdrawal and to rationalize the use of both groundwater and surface water in order to maintain sustainable development in the study area. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

19.
The lower Apalachicola–Chattahoochee–Flint River Basin in the Southeast United States represents a major agricultural area underlain by the highly productive karstic Upper Floridan aquifer (UFA). During El Niño Southern Oscillation‐induced droughts, intense groundwater withdrawal for irrigation lowers streamflow in the Flint River due to its hydraulic connectivity with the UFA and threatens the habitat of the federally listed and endangered aquatic biota. This study assessed the compounding hydrologic effects of increased irrigation pumping during drought years (2010–2012) on stream–aquifer water exchange (stream–aquifer flux) between the Flint River and UFA using the United States Geological Survey modular finite element groundwater flow model. Principal component and K‐means clustering analyses were used to identify critical stream reaches and tributaries that are adversely affected by irrigation pumping. Additionally, the effectiveness of possible water restriction scenarios on stream–aquifer flux was also analysed. Moreover, a cost–benefit analysis of acreage buyout procedure was conducted for various water restriction scenarios. Results indicate that increased groundwater withdrawal in Water Year 2011 decreased baseflow in the lower Apalachicola–Chattahoochee–Flint River Basin, particularly, in Spring Creek, where irrigation pumping during April, June, and July changed the creek condition from a gaining to losing stream. Results from sensitivity analysis and simulated water restrictions suggest that reducing pumping in selected sensitive areas is more effective in streamflow recovery (approximately 78%) than is reducing irrigation intensity by a prescribed percentage of current pumping rates, such as 15% or 30%, throughout the basin. Moreover, analysis of acreage buyout indicates that restrictions on irrigation withdrawal can have significant impacts on stream–aquifer flux in the Basin, especially in critical watersheds such as Spring and Ichawaynochaway Creeks. The proposed procedure for ranking of stream reaches (sensitivity analysis) in this study can be replicated in other study areas/models. This study provides useful information to policymakers for devising alternate irrigation water withdrawal policies during droughts for maintaining flow levels in the study area.  相似文献   

20.
In glacier‐fed rivers, melting of glacier ice sustains streamflow during the driest times of the year, especially during drought years. Anthropogenic and ecologic systems that rely on this glacial buffering of low flows are vulnerable to glacier recession as temperatures rise. We demonstrate the evolution of glacier melt contribution in watershed hydrology over the course of a 184‐year period from 1916 to 2099 through the application of a coupled hydrological and glacier dynamics model to the Hood River basin in Northwest Oregon, USA. We performed continuous simulations of glaciological processes (mass accumulation and ablation, lateral flow of ice and heat conduction through supra‐glacial debris), which are directly linked with seasonal snow dynamics as well as other key hydrologic processes (e.g. evapotranspiration and subsurface flow). Our simulations show that historically, the contribution of glacier melt to basin water supply was up to 79% at upland water management locations. We also show that supraglacial debris cover on the Hood River glaciers modulates the rate of glacier recession and progression of dry season flow at upland stream locations with debris‐covered glaciers. Our model results indicate that dry season (July to September) discharge sourced from glacier melt started to decline early in the 21st century following glacier recession that started early in the 20th century. Changes in climate over the course of the current century will lead to 14–63% (18–78%) reductions in dry season discharge across the basin for IPCC emission pathway RCP4.5 (RCP8.5). The largest losses will be at upland drainage locations of water diversions that were dominated historically by glacier melt and seasonal snowmelt. The contribution of glacier melt varies greatly not only in space but also in time. It displays a strong decadal scale fluctuations that are super‐imposed on the effects of a long‐term climatic warming trend. This decadal variability results in reversals in trends in glacier melt, which underscore the importance of long‐time series of glacio‐hydrologic analyses for evaluating the hydrological response to glacier recession. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号