首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Concentration–discharge relationships have been widely used as clues to the hydrochemical processes that control runoff chemistry. Here we examine concentration–discharge relationships for solutes produced primarily by mineral weathering in 59 geochemically diverse US catchments. We show that these catchments exhibit nearly chemostatic behaviour; their stream concentrations of weathering products such as Ca, Mg, Na, and Si typically vary by factors of only 3 to 20 while discharge varies by several orders of magnitude. Similar patterns are observed at the inter‐annual time scale. This behaviour implies that solute concentrations in stream water are not determined by simple dilution of a fixed solute flux by a variable flux of water, and that rates of solute production and/or mobilization must be nearly proportional to water fluxes, both on storm and inter‐annual timescales. We compared these catchments' concentration–discharge relationships to the predictions of several simple hydrological and geochemical models. Most of these models can be forced to approximately fit the observed concentration–discharge relationships, but often only by assuming unrealistic or internally inconsistent parameter values. We propose a new model that also fits the data and may be more robust. We suggest possible tests of the new model for future studies. The relative stability of concentration under widely varying discharge may help make aquatic environments habitable. It also implies that fluxes of weathering solutes in streams, and thus fluxes of alkalinity to the oceans, are determined primarily by water fluxes. Thus, hydrology may be a major driver of the ocean‐alkalinity feedback regulating climate change. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
Plots of solute concentration against discharge have been used to relate stream hydrochemical variations to processes of flow generation, using data collected at four streams in the Catskill Mountains, New York, during the Episodic Response Project of the US Environmental Protection Agency. Results suggest that a two‐component system of shallow and deep saturated subsurface flow, in which the two components respond simultaneously during hydrologic events, may be applicable to the study basins. Using a large natural sea‐salt sodium input as a tracer for precipitation, it is argued that an additional distinction can be made between pre‐event and event water travelling along the shallow subsurface flow path. Pre‐event water is thought to be displaced by infiltrating event water, which becomes dominant on the falling limb of the hydrograph. Where, as appears to be the case for sulfate, a solute equilibrates rapidly within the soil, the pre‐event–event water distinction is unimportant. However, for some solutes there are clear and consistent compositional differences between water from the two sources, evident as a hysteresis loop in concentration–discharge plots. Nitrate and acidity, in particular, appear to be elevated in event water following percolation through the organic horizon. Consequently, the most acidic, high nitrate conditions during an episode generally occur after peak discharge. A simple conceptual model of episode runoff generation is presented on the basis of these results. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

3.
For many basins, identifying changes to water quality over time and understanding current hydrologic processes are hindered by fragmented and discontinuous water‐quality and hydrology data. In the coal mined region of the New River basin and Indian Fork sub‐basin, muted and pronounced changes, respectively, to concentration–discharge (C–Q) relationships were identified using linear regression on log‐transformed historical (1970s–1980s) and recent (2000s) water‐quality and streamflow data. Changes to C–Q relationships were related to coal mining histories and shifts in land use. Hysteresis plots of individual storms from 2007 (New River) and the fall of 2009 (Indian Fork) were used to understand current hydrologic processes in the basins. In the New River, storm magnitude was found to be closely related to the reversal of loop rotation in hysteresis plots; a peak‐flow threshold of 25 cubic meters per second (m3/s) segregates hysteresis patterns into clockwise and counterclockwise rotational groups. Small storms with peak flow less than 25 m3/s often resulted in dilution of constituent concentrations in headwater tributaries like Indian Fork and concentration of constituents downstream in the mainstem of the New River. Conceptual two or three component mixing models for the basins were used to infer the influence of water derived from spoil material on water quality. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
Riverine solute versus discharge (C–Q) relationships provide information about the magnitude and dynamics of material fluxes from landscapes. We analysed long‐term patterns of C–Q relationships for 44 rivers in Florida across a suite of geogenic, nutrient, and organic solutes and investigated land cover, watershed size, and surficial geology as controls on these patterns. Solute concentrations generally exhibited far less variability than did discharge, with coherent solute‐specific behaviours repeated across watersheds. Geogenic solutes generally diluted with increasing discharge, whereas organic solutes generally enriched; patterns for nutrients were highly variable across watersheds, but on average exhibited chemostasis. Despite strong evidence of both geologic and land cover controls on solute flow‐weighted concentrations, these variables were poor predictors of C–Q slopes (β) or relative coefficients of variation (CVC:CVQ). CVC:CVQ generally increased with watershed size, and wetland area appeared to influence C–Q patterns for base cations and organic solutes. Perhaps most importantly, we observed significant slope breaks in C–Q association in approximately half of our observations, challenging the generality of using single power functions to describe catchment solute export patterns. For all solutes except phosphorus (P), C–Q slopes decreased above statistically identified breaks (slopes for P increased), with breaks consistently at or near median flow (i.e., 50% flow exceedance probability). This common pattern significantly impacts solute load estimates; failing to account for slope breaks overestimates nitrate and total organic carbon loads as much as 125% and underestimates P loads as much as 35%. In addition to challenging generic power‐law characterization of C–Q relationships for these coastal plain rivers, and exploring the load estimate consequences thereof, our study supports emerging insights about watershed hydrochemical behaviours across a wide array of solutes.  相似文献   

5.
The term connectivity has emerged as a powerful concept in hydrology and geomorphology and is emerging as an innovative component of catchment erosion modeling studies. However, considerable confusion remains regarding its definition and quantification, especially as it relates to fluvial systems. This confusion is exacerbated by a lack of detailed case studies and by the tendency to treat water and sediment separately. Extreme flood events provide a useful framework to assess variability in connectivity, particularly the connection between channels and floodplains. The catastrophic flood of January 2011 in the Lockyer valley, southeast Queensland, Australia provides an opportunity to examine this dimension in some detail and to determine how these dynamics operate under high flow regimes. High resolution aerial photographs and multi‐temporal LiDAR digital elevation models (DEMs), coupled with hydrological modeling, are used to assess both the nature of hydrologic and sedimentological connectivity and their dominant controls. Longitudinal variations in flood inundation extent led to the identification of nine reaches which displayed varying channel–floodplain connectivity. The major control on connectivity was significant non‐linear changes in channel capacity due to the presence of notable macrochannels which contained a > 3000 average recurrence interval (ARI) event at mid‐catchment locations. The spatial pattern of hydrological connectivity was not straight‐forward in spite of bankfull discharges for selected reaches exceeding 5600 m3 s–1. Data indicate that the main channel boundary was the dominant source of sediment while the floodplains, where inundated, were the dominant sinks. Spatial variability in channel–floodplain hydrological connectivity leads to dis‐connectivity in the downstream transfer of sediments between reaches and affected sediment storage on adjacent floodplains. Consideration of such variability for even the most extreme flood events, highlights the need to carefully consider non‐linear changes in key variables such as channel capacity and flood conveyance in the development of a quantitative ‘connectivity index’. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
Flow dynamics in a bedrock-influenced river system, the Sabie River, South Africa, have been found to be significantly different from those in temperate alluvial systems. The lack of lateral water connectivity leads to multiple bedrock distributaries with varying water surface elevations across a cross-section. Distributary activation is dependent on upstream breaching of bedrock barriers between distributaries by rising discharge. Where measurement of individual stage–discharge relationships in each distributary was not possible, a ‘Multiple Stage’ model was developed to predict hydraulic conditions in each distributary, using a single measured rating curve and knowledge of individual distributary water surface elevations at a low flow. Use of the ‘Multiple Stage’ model has enabled realistic prediction of channel geometry and hydraulic variables, that accounts for the different stages found in bedrock-influenced sections, yet is not prohibitively data intensive. Predicted ‘Multiple Stage’ results for maximum depth and velocity demonstrate the vast improvement on modelling flow dynamics, when compared to the conventional assumption of a single stage representing the whole cross-section. © 1998 John Wiley & Sons, Ltd.  相似文献   

7.
8.
This study analyses archival discharge and sediment concentration data (1965–1988), monitored by Water Survey of Canada, to examine suspended sediment transport rates and their relationship to effective discharge (Qeff) based on daily discharge duration curves. Effective discharge was determined as the mid‐point of the discharge class transporting the greatest portion of the suspended sediment load (hence class‐based Qeff). Results showed that the concept of effective discharge was applicable to the Fraser River basin where the average class‐based Qeff occurred during 8·4% of the study period with individual values ranging from 0·03% to 16·1%. The durations of effective discharge classes ranged from 0·02% to 19·6% while the transport of 50% of total sediment loads ranged from 3% to 22% with an average of 14% of the time. Equations for predicting the class‐based Qeff in the Fraser River basin from bankfull discharge and drainage area are presented. The observed variations among stations in sediment‐discharge regimes based on subjectively selected 20 discharge classes, seem to reflect the influence of sediment controlling factors such as geology, physiography, catchment size and land use practice in the basin. Future directions of research on applications of the effective discharge concept are explored. As a solution to the problem of lack of an objective method for determining the effective discharge, the effective discharge should be determined from event based assessments of sediment transport (event‐based Qeff), avoiding any subjectivity in the selection of number of discharge classes used for its determination. In conclusion, it is proposed that continued use of the conventional method of determining Qeff should cease. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

9.
Sensitivity analysis of the hydrological behaviour of basins has mainly focused on the correlation between streamflow and climate, ignoring the uncertainty of future climate and not utilizing complex hydrological models. However, groundwater storage is affected by climatic change and human activities. The streamflow of many basins is primarily sourced from the natural discharge of aquifers in upstream regions. The correlation between streamflow and groundwater storage has not been thoroughly discussed. In this study, the storage–discharge sensitivity of 22 basins in Taiwan was investigated by means of daily streamflow and rainfall data obtained over more than 30 years. The relationship between storage and discharge variance was evaluated using low‐flow recession analysis and a water balance equation that ignores the influence of rainfall and evapotranspiration. Based on the obtained storage–discharge sensitivity, this study explored whether the water storage and discharge behaviour of the studied basins is susceptible to climate change or human activities and discusses the regional differences in storage–discharge sensitivity. The results showed that the average storage–discharge sensitivities were 0.056 and 0.162 mm?1 in the northern and southern regions of Taiwan, respectively. In the central and eastern regions, the values were both 0.020 mm?1. The storage–discharge sensitivity was very high in the southern region. The regional differences in storage–discharge sensitivity with similar climate conditions are primarily due to differences in aquifer properties. Based on the recession curve, other factors responsible for these differences include land utilization, land coverage, and rainfall patterns during dry and wet seasons. These factors lead to differences in groundwater recharge and thus to regional differences in storage–discharge sensitivity.  相似文献   

10.
The objective of this case study was to calibrate and verify detailed transport model of sediment in a 4‐kilometre stretch of the middle Elbe floodplains in Germany. The hydraulic RMA‐2 model and the SED2d‐WES sediment transport model were used. These models were calibrated and validated by detailed measurement of the surface water elevations, the velocities at six profiles, and the suspended sediment concentration and deposition (by means of 10 sediment traps). The flow was modelled for three steady‐state discharges. The surface water elevations were calculated to an accuracy of less than 5 cm compared to measurements. The differences between the calculated and measured velocities were with one exception smaller than 0.2 m/s (measured range 0.1…?1.0 m/s). An average sediment input of 35 g/(m2 d) was calculated for the flood event studied. The highest calculated sedimentation rates of 700 g/(m2 d) (dry density 90 kg/m3) occurred in quiescent zones and abandoned channels. Twenty‐five percent of the deposited sediment settled in the quiescent zones (which only account for 13% of the area). The most sensitive parameters of the sediment transport model were the settling velocity and critical shear stress. The modelling techniques used allowed sediment deposition on the floodplains of the Elbe to be realistically depicted.  相似文献   

11.
Before 1900, the Missouri–Mississippi River system transported an estimated 400 million metric tons per year of sediment from the interior of the United States to coastal Louisiana. During the last two decades (1987–2006), this transport has averaged 145 million metric tons per year. The cause for this substantial decrease in sediment has been attributed to the trapping characteristics of dams constructed on the muddy part of the Missouri River during the 1950s. However, reexamination of more than 60 years of water‐ and sediment‐discharge data indicates that the dams alone are not the sole cause. These dams trap about 100–150 million metric tons per year, which represent about half the decrease in sediment discharge near the mouth of the Mississippi. Changes in relations between water discharge and suspended‐sediment concentration suggest that the Missouri–Mississippi has been transformed from a transport‐limited to a supply‐limited system. Thus, other engineering activities such as meander cutoffs, river‐training structures, and bank revetments as well as soil erosion controls have trapped sediment, eliminated sediment sources, or protected sediment that was once available for transport episodically throughout the year. Removing major engineering structures such as dams probably would not restore sediment discharges to pre‐1900 state, mainly because of the numerous smaller engineering structures and other soil‐retention works throughout the Missouri–Mississippi system. Published in 2009 by John Wiley & Sons, Ltd.  相似文献   

12.
The nature of the water–air temperature relationship, and its moderation by discharge, were investigated for catchments ranging in size from 2·1 to 601 km2 in the Exe basin, Devon, UK and for data relating to hourly, daily and weekly time bases. The sensitivity and explanatory power of simple water–air temperature regression models based on hourly data were improved by incorporation of a lag, which increased with catchment size, although relationships became more sensitive and less scattered as the time base of data increased from hourly to weekly mean values. Significant departures from linearity in water–air temperature relationships were evident for hourly, but not for daily mean or weekly mean, data. A clear tendency for relationships between water and air temperatures to be stronger and more sensitive for flows below median levels was apparent, and multiple regression analysis also revealed water temperature to be inversely related to discharge for all catchments and time‐scales. However, discharge had a greater impact in accounting for water temperature variation at shorter time‐scales and in larger catchments. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

13.
Environmental isotopes (2H or D, 18O, 3H), along with geology, hydrochemistry and in situ physicochemical parameters (EC, T, DO, pH) were employed to study surface water (reservoir, lake)–groundwater (spring) relationships at (1) Nagewadi, a minor irrigation project in the State of Maharashtra, Western India; (2) Kanhirapuzha reservoir in the State of Kerala, Southern India and (3) Ghatghar Pumped Storage Hydroelectric Project in the State of Maharashtra, Western India for the purpose of understanding the seepage/leakage and its associated problems. The studies concluded that the springs found downstream of the Nagewadi project originate from the reservoir and not from the abutments or shallow aquifers. The Kanhirapuzha reservoir receives a substantial base‐flow component compared to riverine inputs. The reason for the water‐logging problem at a nearby downstream village during the non‐summer periods is due to the change in the upstream groundwater flow direction under reservoir filling conditions and is not due to reservoir leakage. Most of the springs in the approach tunnel to the underground power house of the Ghatghar Project originate from the lower reservoir and not from the upper reservoir or the overburden rock matrix. The above case studies illustrate the diversity of environmental isotope applications in surface water (reservoir, lake)–groundwater (spring) relationships related to sustainability of hydro‐projects. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

14.
Suspended sediment is a major source of pollution in irrigation‐dominated watersheds. However, little is known about the process and mechanisms of suspended sediment transport in drain channels directly connected to agricultural fields. This paper explains sediment dynamics using averaged 5 min flow discharge Q (m3 s?1) and suspended sediment concentration C (mg l?1) collected during one crop season in a small catchment containing a first‐order drain channel and its connected six agricultural fields within the Salton Sea watershed. The statistical properties and average trends of Q and C were investigated for both early (i.e. November) and late (i.e. January) stages of a crop season. Further in‐depth analysis on sediment dynamics was performed by selecting two typical single‐field irrigation events and two multiple‐field irrigation events. For each set of irrigation events, the process of suspended sediment transport was revealed by examining hydrograph and sediment graph responses. The mechanisms underlying suspended sediment transport were investigated by analysing the types of corresponding hysteresis loop. Finally, sediment rating curves for both hourly and daily data at early and late stages and for the entire crop season were established to seek possible sediment‐transport predictive model(s). The study suggests that the complicated processes of suspended sediment transport in irrigation‐dominated watersheds require stochastic rather than deterministic forecasting. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

15.
Evidence from a field study on wind flow and sediment transport across a beach–dune system under onshore and offshore conditions (including oblique approach angles) indicates that sediment transport response on the back‐beach and stoss slope of the foredune can be exceedingly complex. The upper‐air flow – measured by a sonic anemometer at the top of a 3·5 m tower located on the dune crest – is similar to regional wind records obtained from a nearby meteorological station, but quite different from the near‐surface flow field measured locally across the beach–dune profile by sonic anemometers positioned 20 cm above the sand surface. Flow–form interaction at macro and micro scales leads to strong modulation of the near‐surface wind vectors, including wind speed reductions (due to surface roughness drag and adverse pressure effects induced by the dune) and wind speed increases (due to flow compression toward the top of the dune) as well as pronounced topographic steering during oblique wind approach angles. A conceptual model is proposed, building on the ideas of Sweet and Kocurek (Sedimentology 37 : 1023–1038, 1990), Walker and Nickling (Earth Surface Processes and Landforms 28 : 111–1124, 2002), and Lynch et al. (Earth Surface Processes and Landforms 33 : 991–1005, 2008, Geomorphology 105 : 139–146, 2010), which shows how near‐surface wind vectors are altered for four regional wind conditions: (a) onshore, detached; (b) onshore‐oblique, attached and deflected; (c) offshore, detached; and (d) offshore‐oblique, attached and deflected. High‐frequency measurements of sediment transport intensity during these different events demonstrate that predictions of sediment flux using standard equations driven by regional wind statistics would by unreliable and misleading. It is recommended that field studies routinely implement experimental designs that treat the near‐surface wind field as comprising true vector quantities (with speed and direction) in order that a more robust linkage between the regional (upper air) wind field and the sediment transport response across the beach–dune profile be established. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
Surface water quality can vary a lot with fluctuating discharge during a Rainfall – runoff event. This paper uses a set of hydrological and hydrochemical variables to explain concentration–discharge loops and hysteresis of ${\rm NO}_{3}^{- } $ , ${\rm NH}_{4}^{ + } $ and total suspended solids in a brook dewatering a small upland agricultural catchment in the Czech Republic. Our study is based on data collected by a continuous monitoring approach provided by an automatic ISCO sampler both from snow thawing and rainfall – runoff events. Methods of correlation, regression and principal component analysis (PCA) were employed to reveal possible relationships among the variables. For ${\rm NO}_{3}^{- } $ and ${\rm NH}_{4}^{ + } $ , we found several types of concentration–discharge loops due to the loop rotation direction and also the loop curvature shape, in mutual combinations, no matter which type of a hydrological event it was related to. PCA indicated that ${\rm NO}_{3}^{- } $ loops correlated mostly with the length of a rising hydrograph limb and with the slope of the initial phase of a falling hydrograph limb, 5‐day amount of precipitation and runoff coefficient. In case of ${\rm NH}_{4}^{ + } $ , the concentrations usually increased with elevated discharge, whereas PCA did not detect any closer linkages. For suspended solids, an unambiguous positive monotonic relationship was discovered. Although no definite pattern was found, this study showed the necessity of a continuous water quality monitoring system as an approach for capturing and understanding relationships between solute concentrations and runoff formation for tracing and modelling catchment pollution sources and describing transport processes.  相似文献   

17.
Early Permian (272 ± 2 Ma) diabase dikes from the Linxi area in central Inner Mongolia of NE China have high MgO (10.4 – 12.3 wt%), Cr (301 – 448 ppm) and Ni (167 – 233 ppm) concentrations, and show enrichments in large ion lithophile element (LILE) and light rare earth elements (REE) but depletions in high field strength element (HFSE, e.g., Nb and Ta), with depleted mantle‐type Sr [87Sr/86Sr (i) = 0.70315 – 0.70362], Nd [εNd (t) = +6.8 – +7.4], Pb [206Pb/204Pb (i) = 18.10 – 18.16] and zircon Hf [εHf (t) = +14.7 – +19.1] isotopic compositions, but slightly higher zircon δ18O (5.2 – 6.0 ‰ with an average of 5.7 ‰) than normal mantle. The combined geochemical data indicate their derivation from a depleted mantle metasomatized by recycled crustal component. Elemental and isotopic modeling results suggest that the primary magma was produced through 5 % to 10 % melting of a depleted mantle, which contained approximately 1 % sediment fluid released from the subducted paleo‐Asian Ocean. Considering the widespread distribution of contemporaneous mafic rocks across the central Inner Mongolia, which show REE patterns from E‐MORBs to normal MORBs, we propose a petrogenetic link between the Early Permian mafic magmatism and a back‐arc extension in response to northward subduction of the paleo‐Asian Ocean. The Permian mafic magmatism and the new age constraints from the metamorphic and sedimentary records in this area tend to indicate the ultimate closure of the paleo‐Asian Ocean by the end of Paleozoic.  相似文献   

18.
For the southern branch of the Rhine–Meuse estuary, The Netherlands, a two-dimensional horizontal suspended sediment transport model was constructed in order to evaluate the complicated water quality management of the area. The data needed to calibrate the model were collected during a special field survey at high river runoff utilizing a number of techniques: (1) turbidity probes were used to obtain suspended sediment concentration profiles; (2) air-borne remote sensing video recordings were applied in order to obtain information concerning the spatial distribution of the suspended sediment concentration; (3) an acoustic probe (ISAC) was used to measure cohesive bed density profiles and (4) an in situ underwater video camera (VIS) was deployed to collect video recordings of the suspended sediment. These VIS data were finally processed to fall velocity and diameter distributions and were mainly used to improve insight into the relevant transport processes, indicating significant erosion of sand from the upstream Rhine branch. For quantitative calibration of the model, the data from the turbidity profiles were used. Sedimentation and erosion were modelled according to Krone and Partheniades. The model results showed a good overall fit to the measurements, with a mean absolute error of 18 per cent (standard fault = 1 per cent), corresponding to concentrations of about 0·020 (upstream) to 0·005 kg m−3 (downstream). The overall correlation between observed and simulated suspended sediment concentrations was 0·85. The remote sensing video recordings were used for a qualitative calibration of the model. The distribution pattern of the suspended sediment on these photos was reproduced quite well by the model. However, a more accurate calibration technique is needed to enable the use of aerial remote sensing as a quantitative calibration method. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

19.
Sequences of arti?cial steps are sometimes used to reproduce the natural step–pool morphology of high‐gradient streams. The depth, length and shape of the scour holes in gravel‐bed rivers can be predicted reasonably using recently developed formulae. However, the properties of the scour holes can sometimes be affected by the distance between structures. This effect is called ‘geometrical interference’ and leads to a reduction of the scour hole compared to its potential size. Geometrical interference may occur in sequences of arti?cial steps in high‐gradient torrents, where structures are sometimes built at distances of a few tens of metres apart, but may also apply to natural step–pool systems. In this paper, a series of tests have been conducted to determine the effect of bed sill spacing and sediment grading on the potential erosion by jets forming over the sills. A new formula is derived, applicable to high‐gradient streams (slope > 0·04), which can be applied to the special case of scour holes developed by interfering sills. Sediment size gradation, not accounted for in previous formulae, is found to have a signi?cant effect on the scour dimensions and is included in the new predictive formula. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

20.
Subsurface flow and heat transport near Freienbrink, NE Germany, was simulated in order to study groundwater–surface water exchange between a floodplains aquifer and a section of the lowland River Spree and an adjacent oxbow. Groundwater exfiltration was the dominant process, and only fast surface water level rises resulted in temporary infiltration into the aquifer. The main groundwater flow paths are identified based on a 3D groundwater flow model. To estimate mass fluxes across the aquifer–surface water interfaces, a 2D flow and heat transport modelling approach along a transect of 12 piezometers was performed. Results of steady‐state and transient water level simulations show an overall high accuracy with a Spearman coefficient ρ = 0.9996 and root mean square error (RMSE) = 0.008 m. Based on small groundwater flow velocities of about 10?7 to 10?6 ms?1, mean groundwater exfiltration rates of 233 l m?2 d?1 are calculated. Short periods of surface water infiltration into the aquifer do not exceed 10 days, and the infiltration rates are in the same range. The heat transport was modelled with slightly less accuracy (ρ = 0.8359 and RMSE = 0.34 °C). In contrast to the predominant groundwater exfiltration, surface water temperatures determine the calculated temperatures in the upper aquifer below both surface water bodies down to 10 m during the whole simulation period. These findings emphasize prevailing of heat conduction over advection in the upper aquifer zones, which seems to be typical for lowland streams with sandy aquifer materials and low hydraulic gradients. Moreover, this study shows the potential of coupled numerical flow and heat transport modelling to understand groundwater–surface water exchange processes in detail. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号