首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Due to shortage of rainfall and its increasing variability, moisture stress is identified to be one of the most critical factors affecting agricultural productivity in the drylands of Ethiopia. To circumvent this problem, a strategy of supplemental irrigation through surface water harvesting was adopted by the government and several micro‐dams have been built in the semi‐arid parts of the country. However, the benefits from the water harvesting schemes are not sustainable because of rapid water storage loss due to siltation. There is, therefore, an urgent need for improved catchment‐based erosion control and sediment management strategies. The design and implementation of such strategies require data on the rate and magnitude of sediment deposition. To this end, reservoir surveys were conducted to estimate sediment deposition rate for 11 reservoirs identified to be representative of catchments in the Tigray region of northern Ethiopia. Two approaches were employed during the survey: one was based on measurement of sediment thickness in reservoirs while the other was based on comparing the original and existing topography of the reservoir‐beds. The average annual sediment yield estimated for the study sites was about 19 t ha?1 y?1. An equation of the type SSY = 3á36A0á67 (with SSY = area specific sediment yield in t ha?1 y?1 and A = catchment area in km2) was also established for the study region, which is opposite to the ‘universal’ SSY–A relationship. In order to improve the sediment yield predictive capability of A, it was integrated with a factorial index that assesses the catchment's propensity to erosion and potential sediment yield. The effect of accelerated sediment deposition on water storage loss of reservoirs and possible controlling factors of the SSY–A relationship are outlined. The potential semi‐quantitative scoring approach to characterize catchments in terms of erosion sensitivity and the significance of the A‐index approach to predict SSY of similar catchments are also highlighted. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

2.
Our ability to understand erosion processes in semi‐arid ecosystems depends on establishing relationships between rainfall and runoff. This requires collection of extensive and accurate hydrologic and sediment data sets. A supercritical flume with a total load traversing slot sediment sampler used on several sites at the Walnut Gulch Experimental Watershed (WGEW) near Tombstone, AZ has proven to be a reliable way to measure flow and sediment discharge from small watersheds. However, it requires installation of a costly structure that is only suitable for relatively small flows. A more commonly used method based on ease of installation and expense is the pump sampler. One example of this is a set of instrumentation developed by the Australian Commonwealth Scientific and Industrial Research Organization (CSIRO), in which the pump sediment sampler is part of an in‐channel, fully automated system for measuring water velocity, depth, turbidity and collecting runoff samples. A 3.7 ha arid watershed at WGEW was instrumented with both systems and hydrologic and sediment data were collected and compared during a 2 year period. Total sediment yield for the entire period measured by the CSIRO pump sampler (11.6 t ha‐1) was similar to that by traversing slot sampler (11.5 t ha‐1). The pump sampler accurately estimated the amount of fine (< 0.5 mm) sediment fractions exported, but consistently underestimated the coarse (>0.5 mm) sediment fractions. Median sediment diameter of samples collected by traversing slot and pump sampler were 0.32 and 0.22 mm, respectively. This study outlines the benefits and limitations of the pump sampler based system for monitoring sediment concentration and yield in high‐energy headwater catchments, and makes recommendations for improvement of its performance. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
Sediment transport during flood events often reveals hysteretic patterns because flow discharge can peak before (counterclockwise hysteresis) or after (clockwise hysteresis) the peak of bedload. Hysteresis in sediment transport has been used in the literature to infer the degree of sediment availability. Counterclockwise and clockwise hysteresis have been in fact interpreted as limited and unlimited sediment supply conditions, respectively. Hysteresis has been mainly explored for the case of suspended sediment transport, but it was rarely reported for bedload transport in mountain streams. This work focuses on the temporal variability of bedload transport in an alpine catchment (Saldur basin, 18.6 km2, Italian Alps) where bedload transport was monitored by means of an acoustic pipe sensor which detects the acoustic vibrations induced by particles hitting a 0.5m‐long steel pipe. Runoff dynamics are dominated by snowmelt in late spring/early summer, mostly by glacier melt in late summer/early autumn, and by a combination of the snow and glacier melt in mid‐summer. The results indicate that hysteretic patterns during daily discharge fluctuations are predominantly clockwise during the snowmelt period, likely due to the ready availability of unpacked sediments within the channel or through bank erosion in the lower part of the basin. On the contrary, counterclockwise hysteresis tend to be more frequent during late glacier melting period, possibly due to the time lag needed for sediment provided by the glacial and peri‐glacial area to be transported to the monitoring section. However, intense rainfall events occurring during the glacier melt period generated predominantly clockwise hysteresis, thus indicating the activation of different sediment sources. These results indicate that runoff generation processes play a crucial role on sediment supply and temporal availability in mountain streams. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
Dam construction in the 1960s to 1980s significantly modified sediment supply from the Kenyan uplands to the lower Tana River. To assess the effect on suspended sediment fluxes of the Tana River, we monitored the sediment load at high temporal resolution for 1 year and complemented our data with historical information. The relationship between sediment concentration and water discharge was complex: at the onset of the wet season, discharge peaks resulted in high sediment concentrations and counterclockwise hysteresis, while towards the end of the wet season, a sediment exhaustion effect led to low concentrations despite the high discharge. The total sediment flux at Garissa (c. 250 km downstream of the lowermost dam) between June 2012 and June 2013 was 8.8 Mt yr‐1. Comparison of current with historical fluxes indicated that dam construction had not greatly affected the annual sediment flux. We suggest that autogenic processes, namely river bed dynamics and bank erosion, mobilized large quantities of sediments stored in the alluvial plain downstream of the dams. Observations supporting the importance of autogenic processes included the absence of measurable activities of the fall‐out radionuclides 7Be and 137Cs in the suspended sediment, the rapid lateral migration of the river course, and the seasonal changes in river cross‐section. Given the large stock of sediment in the alluvial valley of the Tana River, it may take centuries before the effect of damming shows up as a quantitative reduction in the sediment flux at Garissa. Many models relate the sediment load of rivers to catchment characteristics, thereby implicitly assuming that alterations in the catchment induce changes in the sediment load. Our research confirms that the response of an alluvial river to external disturbances such as land use or climate change is often indirect or non‐existent as autogenic processes overwhelm the changes in the input signal. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
A better knowledge of soil erosion by water is essential for planning effective soil and water conservation practices in semi‐arid Mediterranean environments. The special climatic and hydrological characteristics of these areas, however, make accurate soil loss predictions difficult, particularly in the absence of minimal data. Two zero‐order experimental microcatchments (328–759 m2), representative of an extensive semi‐arid watershed with a high potential erosion risk in the south‐east of Spain, were selected and monitored for 3 years (1991–93) in order to provide information on the hydrological and erosional response. A pluviogram and hydrograph recorded data at 1‐min intervals during each storm, after which the soil loss was collected and the particle size of the sediment was analysed. Runoff coefficients of about 9% and soil losses of between 84·83 and 298·9 g m?2 year?1 were observed in the area. Rapid response times (geometric mean values lower than 2 h) and low runoff thresholds (mean values between 3·5 to 5·9 mm) were the norm in the experimental areas. A rain intensity of over 15 mm h?1 was considered as ‘erosive rainfall’ in these areas because of the total soil loss and the transport capacity of the overland flow. Differences in pore‐size distribution explained the different hydrological responses observed between areas. The erosional response was more complex and basically seemed to be determined by soil aggregate stability and topographical properties. A greater proportion of finer particles in the eroded material than in the soil matrix indicated selective erosion and the transport of finer material. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

6.
A comprehensive monitoring programme focusing on bedload transport behaviour was conducted at a large gravel‐bed river. Innovative monitoring strategies were developed during five years of preconstruction observations accompanying a restoration project. A bedload basket sampler was used to perform 55 cross‐sectional measurements, which cover the entire water discharge spectrum from a 200‐year flood event in 2013 to a rare low flow event. The monitoring activities provide essential knowledge regarding bedload transport processes in large rivers. We have identified the initiation of motion under low flow conditions and a decrease in the rate of bedload discharge with increasing water discharge around bankfull conditions. Bedload flux strongly increases again during high flood events when the entire inundation area is flooded. No bedload hysteresis was observed. The effective discharge for bedload transport was determined to be near mean flow conditions, which is therefore at a lower flow discharge than expected. A numerical sediment transport model was able to reproduce the measured sediment transport patterns. The unique dataset enables the characterisation of bedload transport patterns in a large and regulated gravel‐bed river, evaluation of modern river engineering measures on the Danube, and, as a pilot project has recently been under construction, is able to address ongoing river bed incision, unsatisfactory ecological conditions for the adjacent national park and insufficient water depths for inland navigation. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

7.
The question: ‘how does a streambed change over a minor flood?’ does not have a clear answer due to lack of measurement methods during high flows. We investigate bedload transport and disentrainment during a 1.5‐year flood by linking field measurements using fiber optic distributed temperature sensing (DTS) cable with sediment transport theory and an existing explicit analytical solution to predict depth of sediment deposition from amplitude and phase changes of the diurnal near‐bed pore‐water temperature. The method facilitates the study of gravel transport by using near‐bed temperature time series to estimate rates of sediment deposition continuously over the duration of a high flow event coinciding with bar formation. The observations indicate that all gravel and cobble particles present were transported along the riffle at a relatively low Shields Number for the median particle size, and were re‐deposited on the lee side of the bar at rates that varied over time during a constant flow. Approximately 1–6% of the bed was predicted to be mobile during the 1.5‐year flood, indicating that large inactive regions of the bed, particularly between riffles, persist between years despite field observations of narrow zones of local transport and bar growth on the order ~3–5 times the median particle size. In contrast, during a seven‐year flood approximately 8–55% of the bed was predicted to become mobile, indicating that the continuous along‐stream mobility required to mobilize coarse gravel through long pools and downstream to the next riffle is infrequent. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

8.
Among the different controls of erosion budget at basin level, the relative impact of dams and land management is yet to be investigated. In this paper, the impact of dams on sediment yield has been assessed by using a conceptual modelling framework which considers the gross erosion and the cascade of dams constructed on a river network. The sediment budget has been estimated based on the gross erosion, deposition of sediment in reservoirs, and sediment yields of 23 mainland river basins of India. The gross erosion of the country is estimated as 5.11 ± 0.4 Gt yr?1 or 1559 t km?2 yr?1, out of which 34.1 ± 12% of the total eroded soil is deposited in the reservoirs, 22.9 ± 29% is discharged outside the country (mainly to oceans), and the remaining 43.0 ± 41% is displaced within the river basins. The river basins of northern India contribute about 81% of the total sediment yield from landmass while the share of southern river basins is 19%. The components of revised sediment budget for India are prominently influenced by the sediment trapped in reservoirs and the treatment of catchment areas by soil and water conservation measures. Analysis of sediment deposition in 4937 reservoirs indicated the average annual percentage capacity loss as 1.04% though it varies from 0.8% to >2% per year in smaller dams (1–50 Mm3 capacity) and from <0.5% to 0.8% per year in larger dams (51 to >1000 Mm3 capacity). Siltation of smaller dams poses a serious threat to their ecosystem services as they cater to a wider population for domestic, agricultural, and industrial purposes. Amongst the environment controls, land use significantly impacts the gross erosion rate and specific sediment yield as compared to climatic and topographic parameters. However, to analyse their integrated effect on the complex processes of sediment fluxes in a basin, further research efforts are needed. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
Process dynamics in fluvial‐based dryland environments are highly complex with fluvial, aeolian, and alluvial processes all contributing to landscape change. When anthropogenic activities such as dam‐building affect fluvial processes, the complexity in local response can be further increased by flood‐ and sediment‐limiting flows. Understanding these complexities is key to predicting landscape behavior in drylands and has important scientific and management implications, including for studies related to paleoclimatology, landscape ecology evolution, and archaeological site context and preservation. Here we use multi‐temporal LiDAR surveys, local weather data, and geomorphological observations to identify trends in site change throughout the 446‐km‐long semi‐arid Colorado River corridor in Grand Canyon, Arizona, USA, where archaeological site degradation related to the effects of upstream dam operation is a concern. Using several site case studies, we show the range of landscape responses that might be expected from concomitant occurrence of dam‐controlled fluvial sand bar deposition, aeolian sand transport, and rainfall‐induced erosion. Empirical rainfall‐erosion threshold analyses coupled with a numerical rainfall–runoff–soil erosion model indicate that infiltration‐excess overland flow and gullying govern large‐scale (centimeter‐ to decimeter‐scale) landscape changes, but that aeolian deposition can in some cases mitigate gully erosion. Whereas threshold analyses identify the normalized rainfall intensity (defined as the ratio of rainfall intensity to hydraulic conductivity) as the primary factor governing hydrologic‐driven erosion, assessment of false positives and false negatives in the dataset highlight topographic slope as the next most important parameter governing site response. Analysis of 4+ years of high resolution (four‐minute) weather data and 75+ years of low resolution (daily) climate records indicates that dryland erosion is dependent on short‐term, storm‐driven rainfall intensity rather than cumulative rainfall, and that erosion can occur outside of wet seasons and even wet years. These results can apply to other similar semi‐arid landscapes where process complexity may not be fully understood. Published 2015. This article is a U.S. Government work and is in the public domain in the USA  相似文献   

10.
This study investigates erosion dynamics of the past 90 years in three small semi‐arid watersheds with histories of grazing and vegetation change. Activity of 137Cs and excess 210Pb from 18 cores collected from sedimentation ponds were measured using a gamma spectrometer. The sediment was dated using a constant rate of supply (CRS) model. This study represents the first time that reservoir sediment accumulation rates determined from fallout isotopes have been verified by direct volumetric measurements of aggradation based on topographic surveys. Measured sedimentation in the ponds ranged between 1.9 and 2.3 cm y?1, representing average sediment delivery rates from the watersheds of between 0.6 and 2.0 t ha?1 y?1. These sediment delivery rates were in agreement with those established by other methods for similar catchments in the region. Past variations in sedimentation rates were identified and correlated with recorded history of anthropogenic disturbance. 137Cs and 210Pb methods are suitable for use in arid environments and can complement each other to increase reliability of erosion rate estimates. The abundance of stock ponds in southwestern USA presents an opportunity to quantify historic erosion and sediment transfer dynamics in areas that have not been well studied or instrumented. Published 2016. This article is a U.S. Government work and is in the public domain in the USA  相似文献   

11.
Accurate runoff and soil erosion modeling is constrained by data availability, particularly for physically based models such as OpenLISEM that are data demanding, as the processes are calculated on a cell‐by‐cell basis. The first decision when using such models is to select mapping units that best reflect the spatial variability of the soil and hydraulic properties in the catchment. In environments with limited data, available maps are usually generic, with large units that may lump together the values of the soil properties, affecting the spatial patterns of the predictions and output values in the outlet. Conversely, the output results may be equally acceptable, following the principle of equifinality. To studyhow the mapping method selected affects the model outputs, four types of input maps with different degrees of complexity were created: average values allocated to general soil map units (ASG1), average values allocated to detailed map units (ASG2), values interpolated by ordinary kriging (OK) and interpolated by kriging with external drift (KED). The study area was Ribeira Seca, a 90 km2 catchment located in Santiago Island, Cape Verde (West Africa), a semi‐arid country subject to scarce but extreme rainfall during the short tropical summer monsoon. To evaluate the influence of rainfall on runoff and erosion, two storm events with different intensity and duration were considered. OK and KED inputs produced similar results, with the latter being closer to the observed hydrographs. The highest soil losses were obtained with KED (43 ton ha? 1 for the strongest event). To improve the results of soil loss predictions, higher accurate spatial information on the processes is needed; however, spatial information of input soil properties alone is not enough in complex landscapes. The results demonstrate the importance of selecting the appropriate mapping strategy to obtain reliable runoff and erosion estimates. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
An excess of fine sediment (grain size <2 mm) supply to rivers leads to reservoir siltation, water contamination and operational problems for hydroelectric power plants in many catchments of the world, such as in the French Alps. These problems are exacerbated in mountainous environments characterized by large sediment exports during very short periods. This study combined river flow records, sediment geochemistry and associated radionuclide concentrations as input properties to a Monte Carlo mixing model to quantify the contribution of different geologic sources to river sediment. Overall, between 2007 and 2009, erosion rates reached 249 ± 75 t km?2 yr?1 at the outlet of the Bléone catchment, but this mean value masked important spatial variations of erosion intensity within the catchment (85–5000 t km?2 yr?1). Quantifying the contribution of different potential sources to river sediment required the application of sediment fingerprinting using a Monte Carlo mixing model. This model allowed the specific contributions of different geological sub‐types (i.e. black marls, marly limestones, conglomerates and Quaternary deposits) to be determined. Even though they generate locally very high erosion rates, black marls supplied only a minor fraction (5–20%) of the fine sediment collected on the riverbed in the vicinity of the 907 km2 catchment outlet. The bulk of sediment was provided by Quaternary deposits (21–66%), conglomerates (3–44%) and limestones (9–27%). Even though bioengineering works conducted currently to stabilize gullies in black marl terrains are undoubtedly useful to limit sediment supply to the Bléone river, erosion generated by other substrate sources dominated between 2007 and 2009 in this catchment. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
River incision is fundamental in shaping the Earth's surface. In mountainous regions with steep river beds, fluvial bedrock erosion by bedload transport is an important mechanism forming channels. However, there are only a few complete field datasets that can be used to improve process understanding and evaluate erosion models, especially at the process scale. To provide a simultaneous dataset of hydraulics, bedload transport and bedrock erosion at high temporal and spatial resolution, a new measuring device has been installed in the Erlenbach, a gauged stream in the Swiss Pre‐Alps. In this stream, bedload transport rates can be calculated from surveying deposits and from geophone plate sensors and bedload transport samples can be taken directly by an automated moving basket system. To measure bedrock erosion rates simultaneously, two natural stone slabs were mounted flush with the channel bed in a steel frame hosting various measurement devices. Force sensors below the slabs record normal stress and shear stress. At‐a‐point erosion rates on the slab surfaces are continuously measured at sub‐millimetre precision at three locations on each slab. In addition, the slab topography is monitored following erosive flood events. In this article (i) the ‘erosion scale’ device is described, (ii) data resolution and data quality is assessed by means of tests and event data, and (iii) the first transport event is discussed. The erosion scales are confirmed to provide data at high spatio‐temporal resolution for process analysis. The preliminary data show evidence for the tools effect in bedrock erosion. The bedrock slabs can be exchanged to obtain measurements for catchments with different lithologies for comparison. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
Sediment production, transport and yield were quantified over various timescales in response to rainfall and runoff within an alluvial gully (7 · 8 ha), which erodes into dispersible sodic soils of a small floodplain catchment (33 ha) along the Mitchell River, northern Australia. Historical air photographs and recent global positioning system (GPS) surveys and LiDAR data documented linear increases in gully area and volume, indicating that sediment supply has been relatively consistent over the historic period. Daily time lapse photography of scarp retreat rates and internal erosion processes also demonstrated that erosion from rainfall and runoff consistently supplied fine washload (< 63 µm) sediment in addition to coarse lags of sand bed material. Empirical measurements of suspended sediment concentrations (10 000 to >100 000 mg/L) and sediment yields (89 to 363 t/ha/yr) were high for both Australian and world data. Total sediment yield estimated from empirical washload and theoretical bed material load was dominated by fine washload (< 63 µm). A lack of hysteresis in suspended sediment rating curves, scarp retreat and sediment yield correlated to rainfall input, and an equilibrium channel outlet slope supported the hypothesis that partially or fully transport‐limited conditions predominated along the alluvial gully outlet channel. This is in contrast to sediment supply‐limited conditions on uneroded floodplains above gully head scarps. While empirical data presented here can support future modelling efforts to predict suspended sediment concentration and yield under the transport limiting situations, additional field data will also be needed to better quantify sediment erosion and transport rates and processes in alluvial gullies at a variety of spatial and temporal scales. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
It is widely recognized nowadays that there are at least two different phases of bedload sediment transport in gravel‐bed rivers. However, the transition between these phases is still poorly or subjectively defined, especially at bends in rivers, where cross‐stream sediment transport can strongly influence changes in the texture of the transported sediment. In this paper, we use piecewise models to identify objectively, at two points in the cross‐section of a river bend, the discharge at which the transition between bedload transport phases occurs. Piecewise models were applied to a new bedload data set collected during a wide range of discharges while analysing the associated changes in sediment texture. Results allowed the identification of two well‐differentiated phases of sediment transport (phase I and phase II), with a breakpoint located around bankfull discharge. Associated with each phase there was a change in bedload texture. In phase I there was non‐dominance in the transport of fine or coarse fractions at a particular sampling point; but in phase II bedload texture was strongly linked to the position of the sampling point across the channel. In this phase, fine particles tended to be transported to the inner bank, while coarse sizes were transferred throughout the middle parts of the channel. Moreover, bedload texture at the inner sampling point became bimodal while the transport of pebble‐sized particles was increasing in the central parts of the river channel. It is suggested that this general pattern may be related both to secondary currents, which transfer finer particles from the outer to the inner bank, and to the progressive dismantling of the riverbed surface layer. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   

16.
Despite a growing interest in the sediment dynamics of dryland rivers, most research has been based on ephemeral streams in endogenic hydrological systems (runoff and sediment transport determined by local precipitation). Less attention, however, has been paid to allogenic and perennial dryland rivers. Here, we report a case study on the suspended sediment dynamics of the Tarim River, an allogenic and perennial river flowing in a very arid environment in China, based on mean daily discharge and mean daily suspended sediment concentration (SSC) over the last 5 decades (1960–2011). Results reveal that discharge and SSCs are predominantly low and have distributions with large positive skewness. The SSC–discharge relationships can be fairly well generalized by power functions, with quite large scatter at extreme (low and high) flow conditions. Marked temporal and spatial variations were observed in the effective discharge for sediment transport. The frequency of the effective discharge ranged from 0.5% to 2% (or an average flow duration of 2–7 days/year), implying that moderate to high flows play an important role in sediment transport. The sediment rating curves show strong hysteresis effects, with 3 types of hysteresis loops observed, clockwise (the most predominant), anticlockwise, and figure of eight. The high potential for bank collapse near the peak and falling limb of the flood hydrograph is the major cause of anticlockwise and figure‐of‐eight hysteresis loops.  相似文献   

17.
A tracer study performed on a 3 km long reach of the Danube River in Austria is presented. Forty artificial stones of three different sizes (intermediate b‐axis: 25 mm, 40 mm, 70 mm) were produced and a coded radio acoustic transmitter was implanted. The measurement system had to be improved to be applicable to large rivers with water depths up to 12 m. The positions of the stones were observed approximately once a week, depending on hydrology, over a period of at least one year by radio‐tracking from a boat, including a 15 year flood event. Transport paths and velocities, as well as the incipient motion of bedload transport, could be monitored for the first time on a large gravel‐bed river. The particle paths were found to be mostly bankline‐parallel, even though the stones passed a 30° river bend. The median of the transverse particle displacement was found to be 4% of the longitudinal displacement. Calculations considering both transverse slope and transverse flow velocities showed transverse transport to be 6·6% of the longitudinal transport indicating that marginal lateral transport is mainly influenced by morphology. A three‐dimensional (3D) numerical model using a stochastic particle tracing approach was validated with the data, indicating that the observed positions are well reproduced by the model. Within the observation period, 74% of all stones passed the reach. With more than 1000 detections, particle transport could be characterized by a mean travel velocity of about 10 m per day (variable for the different grain sizes); single tracer stones were transported up to 1000 m during a single flood event. Size‐selective behaviour could be shown and the incipient motion of the large 70 mm gravel was detected at lower discharges than predicted by commonly used uniform bedload transport formulae. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
An Erratum has been published for this article in Earth Surface Processes and Landforms 29(13) 2004, 1707. In the semi‐arid Arroyo Chavez basin of New Mexico, a 2·28 km2 sub‐basin of the Rio Puerco, we contrasted short‐term rates (3 years) of sediment yield measured with sediment traps and dams with long‐term, geologic rates (~10 000 years) of sediment production measured using 10Be. Examination of erosion rates at different time‐scales provides the opportunity to contrast the human impact on erosion with background or geologic rates of sediment production. Arroyo Chavez is grazed and we were interested in whether differences in erosion rates observed at the two time‐scales are due to grazing. The geologic rate of sediment production, 0·27 kg m?2 a?1 is similar to the modern sediment yields measured for geomorphic surfaces including colluvial slopes, gently sloping hillslopes, and the mesa top which ranged from 0·12 to 1·03 kg m?2 a?1. The differences between modern sediment yield and geologic rates of sediment production were most noticeable for the alluvial valley ?oor, which had modern sediment yields as high as 3·35 kg m?2 a?1. The hydraulic state of the arroyo determines whether the alluvial valley ?oor is aggrading or degrading. Arroyo Chavez is incised and the alluvial valley ?oor is gullied and piped and is a source of sediment. The alluvial valley ?oor is also the portion of the basin most modi?ed by human disturbance including grazing and gas pipeline activity, both of which serve to increase erosion rates. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

19.
This paper investigates temporal variations in fluxes of peat and other sediment in the catchment of March Haigh Reservoir, West Yorkshire. Long‐term estimates of sediment yield were derived from a study of reservoir sediments. Magnetic properties were used to correlate ten cores to a master profile dated using 210Pb and 137Cs. A 14C date suggests that most of the organic component of the sediment is allochthonous and derived from peat eroded from the catchment. Organic sediment yields suggest low catchment erosion rates between 1838 and 1963. Blanket peat erosion increased significantly after 1963, and peaked between 1976 and 1984. Estimates of total sediment yield range between 2 and 28 t km?2 a?1. These yields are significantly lower than those from some previous studies examining reservoir sedimentation in other blanket peat‐covered catchments. The low yield estimates may be due to relatively low rates of erosion in the basin, but may also be partly explained by maintenance of silt traps during the early life of the reservoir and removal of sediment by scouring. Sedimentation within the reservoir is spatially variable, and bathymetry and sediment source appear to be the dominant controls on sedimentation patterns within the reservoir. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

20.
The headwaters of mountainous, discontinuous permafrost regions in north‐eastern Mongolia are important water resources for the semi‐arid country, but little is known about hydrological processes there. Run‐off generation on south‐facing slopes, which are devoid of permafrost, has so far been neglected and is totally unknown for areas that have been affected by recent forest fires. To fill this knowledge gap, the present study applied artificial tracers on a steppe‐vegetated south‐facing and on two north‐facing slopes, burned and unburned. Combined sprinkling and dye tracer experiments were used to visualize processes of infiltration and water fluxes in the unsaturated zone. On the unburned north‐facing slope, rapid and widespread infiltration through a wet organic layer was observed down to the permafrost. On the burned profile, rapid infiltration occurred through a combusted organic and underlying mineral layer. Stained water seeped out at the bottom of both profiles suggesting a general tendency to subsurface stormflow (SSF). Ongoing SSF could directly be studied 24 h after a high‐intensity rainfall event on a 55‐m hillslope section in the burned forest. Measurements of water temperature proved the role of the permafrost layer as a base horizon for SSF. Repeated tracer injections allowed direct insights into SSF dynamics: A first injection suggested rather slow dispersive subsurface flow paths; whereas 18 h later, a second injection traced a more preferential flow system with 20 times quicker flow velocities. We speculate that these pronounced SSF dynamics are limited to burned slopes where a thermally insulating organic layer is absent. On three south‐facing soil profiles, the applied tracer remained in the uppermost 5 cm of a silt‐rich mineral soil horizon. No signs of preferential infiltration could be found, which suggested reduced biological activity under a harsh, dry and cold climate. Instead, direct observations, distributed tracers and charcoal samples provided evidence for the occurrence of overland flow. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号