首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Calcareous fens are minerotrophic peatlands with very high species diversity, and maintenance of the water table is assumed to be a key contributor to this diversity. However, this assumption is based on limited study of fen water table dynamics. Here we monitor water table fluctuation in distributed locations across three calcareous fens differing in hydrogeomorphic setting for three growing seasons. Water table position was extremely variable with absolute ranges of 89, > 100, and > 118 cm in the Riparian, Trough and Basin Fens, respectively, and was controlled by landscape position and weather variability. Areas adjacent to a second‐order stream experienced the least water table fluctuation, while the Basin Fen, at > 75 m from a surface water connection, was very prone to year‐to‐year precipitation differences. Mean and median water table values were found to be poor indicators of biologically relevant hydroperiods. We introduce the term ‘duration of initial growing season saturation’ as a potentially more useful statistic to relate to plant species distribution. Across the studied fens, this duration ranged from 1 to 14 weeks from the start of the growing season. The water table resided below the ground surface for between 0 and 22 weeks of the growing season across the calcareous fens and study period. These findings impart great differences in the development of oxidized rooting depths. Our results demonstrate that there is much more variation in calcareous fen hydrology than previously reported, and this variability has important implications for fen vegetation patterning and management. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
Wetlands in the coastal catchments adjacent to the Great Barrier Reef lagoon play an important role in local hydrological processes and provide important ecological habitats for terrestrial and aquatic species. Although many wetlands have been removed or degraded by agricultural expansion, there is now great interest in their protection and restoration as important aquatic ecosystems and potential filters of pollutant runoff. However, the filtering capacity of tropical wetlands is largely unknown, so the current study was established to quantify the water, sediment and nutrient balance of a natural riverine wetland in tropical north Queensland. Surface and groundwater fluxes of water, sediment and nutrients into and out of the wetland were monitored for a 3‐year period. This paper focuses on the water balance of this natural wetland and a companion paper presents its sediment and nutrient balance and estimates of water quality filtering. Wetland inflows and outflows were dominated by surface flows which varied by 3–4 orders of magnitude through the course of the year, with 90% of the annual flow occurring during the period January to March. Although groundwater inputs to the wetland were only 5% of the annual water balance, they are very important to sustaining the wetland during the dry season, when they can be the largest input of water (up to 90%). Water retention times in this type of wetland are very short, particularly when most of the flow and any associated materials are passing through it (i.e. 1–2 h), so there is little time to filter most of the annual flux of water through this wetland. Longer retention times occur at the end of the dry season (up to 8·5 days); but this is when the lowest fluxes of water pass through the wetland. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
The Pantanal wetland is one of the least explored regions of South America. It is characterized by an outstanding flora and fauna adapted to a seasonal flood pulse controlled by a dry and a wet season within each year. The resulting inundation covers in average an area of approximately 150 000 km2 and is seen as the most important driver for ecological integrity. Evaporation from the large floodplain is supposed to influence the climate of the whole continent. The regional groundwater is connected to the surface water and plays an important role for the characteristic flooding regime by regulating the wetland's water table. The water balance assessment of the wetland and the internal water exchange between surface and groundwater is therefore of high relevance for the conservation of the Pantanal biodiversity. Despite of its importance, water balance studies including groundwater–surface water interactions based on field data are rarely undertaken. This is mainly due to the remoteness and difficulty in accessing this area, which results in lack of data. In our study, we developed a new tracer‐based model to simulate the spatio–temporal surface and subsurface fluxes for a range of water bodies. The model was able to simulate these fluxes considering a dynamic simulation of inflow and outflow using a newly collected 2‐year dataset of water levels, stable water isotopes and chloride collected from several water bodies in the northern Pantanal region. Quantitative differences between water bodies according to their location in the floodplain were determined by the flooding regime and connectivity as well as site‐specific characteristics, such as hydraulic conductivity and water depth. Our model simulated water balance fluxes with a Nash–Sutcliffe efficiency of 0.61, whereas it simulated stable water isotopic compositions better than chloride. We present the first study based on field data for the Pantanal, which is able to quantify water balances fluxes. Because their representation in global climate and land cover products is insufficient, our simulation results are valuable for validating large‐scale models. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

4.
Streamflow response in Boreal Plains catchments depends on hydrological connectivity between forested uplands, lakes, and peatlands, and their hydrogeomorphic setting. Expected future drying of the Boreal Plains ecozone is expected to reduce hydrological connectivity of landscape units. To better understand run‐off generation during dry periods, we determined whether peatland and groundwater connectivity can dampen expected future water deficits in forests and lakes. We studied Pine Fen Creek catchment in the Boreal Plains ecozone of central Saskatchewan, Canada, which has a large, valley‐bottom, terminally positioned peatland, two lakes, and forested uplands. A shorter intensive study permitted a more detailed partitioning of water inputs and outputs within the catchment during the low flow period, and an assessment of a 10‐year data set provided insight into the function of the peatland over a range of climate conditions. Using a water balance approach, we learned that two key processes regulate flow of Pine Fen Creek. The cumulative impact of landscape unit hydrological connectivity and the peatland's hydrological functional state were needed to understand catchment response. There was evidence of a run‐off threshold which, when crossed, changed the peatland's hydrological function from transmission to run‐off generation. Results also suggest the peatland should behave more often as a transmitter of groundwater than as a generator of run‐off under a drier climate future, owing to a reduced water supply.  相似文献   

5.
To date, passive flux meters have predominantly been applied in temperate environments for tracking the movement of contaminants in groundwater. This study applies these instruments to reduce uncertainty in (typically instantaneous) flux measurements made in a low-gradient, wetland dominated, discontinuous permafrost environment. This method supports improved estimation of unsaturated and over-winter subsurface flows which are very difficult to quantify using hydraulic gradient-based approaches. Improved subsurface flow estimates can play a key role in understanding the water budget of this landscape.  相似文献   

6.
Riparian wetlands as typical aquatic-terrestrial interfaces control, in a very specific way, nonpoint water and related chemical fluxes exchanging between catchment areas to their respective water systems (streams, lakes). The existing groundwater and soilwater flow models reveal gaps in dealing with the complex behaviour of processes and the considerable spatial and temporal heterogeneity of riparian wetlands. Based on long-term experience gained through field observations and the interpretation of model produced data, a multi-box aggregation of processes which determines lateral as well as vertical flows and, as a whole, water balance, is used to discretise a generic riparian wetland transect situated between an upland aquifer and a receiving water body.

The resulting mathematical model, FEUWAnet, endowed also with an original methodology to adapt parameters, has been applied to a riparian alder wetland adjacent to Lake Belau (northern Germany). Results of simulations illustrate a good fit between calculated water levels and observed values and an accordance of calculated water balance to previous independent evaluations. This confirms that the sound simplifications of real situations performed by the FEUWAnet mathematical model are a promising way to deal with hydrological complexity of riparian zones. Moreover, FEUWAnet permits, to a certain extent, one to unravel the spatial heterogeneity and temporal variation of lateral (from catchment area to water systems) and vertical (from canopy to groundwater zone) water fluxes typical of riparian ecosystems: this is the necessary step to undertake when developing integrated models capable of assessing the effectiveness of riparian systems in controlling the fluxes of nonpoint pollution discharging in the open water bodies.  相似文献   


7.
This paper characterizes a seasonally inundated Danish floodplain wetland in a state close to naturalness and includes an analysis of the major controls on the wetland water and nitrogen balances. The main inputs of water are precipitation and percolation during ponding and unsaturated conditions. Lateral saturated subsurface flow is low. The studied floodplain owes its wetland status to the hydraulic properties of its sediments: the low hydraulic conductivity of a silt–clay deposit on top of the floodplain maintains ponded water during winter, and parts of autumn and spring. A capillary fringe extends to the soil surface, and capillary rise from groundwater during summer maintains near‐saturated conditions in the root zone, and allows a permanently very high evapotranspiration rate. The average for the growing season of 1999 is 3·6 mm day?1 and peak rate is 5·6 mm day?1. In summer, the evapotranspiration is to a large degree supplied by subsurface storage in a confined peat layer underlying the silt–clay. The floodplain sediments are in a very reduced state as indicated by low sulphate concentrations. All nitrate transported into the wetland is thus denitrified. However, owing to modest water exchange with surrounding groundwater and surface water, denitrification is low; 71 kg NO3–N ha?1 during the study period of 1999. Reduction of nitrate diffusing into the sediments during water ponding accounts for 75% of nitrate removal. Biomass production and nitrogen uptake in above‐ground vegetation is high—8·56 t dry matter ha?1 year?1 and 103 kg N ha?1 year?1. Subsurface ammonium concentrations are high, and convective upward transport into the root zone driven by evapotranspiration amounted to 12·8 kg N ha?1year?1. The floodplain wetland sediments have a high nitrogen content, and conditions are very favourable for mineralization. Mineralization thus constitutes 72% of above‐ground plant uptake. The study demonstrates the necessity of identifying controlling factors, and to combine surface flow with vadose and groundwater flow processes in order to fully comprehend the flow and nitrogen dynamics of this type of wetland. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

8.
In the northern glaciated plain of North America, the duration of surface water in seasonal wetlands is strongly influenced by the rate of infiltration and evaporation. Infiltration also plays important roles in nutrient exchange at the sediment–water interface and groundwater recharge under wetlands. A whole‐wetland bromide tracer experiment was conducted in Saskatchewan, Canada to evaluate infiltration and solute transport processes. Bromide concentrations of surface water, groundwater, sediment pore water and plant tissues were monitored as the pond water‐level gradually dropped until there was no surface water. Hydraulic head gradients showed strong lateral flow from under the wetland to the treed riparian zone during the growing season. The bromide mass balance analysis showed that in early spring, almost 50% of water loss from the wetland was by infiltration, and it increased to about 70% in summer as plants in and around the wetland started to transpire more actively. The infiltration contributed to recharging the shallow, local groundwater under the wetland, but much of it was taken up by trees without recharging the deeper groundwater system. Emergent plants growing in the wetlands incorporated some bromide, but overall uptake of bromide by vegetation was less than 10% of the amount initially released. After one summer, most of the subsurface bromide was found within 40–80 cm of the soil surface. However, some bromide penetrated as deep as 2–3 m, presumably owing to preferential flow pathways provided by root holes or fractures. Copyright © 2004 Crown in the Right of Canada. Published by John Wiley & Sons, Ltd.  相似文献   

9.
This study used a two‐dimensional steady‐state finite‐element groundwater flow model to simulate groundwater flow in two Newfoundland blanket peat complexes and to examine flow system sensitivity to changes in water table recharge and aquifer properties. The modelling results were examined within the context of peat‐forming processes in the two complexes. Modelled flow compared favourably with observed flow. The sensitivity analyses suggested that more highly decomposed bog peat along bog margins probably has/had a positive impact on net peat accumulation within bog interiors. Peat with lower hydraulic conductivity along bog margins effectively impedes lateral drainage, localizes water table drawdown to extreme bog margins, and elevates water tables along bog interiors. Peat formation and elevated water tables in adjacent poor fens/laggs currently rely on placic and ortstein horizons impeding vertical drainage and water flow inputs from adjacent bogs. Modest reductions in atmospheric recharge were found to govern bog‐flow‐system geometries in a way that would adversely affect paludification processes in adjacent fens/laggs. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

10.
The present study makes use of a detailed water balance to investigate the hydrological status of a peatland with a basal clay‐rich layer overlying an aquifer exploited for drinking water. The aim is to determine the influence of climate and groundwater extraction on the water balance and water levels in the peatland. During the two‐year period of monitoring, the hydrological functioning of the wetland showed a hydric deficit, associated with a permanent unsaturated layer and a deep water table. At the same time, a stream was observed serving as a recharge inflow instead of draining the peatland, as usually described in natural systems. Such conditions are not favourable for peat accumulation. Field investigations show that the clay layer has a high hydraulic conductivity (from 1·10?7 to 3·10?9 m.s?1) and does not form a hydraulic barrier. Moreover, the vertical hydraulic gradients are downward between the peat and the sand aquifer, leading to high flows of groundwater through the clay layer (20–48% of the precipitation). The observed hydric deficit of the peatland results from a combination of dry climatic conditions during the study period and groundwater extraction. The climatic effect is mainly expressed through drying out of the peatland, while the anthropogenic effect leads to an enhancement of the climatic effect on a global scale, and a modification of fluxes at a local scale. The drying out of the peatland can lead to its mineralisation, which thus gives rise to environmental impacts. The protection of such wetlands in the context of climate change should take account of anthropogenic pressures by considering the wetland‐aquifer interaction. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

11.
Ecosystem services provided by depressional wetlands on the coastal plain of the Chesapeake Bay watershed (CBW) have been widely recognized and studied. However, wetland–groundwater interactions remain largely unknown in the CBW. The objective of this study was to examine the vertical interactions of depressional wetlands and groundwater with respect to different subsurface soil characteristics. This study examined two depressional wetlands with a low‐permeability and high‐permeability soil layer on the coastal plain of the CBW. The surface water level (SWL) and groundwater level (GWL) were monitored over 1 year from a well and piezometer at each site, respectively, and those data were used to examine the impacts of subsurface soil characteristics on wetland–groundwater interactions. A large difference between the SWL and GWL was observed at the wetland with a low‐permeability soil layer, although there was strong similarity between the SWL and GWL at the wetland with a high‐permeability soil layer. Our observations also identified a strong vertical hydraulic gradient between the SWL and GWL at the wetland with a high‐permeability soil layer relative to one with a low‐permeability soil layer. The hydroperiod (i.e., the total time of surface water inundation or saturation) of the wetland with a low‐permeability soil layer appeared to rely on groundwater less than the wetland with a high‐permeability soil layer. The findings showed that vertical wetland–groundwater interactions varied with subsurface soil characteristics on the coastal plain of the CBW. Therefore, subsurface soil characteristics should be carefully considered to anticipate the hydrologic behavior of wetlands in this region.  相似文献   

12.
Coastal groundwater discharge (CGD) plays an important role in coastal hydrogeological systems as they are a water resource that needs to be managed, particularly in wetland areas. Despite its importance, identifying and monitoring CGD often presents physical and logistical constraints, restraining the application of more traditional submarine groundwater discharge surveying techniques. Here we investigate the capability of electrical resistivity imaging (ERI) in the Peníscola wetland (Mediterranean coast, Spain). ERI surveying made it possible to identify and delineate an ascending regional groundwater flow of thermal and Ra‐enriched groundwater converging with local flows and seawater intrusion. The continuous inputs of Ra‐rich groundwater have induced high activities of Ra isotopes and 222Rn into the marsh area, becoming among the highest previously reported in wetlands and coastal lagoons. Geoelectrical imaging enabled inferring focused upward discharging areas, leaking from the aquifer roof through a confining unit and culminating as spring pools nourishing the wetland system. Forward modelling over idealized subsurface configurations, borehole datasets, potentiometric records from standpipe piezometers, petrophysical analysis, and four natural and independent tracers (224Ra, 222Rn, temperature and salinity) permitted assessing the geoelectrical model and a derived hydrogeological pattern. The research highlights the potential of ERI to improve hydrogeological characterization of subsurface processes in complex contexts, with different converging flows. Additionally, a hydrogeological conceptual model for a groundwater‐fed coastal wetland was proposed, based on the integration of surveying datasets. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

13.
This paper describes how climate influences the hydrology of an ephemeral depressional wetland. Surface water and groundwater elevation data were collected for 7 years in a Coastal Plain watershed in South Carolina USA containing depressional wetlands, known as Carolina bays. Rainfall and temperature data were compared with water‐table well and piezometer data in and around one wetland. Using these data a conceptual model was created that describes the hydrology of the system under wet, dry, and drought conditions. The data suggest this wetland operates as a focal point for groundwater recharge under most climate conditions. During years of below‐normal to normal rainfall the hydraulic gradient indicated the potential for groundwater recharge from the depression, whereas during years of above‐normal rainfall, the hydraulic gradient between the adjacent upland, the wetland margin, and the wetland centre showed the potential for groundwater discharge into the wetland. Using high‐resolution water‐level measurements, this groundwater discharge condition was found to hold true even during individual rainfall events, especially under wet antecedent soil conditions. The dynamic nature of the hydrology in this Carolina bay clearly indicates it is not an isolated system as previously believed, and our groundwater data expand upon previous hydrologic investigations at similar sites which do not account for the role of groundwater in estimating the water budget of such systems. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

14.
Exposure from groundwater contamination to aquatic receptors residing in receiving surface water is dependent upon the rate of contaminated groundwater discharge. Characterization of groundwater fluxes is challenging, especially in coastal environments where tidal fluctuations result in transient groundwater flows towards these receptors. This can also be further complicated by the high spatial heterogeneity of subsurface deposits enhanced by anthropogenic influences such as the mixing of natural sediments and backfill materials, the presence of subsurface built structures such as sheet pile walls or even occurrence of other sources of contaminant discharge. In this study, the finite volume point dilution method (FVPDM) was successfully used to characterize highly transient groundwater flows and contaminant mass fluxes within a coastal groundwater flow system influenced by marked tides. FVPDM tests were undertaken continuously for more than 48 h at six groundwater monitoring wells, in order to evaluate groundwater flow dynamics during several tide cycles. Contaminant concentrations were measured simultaneously which allowed calculating contaminant mass fluxes. The study highlighted the importance of the aquifer heterogeneity, with groundwater fluxes ranging from 10−7 to 10−3 m/s. Groundwater flux monitoring enabled a significant refinement of the conceptual site model, including the fact that inversion of groundwater fluxes was not observed at high tide. Results indicated that contaminant mass fluxes were particularly higher at a specific monitoring well, by more than three orders of magnitude, than at other wells of the investigated aquifer. This study provided crucial information for optimizing further field investigations and risk mitigation measures.  相似文献   

15.
Oil sands mining in Alberta transforms the boreal landscape of forests and wetlands into open pits, tailings ponds and overburden piles. Whereas reclamation efforts have primarily focused on upland forests, rebuilding wetland systems has recently become a motivation for research. Wetland creation and sustainability in this region is complicated by the sub‐humid climate and salinity of underlying mining material. In 2012, Syncrude Canada Ltd. completed the construction of the Sandhill Fen Watershed (SFW), a 52‐ha upland‐wetland system to evaluate wetland reclamation strategies on soft tailings. SFW includes an active pumping system, upland hummocks, a fen wetland and underdrains. To evaluate the influence of management practices on the hydrology of the system, this study reports the water balance from January 2013 to December 2014, the first 2 years after commissioning. A semi‐distributed approach was taken to examine the fluxes and stores of water in uplands and lowlands. Natural and artificial inputs and outputs were measured using a series of precipitation gauges and pumps, and evapotranspiration was quantified using three eddy covariance towers. A series of near surface wells recorded water table position. Both 2013 and 2014 were normal rainfall years, with 2013 having more and 2014 less snow than normal. In 2013, inflow/outflow from pumping was the predominant hydrological fluxes, resulting in considerable variability in water table position and storage changes throughout the summer. In 2014, the artificial addition of water was negligible, yet the water table remained near the surface in lowland locations, suggesting that wetland conditions could be maintained under current conditions. Evapotranspiration rates between uplands and lowlands were similar between years and sites, ranging from 2.2 ± 1.8 to 2.5 ± 1.2 mm/day and were largely controlled by climate. These rates were less than nearby older upland systems, suggesting that water balance partitioning will change as vegetation develops. Comparison between years and with natural systems provides insight on how management practices influence hydrologic dynamics and the overall water balance of the SFW. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

16.
洪泛湿地是位于水生系统和陆生系统之间的过渡带,在河流和陆地之间的水文生态方面起着纽带作用,受气候变化和人类活动的叠加影响,其水文过程改变很大程度上影响了湿地生态系统循环、结构和功能的稳定。本文以鄱阳湖洪泛区湿地为研究区,应用湖泊水动力和洪泛区地下水数值模型,评估鄱阳湖拟建水利枢纽工程对洪泛区地下水系统的影响。模拟结果表明,拟建水利枢纽工程将会遵循调度方案使得湖泊水位明显提高,但同时导致洪泛区地下水位的整体抬升,且东部主湖区附近的地下水位受到的影响(约1~3 m)要明显强于洪泛区其它区域(约小于1 m)。地下水位的变化同时导致不同典型时期洪泛区地下水流速的减小及地下水流向的改变,表现为枢纽建设后地下水流向的逆转和流速基本小于0.1 m/d。鄱阳湖涨水-丰水期总体为湖水补给洪泛区地下水模式,枯水-退水期主要为地下水补给湖水模式,但水利枢纽可能导致洪泛区地下水系统水均衡状态发生转变,影响了地下水系统的补给和排泄状态,最终形成了长期稳定的湖泊补给地下水的作用模式。从地下水-生态系统响应变化的角度分析,拟建水利枢纽建设引起的地下水位上升,可能会给湿地生物地球化学元素的迁移转化、植被群落的演变与退...  相似文献   

17.
In humid upland catchments wetlands are often a prominent feature in the vicinity of streams and have potential implications for runoff generation and nutrient export. Wetland surfaces are often characterized by distinct micro-topography (hollows and hummocks). The effects of such micro-topography on surface–subsurface exchange and runoff generation for a 10 by 20 m synthetic section of a riparian wetland were investigated in a virtual modeling experiment. A reference model with a planar surface was run for comparison. The geostatistically simulated structure of the micro-topography replicates the topography of a peat-forming riparian wetland in a small mountainous catchment in South-East Germany (Lehstenbach). Flow was modeled with the fully-integrated surface–subsurface code HydroGeoSphere. Simulation results showed that the specific structure of the wetland surface resulted in distinct shifts between surface and subsurface flow dominance. Surface depressions filled and started to drain via connected channel networks in a threshold controlled process, when groundwater levels intersected the land surface. These networks expanded and shrunk in a spill and fill mechanism when the shallow water table fluctuated around the mean surface elevation under variable rainfall inputs. The micro-topography efficiently buffered rainfall inputs and produced a hydrograph that was characterized by subsurface flow during most of the year and only temporarily shifted to surface flow dominance (> 80% of total discharge) during intense rainstorms. In contrast the hydrograph in the planar reference model was much “flashier” and more controlled by surface runoff. A non-linear, hysteretic relationship between groundwater level and discharge observed at the study site was reproduced with the micro-topography model. Hysteresis was also observed in the relationship between surface water storage and discharge, but over a relatively narrow range of surface water storage values. Therefore it was concluded that surface water storage was a better predictor for the occurrence of surface runoff than groundwater levels.  相似文献   

18.
The spatial and temporal variability of groundwater–surface‐water (GW–SW) interactions was investigated in an intensively utilized salmon spawning riffle. Hydrochemical tracers, were used along with high‐resolution hydraulic head and temperature data to assess hyporheic dynamics. Surface and subsurface hydrochemistry were monitored at three locations where salmon spawning had been observed in previous years. Temperature and hydraulic head were monitored in three nests of three piezometers located to characterize the head, the run and the tail‐out of the riffle feature. Hydrochemical gradients between surface and subsurface water indicated increasing GW influence with depth into the hyporheic zone. Surface water was characterized by high dissolved oxygen (DO) concentrations, low alkalinity and conductivity. Hyporheic water was generally characterized by high levels of alkalinity and conductivity indicative of longer residence times, and low DO, indicative of reducing conditions. Hydrochemical and temperature gradients varied spatially over the riffle in response to changes in local GW–SW interactions at the depths investigated. Groundwater inputs dominated the head and tail of the riffle. The influence of SW increased in the area of accelerating flow and decreasing water depth through the run of the riffle. Temporal GW–SW interactions also varied in response to changing hydrological conditions. Gross changes in hyporheic hydrochemistry were observed at the weekly scale in response to changing flow conditions and surface water inputs to the hyporheic zone. During low flows, caused by freezing or dry weather, hyporheic hydrochemistry was dominated by GW inputs. During higher flows hyporheic hydrochemistry indicated that SW contributions increased. In addition, high‐resolution hydraulic head data indicated that rapid changes in GW–SW interactions occurred during hydrological events. The spatial, and possibly the temporal, variability of GW–SW interactions had a marked effect on the survival of salmon ova. It is concluded that hyporheic dynamics and their effect on stream ecology should be given increased consideration by fisheries and water resource managers. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

19.
Groundwater flow advects heat, and thus, the deviation of subsurface temperatures from an expected conduction‐dominated regime can be analysed to estimate vertical water fluxes. A number of analytical approaches have been proposed for using heat as a groundwater tracer, and these have typically assumed a homogeneous medium. However, heterogeneous thermal properties are ubiquitous in subsurface environments, both at the scale of geologic strata and at finer scales in streambeds. Herein, we apply the analytical solution of Shan and Bodvarsson ( 2004 ), developed for estimating vertical water fluxes in layered systems, in 2 new environments distinct from previous vadose zone applications. The utility of the solution for studying groundwater‐surface water exchange is demonstrated using temperature data collected from an upwelling streambed with sediment layers, and a simple sensitivity analysis using these data indicates the solution is relatively robust. Also, a deeper temperature profile recorded in a borehole in South Australia is analysed to estimate deeper water fluxes. The analytical solution is able to match observed thermal gradients, including the change in slope at sediment interfaces. Results indicate that not accounting for layering can yield errors in the magnitude and even direction of the inferred Darcy fluxes. A simple automated spreadsheet tool (Flux‐LM) is presented to allow users to input temperature and layer data and solve the inverse problem to estimate groundwater flux rates from shallow (e.g., <1 m) or deep (e.g., up to 100 m) profiles. The solution is not transient, and thus, it should be cautiously applied where diel signals propagate or in deeper zones where multi‐decadal surface signals have disturbed subsurface thermal regimes.  相似文献   

20.
Hydrometric measurements, electrical conductivity, water isotopic and hydrochemical components of stream water were used to study summer runoff generation in a flat fen. Different processes generated runoff at low- and high-flows. At storm-flows, fen runoff was generated from overland flow, originating from upland surface water. Temporary storage of water on the fen surface attenuated and delayed flow peaks. At low-flows, runoff at the fen outlet was generated from shallow subsurface flow in the Acrotelm. During low-flow periods, water originated mainly from peat storage water while during episodic events the wetland water storage was renewed by inflowing stream water. Assessment and modeling of hydrological effects of peatlands should be performed separately for low-flows and high-flows, based on the dominating runoff generating processes. Attenuation and retardation of storm-flows in fens by temporary surface storage will depend on the geometric properties of both storage sections and sections controlling outflow. A routing reservoir model adapted for flat fens can be used for simulation of attenuation and retardation in runoff events, and it is suggested that the model concept should be tested for a broader range of peatlands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号