首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The article is dedicated to sedimentary rock basins. It is postulated that sedimentary rock basins represent an element of the Earth’s sedimentary shell characterized by the general thermobaric regime, type of fluidodynamics, and combination of epigenetic mineral resources. Fluidodynamic regimes of three types are recognized in the upper part of the crust: infiltration, elision, and exfiltration. The dominant type of fluidodynamics is reflected in the most widespread mineralogical-geochemical zonality and association of epigenetic mineral deposits. These properties allow us to define the infiltration and elision types of rock basin in the sedimentary shell. The structural features of different-type rock basins are characterized with the emphasis on their relations with geotectonics.  相似文献   

2.
Two Neoarchean supercontinents? Evidence from the Paleoproterozoic   总被引:10,自引:0,他引:10  
An unresolved question in Precambrian geology is the relationship between Archean crustal fragments that are now separated by younger orogens: were they once contiguous? Williams et al. (1991) proposed the name ‘Kenorland' for a speculative Neoarchean supercontinent comprising the Archean provinces in North America. Recently, a large number of ca. 2.5–2.0 Ga magmatic, metamorphic, detrital and xenocrystic ages have been reported from North America. We interpret that the wide geographic distribution and temporal spread of these ages may signify long-lived, regional-scale mantle upwelling, and anorogenic magmatic and metamorphic processes related to the protracted breakup of Kenorland. Breakup may have extended from ca. 2.5 to 2.1 Ga, culminating with dispersion of continental fragments at ca. 2.1–2.0 Ga. In North America, ca. 2.5–2.1 Ga intracratonic basin successions (e.g. Hurwitz Group) formed in the interior of Kenorland before dispersion, and passive margin sequences flanking the Superior Province (e.g. Huronian Supergroup) and the Wyoming Province (e.g. Snowy Pass Supergroup) defined the edges of Kenorland. Earliest Paleoproterozoic magmatic and sedimentary rocks, which include voluminous quartz arenites and glacigenic deposits, are consistent with a high-standing supercontinent and a mantle superplume. The Paleoproterozoic record from the Baltic and Siberian shields is similar to that of North America, suggesting inclusion in Kenorland. A slightly different record from the southern continents suggests a second, coexisting supercontinent that included the Zimbabwe, Kaapvaal, and Pilbara cratons, (‘Zimvaalbara' of I.G. Stanistreet), the São Francisco Craton, and possibly, cratonic blocks in India. Attenuation of this second supercontinent started earlier than in Kenorland (ca. 2.65 Ga) and was accompanied by high sea level and deposition of vast Lake Superior-type iron formations. Immediately thereafter, both supercontinents became emergent and were subject to global cooling and glaciation.  相似文献   

3.
从哥伦比亚超大陆裂解事件论古/中元古代的界限   总被引:3,自引:2,他引:1  
国际前寒武纪地层表中始终把古/中元古代的界线置于1. 6Ga,我国则一直将这一界线置于1. 8Ga。存在认识分歧的根本原因是对1. 8Ga前后时期地质事件及其性质的理解与认识的差异或偏颇。本文通过阐述1. 8~1. 6Ga期间地质事件及其性质,重点分析和讨论古/中元古代(界)界限的划分及相关地质事件的标志与意义。大量的地质资料显示,超大陆从1. 8~1. 75Ga开始裂解,形成一系列的陆内盆地,如北美(劳伦古陆)的Thelon盆地、澳大利亚北部的Leichhardt超级盆地、南美巴西圣弗兰西斯科盆地、华北南缘的熊耳裂谷盆地以及扬子地块西南缘的东川盆地等。在这些盆地形成的早期沉积了冲积扇相、河流相的碎屑岩,之后伴有较广泛的火山岩喷发,中晚期从河流相、湖相碎屑岩沉积过渡到浅海碳酸盐台地沉积,反映一个拉伸裂解的过程。在复原的哥伦比亚超大陆内,广泛分布有1. 78~1. 72Ga的非造山花岗岩,包括AMCG组合(斜长岩、纹长二长岩、紫苏花岗岩和花岗岩)、环斑花岗岩、A型花岗岩等,以及广泛分布的基性岩墙群。这些岩浆岩都反映了拉伸裂解的地球动力学背景。在1. 8~1. 6Ga,不论是沉积事件还是岩浆事件,绝大部分与超大陆的拉伸裂解有关,并未显示造山作用、大陆固结和克拉通化的特点,用固结纪来概括这一阶段地质事件的性质并不合适。哥伦比亚超大陆上的许多盆地在1. 6Ga左右经历了一次广泛的抬升,使沉积作用短时间间断,之后原有盆地继续发展,接受了更广泛的沉积,这种沉积作用可以一直延续到1. 4~1. 3Ga左右。与裂解有关的岩浆事件也以幕式方式从1. 78Ga一直断续持续到1. 4~1. 32Ga左右。从1. 8Ga(或1. 78Ga)到1. 4~1. 3Ga,不论是盆地的沉积事件还是与裂解有关的岩浆事件,基本是连续的。以1. 6Ga作为年代界线划分古/中元古代,人为地隔断了连续的沉积事件和岩浆事件,显然与"尽可能少地截断沉积作用、火成侵位或造山运动的主要序列"的前寒武纪地层划分原则相悖。连续的裂谷盆地沉积事件和非造山岩浆事件可以追溯到1. 8Ga(或1. 78Ga)。因此,我们建议将古/中元古代的界线置于1. 8Ga或1. 78Ga。考虑到裂谷作用的本质是在已有超大陆或克拉通的基础上盖层的发育过程,因此我们建议将~1. 8Ga或1. 78~1. 4Ga都归入盖层系。  相似文献   

4.
叶连俊 《地质科学》1977,12(3):210-218
地质工作者研究矿床的意义,不仅在于认识矿床的形成与组成,不仅在于说明矿床的存在状况,还在于深入矿床的本质,指出找矿预测的途径;结合生产斗争实践,为社会主义革命和社会主义建设服务。  相似文献   

5.
In the Archaean Murchison Province of Western Australia, granitoid batholiths and plutons that intruded into the ca. 2.7–2.8 Ga and ca. 3.0 Ga greenstone belts can be divided into three major suites. Suite I is a ca. 2.69 Ga monzogranite-granodiorite suite, which was derived from anatexis of old continental crust and occurs as syn-tectonic composite batholiths over the entire province. Suite II is a trondhjemite-tonalite suite (termed I-type) derived from partial melting of subducted basaltic crust, which intruded as syn- to late-tectonic plutons into the greenstone belts in the northeastern part of the province where most of the major gold deposits are situated. One of the Suite II trondhjemite plutons has a Pb−Pb isochron age of 2641±36 Ma, and one of the structurally youngest tonalite plutons has a minimum Pb−Pb isochron age of 2630.1±4.3 Ma. Suite III is a ca. 2.65–2.62 Ga A-type monzogranite-syenogranite suite which is most abundant in the largely unmineralised southwestern part of the province. Gold deposits in the province are mostly hosted in brittle-ductile shear zones, and were formed at a late stage in the history of metamorphism, deformation and granitoid emplacement. At one locality, mineralisation has been dated at 2636.8±4.2 Ma through a pyritetitanite Pb−Pb isochron. Lead and Sr isotope studies of granitoids and gold deposits indicate that, although most gold deposits have initial Pb isotope compositions most closely similar to those of Suite II intrusions, both Suite I and Suite II intrusions or their source regions could have contributed solutes to the ore fluids. These preliminary data suggest that gold mineralisation in the Murchison Province was temporally and spatially associated with Suite II I-type granitoids in the northeastern part of the province. This association is consistent with the concept that Archaean gold mineralisation was related to convergent-style tectonic settings, as generation of both Suite II I-type granitoids and hydrothermal ore fluids could have been linked to the dehydration and partial fusion of subducted oceanic crust, and old sialic crust or its anatectic products may also contribute solutes to the ore fluids. Integration of data from this study with other geological and radiogenic isotope constraints in the Yilgarn Block argue against direct derivation of gold ore fluids from specific I-type granitoid plutons, but favour a broad association with convergent tectonics and granitoid magmatism in the late Archaean.  相似文献   

6.
西西非地区蕴藏着丰富的矿产资源,尤其以产出众多大型超大型的铝土矿、铁矿、金矿、金刚石矿等著称,在全球占有重要地位。矿床集中分布在三个构造域内,形成于不同的成矿期:(1)太古宙马恩(Man)地盾和雷圭巴特(Reguibat)地盾、古元古界莱奥(Leo)地盾及凯涅巴(Kéniéba)和卡伊(Kayes)构造窗,主要成矿事件包括在2.5-2.3Ga形成了多个巨型铁矿床;几乎所有金矿、斑岩型铜矿、铅锌矿和沉积型锰矿都形成于2.2-2.1Ga;原生金刚石矿床形成于两个时间段,分别是2.2-2.0Ga左右和中生代。(2)泛非期和海西期活动带成矿域,主要成矿事件包括前寒武纪2.1Ga左右以及680Ma左右发生的铁氧化物铜金矿床(IOCG)成矿事件,以及新元古代沉积型铁矿和磷矿。(3)克拉通内盆地和海岸盆地带,包括新生代在中生代辉绿岩之上发生的铝土矿化作用,新近纪/第四纪形成的砂矿床、鲕状铁矿床和沉积型磷矿。西非地区的矿产分布规律与成矿时代、赋矿岩石、区域构造密切相关,不同矿种区域集中分布特征明显。根据已发现的铁矿、铝土矿、金矿、金刚石矿等主要经济矿产的分布,结合区域地质背景等因素,在西非克拉通南部划分了3个重要成矿区:(1)马恩太古宙地盾铁、金刚石巨型成矿区;(2)莱奥古中元古界地盾(包括凯涅巴构造窗)金矿等巨型成矿区;(3)博韦(Bove)新元古-古生代盆地铝土矿巨型成矿区。这些巨型成矿区也是西非地区最重要的矿产地和成矿远景区。  相似文献   

7.
桂西地区古美测区1:5万区域地质调查,基本查明了测区地层格架、岩浆岩分布及时代、主要构造形迹特征、矿产分布规律以及盆地充填演化历史,主要取得了如下4个方面的进展:(1)查明测区晚古生代.中三叠世具有多阶段继承性发展演化的特征,完整的记录了华力西一印支期由裂至聚发展演化过程;查明早泥盆世晚期一中晚泥盆世存在台地前缘斜坡一...  相似文献   

8.
Ch. Lyell’s works, the main work among which entitled Principles of Geology was published 180 years ago in 1830, created a new concept and laid the groundwork for modern geological science, methods for the study of geological processes and geological history based on the investigation of recent environments and processes. These propositions with natural corrections are also used in geological works at present. They have demonstrated persistence of the geological history and absence of global geological catastrophes. This fact was of great importance in science and ideology, because it changed basically the perception of the Earth’s nature and history based on the biblical world pattern.  相似文献   

9.
Ga是一种典型的稀有分散元素,主要产于铝土矿、闪锌矿及煤矿之中。最近,在广西东平地区下三叠统北泗组碳酸锰矿床中发现Ga高异常含量,w(Ga)介于5.16×10~(-6)~82.80×10~(-6)之间,平均为33.76×10~(-6),达到了Ga工业品位标准;锰矿层和围岩中w(Ga)平均分别为46.40×10~(-6)、19.31×10~(-6),高于国内外已报道的大部分锰矿床。文中根据北泗组碳酸锰矿床地球化学特征,揭示了该锰矿床为热水沉积;同时,结合现代大洋铁锰沉积有关Ga的最新报道,提出北泗组碳酸锰矿床中Ga的赋存与含锰矿物密切相关,其来源与海底热液活动有关。最后,文中还利用Mn/Fe-Ga、Co-Ga关系图判别了古代铁锰沉积的成因类型。  相似文献   

10.
http://www.sciencedirect.com/science/article/pii/S1674987113000297   总被引:1,自引:0,他引:1  
This paper compiles lithostratigraphic and geochronological data obtained for the Palaeoproterozoic glacial diamictite-bearing successions,and thereby provides insights into understanding the geological processes causing the Huronian Glaciation Event.The majority of evidence for appearances of this glaciation event can be related to the Kenorland supercontinent breakup,allied to significant atmospheric change,as well as blooms of biogeochemical oxygenic photosynthesis.In this paper,the Huronian Glaciation Event is constrained to have occurred synchronously during 2.29-2.25 Ga,accompanied by dramatic environmental changes characteristic of the Great Oxidation Event which includes the pre- 2.3 Ga hydrosphere oxidation and the post-2.3 Ga atmosphere oxygenation.  相似文献   

11.
The results of geological, structural, tectonic, and geoelectric studies of the dry basins in the Baikal Rift Zone and western Transbaikalia, combined under the term Baikal region, are integrated. Deformations of the Cenozoic sediments related to pulsing and creeping tectonic processes are classified. The efficiency of mapping of the fault-block structure of the territories overlapped by loose and poorly cemented sediments is shown. The faults mapped at the ground surface within the basins are correlated with the deep structure of the sedimentary fill and the surface of the crystalline basement, where they are expressed in warping and zones of low electric resistance. It is established that the kinematics of the faults actively developing in the Late Cenozoic testifies to the relatively stable regional stress field during the Late Pliocene and Quaternary over the entire Baikal region, where the NW-SE-trending extension was predominant. At the local level, the stress field of the uppermost Earth’s crust is mosaic and controlled by variable orientation of the principal stress axes with the prevalence of extension. The integrated tectonophysical model of the Mesozoic and Cenozoic rift basin is primarily characterized by the occurrence of mountain thresholds, asymmetric morphostructure, and block-fault structure of the sedimentary beds and upper part of the crystalline basement. The geological evolution of the Baikal region from the Jurassic to Recent is determined by alternation of long (20–115 Ma) epochs of extension and relatively short (5.3–3.0 Ma) stages of compression. The basins of the Baikal Rift System and western Transbaikalia are derivatives of the same geodynamic processes.  相似文献   

12.
Accumulation of manganiferous rocks in the history of the Earth’s lithosphere evolution began not later than the end of the Middle Archean. Primary manganese sediments were accumulated at that time in shallow-water sedimentation basins with the active participation of organic matter. The concentration of Mn in the primary sediments usually did not reach economic values. The formation of genuine manganese ores is related to later processes of the transformation of primary ores—diagenesis, catagenesis, metamorphism, and retrograde diagenesis. Types of basins of manganese ore sedimentation and character of processes of the formation of manganese sediments during the Earth’s shell evolution changed appreciably and correlated with the general evolution of paleocontinents. Major periods, epochs, and phases of manganese ore genesis are defined. At the early stages of lithosphere formation (Archean-Proterozoic), manganese was deposited in basins commonly confined to the central part of Western Gondwana and western part of Eastern Gondwana, as well as the western part of the Ur paleocontinent. Basins of manganese ore sedimentation were characterized by the ferruginous-siliceous, carbonaceous-clayey, and carbonaceous-carbonate-clayey composition. The Early-Middle Paleozoic epoch of manganiferous sediment accumulation was characterized by the presence of several small sedimentation basins with active manifestation of volcanic and hydrothermal activity. Since the formation of Pangea in the Late Paleozoic until its breakup, accumulation of Mn was closely associated with processes of diagenesis and active participation of the oxidized organic matter.  相似文献   

13.
《Gondwana Research》2014,25(1):30-47
The ca. 2.45–2.0 Ga supracratonic record of six cratonic terranes (Superior Province, Hearne Domain, Fennoscandian crustal segment, and São Francisco, Pilbara and Kaapvaal cratons) is investigated. A <~2415–2420 basal unconformity appears pervasive, floored by basement lithologies for the three “Kenorland-related” terranes (Superior, Hearne and Fennoscandian) and by passive margin chemical sedimentary platform deposits for the apparently “non-amalgamated” cratons. Palaeosols are locally associated with this unconformity, and glacigenic lithologies, for all of the “non-amalgamated” cratons as well as for Superior. A relatively complete sedimentary record is recorded for the three Kenorland supercontinent terranes, including at least two glacial events, whereas hiatuses characterise the Pilbara and São Francisco cratons, with an incomplete record for Kaapvaal. Evidence for geodynamic reactivation at ca. 2.2 Ga includes widespread mafic dykes and volcanics, orogenies in Pilbara and São Francisco, glaciation in Kaapvaal and Pilbara, and significant transgressions thereafter on many of the cratonic terranes. While the overall ca. 2.45–2.2 Ga records studied here are at least compatible with the postulated global magmatic slowdown of Condie et al. (2009), distinct differences between the records associated with “Kenorland-related” and “non-amalgamated” cratons might reflect thermal subsidence and associated sedimentation accompanying the slowdown for the former group (where thermal blanketing likely played a role), while elevated freeboard and concomitant erosive regimes accompanied the inferred slowdown for the latter group.  相似文献   

14.
[研究目的]非洲锰矿资源丰富,储量3.1亿t、资源量6.6亿t排名在世界上均列第一,加强非洲锰矿床的研究和认识对推动锰矿找矿工作具有重要的指导意义.[研究方法]通过对重要成矿带典型矿床的解剖总结了非洲锰矿床的成因类型、地质特征.[研究结果]非洲锰矿成因类型主要有前寒武系条带状铁建造(BIF)型、海相沉积型、陆相(三角洲...  相似文献   

15.
The Zeya-Bureya Basin is a part of the East Asian intracontinental riftogenic belt, which includes oil-and-gas bearing and Mesozoic-Cenozoic sedimentary basins perspective for oil and gas (Upper Zeya, Songliao, Liaohe, North Chinese). The basins are characterized by certain geophysical features: reduced thickness of the Earth’s crust and lithosphere, a higher thermal flow and a raised roof of the asthenosphere. The Zeya-Bureya Basin is composed of Mesozoic-Cenozoic sedimentary-volcanic units, with respect to which the deep structure data are absent. In 2010, geoelectric studies were carried out in this territory using the method of magnetotelluric sounding along the profile Blagoveshchensk-Birokan. These works yielded geoelectric sections down to 2 and 200 km depth. The sedimentary cover is characterized by electric resistivity of 20–50 Ohm m and by thickness of 1700 m. In the section, the Khingan-Olonoi volcanogenic trough is distinct for resistivity of 200–300 Ohm m at a background of 500–1000 Ohm m of the basement rocks. The Zeya-Bureya Basin, in terms of its geophysical characteristics, differs from oil-and-gas bearing basins of the riftogenic belt (thickness of the lithosphere is increased up to 120 km, thermal flow is low, 40–47 mW/m2). The structure of mantle underplating is explicitly seen in the section. The geophysical characteristics close to those of the Zeya-Bureya Depression are typical for gold-bearing structures of the Lower Amur ore district. Nevertheless, manifestations of oil-and-gas bearing potential in particular grabens are possible.  相似文献   

16.
Abstract: A comprehensive stable isotope investigation was carried out to clarify the geneses of the ore deposits in the Langshan Pb-Zn mineral district. The lead isotope study shows that these deposits were probably formed from 2. 0 to 1. 5 Ga, and were deformed and metamorphosed 1. 45 Ga. Ore lead could be a mixture of mantle lead and crustal lead. The C and S isotope results indicate that these deposits were precipitated in closed or semi-closed rift basins, and the source of sulfur might be Proterozoic ocean sulfate. The H and O isotope results indicate that the δD and δ18O values of rocks were changed by water-rock interaction during metamorphism and hydrothermal alteration. The scale of δD and δ18O shift of rocks reflects the grade of metamorphism and alteration as well as the water-rock ratios. However, the water-rock ratios in the metamorphic processes of Langshan mineral district were relatively low, and the source of water during metamorphism is suggested to be ancient meteoric water. Based on isotopic results and the geological background, it is concluded that these deposits may belong to Proterozoic sedimentary exhalative (SEDEX) type.  相似文献   

17.
Ore deposits associated with mafic magmas in the Kaapvaal craton   总被引:2,自引:0,他引:2  
Mafic and ultramafic magmatism played an important role in the 3.5 Ga long history of the Kaapvaal craton. The oldest (3.5 Ga) greenstone belts contain mafic and ultramafic volcanics that erupted in an oceanic environment, probably in oceanic plateaus. Then followed a series of continental flood basalts, from the ∼3.4 Ga old Commondale and Nondweni sequences, to the 180 Ma Karoo basalts. The history was dominated, however, by the emplacement, 2.1 Ga ago, of the Bushveld complex, an enormous layered ultramafic-mafic-felsic intrusion. Three types of ore deposits might be found in such a sequence: Ni-Cu-Fe sulfides in komatiites of the greenstone belts; “Noril'sk-type” Ni-Cu-PGE deposits in the Karoo and other flood basalts; and deposits of Cr, platinum-group elements (PGE) and V in the Bushveld and other layered intrusions. Only the latter are present. It is tempting to attribute the absence of komatiite-hosted deposits to the specific character of the ultramafic rocks in Kaapvaal greenstone belts, which are older that the 2.7 Ga komatiites that host deposits in Australia, Canada and Zimbabwe, and are of the less-common “Al-depleted” type. However, a review of mantle melting processes found no obvious connection between the character of the mantle melts and their capacity to form ore deposits. The lack of this type of deposit may be due to differences in the volcanic environment, or it may be fortuitous (the Barberton and other belts are small and could fit into deposit-free parts of the much larger Australian or Canadian belts). Still more puzzling is the absence of Noril'sk-type deposits. The Karoo and older flood basalt sequences appear to contain all the important elements of the volcanic sequences that host the Siberian deposits. It is now recognised that these deposits formed through the segregation of sulfide from magma flowing rapidly through conduits en route from deeper magma chambers to the surface. An exploration approach aimed at understanding the fluid dynamics of such systems seems warranted. Although the Bushveld intrusion has been studied for decades and its deposits are taken as type examples of magmatic mineralisation, the origin of its PGE deposits remains unclear. Opinion is divided on the relative importance of sulfide segregation from magma filling a large chamber at the time of emplacement, and the scavanging of PGE from fluids circulating through cumulates at a late magmatic stage. Answers to these questions may come from studies designed to gain a better understanding of the mechanisms through which the magma chamber filled and solidified. Received: 15 September 1996 / Accepted: 7 January 1997  相似文献   

18.
Near the beginning and end of the Proterozoic Eon (2.5 Ga–542 Ma) the Earth went through dramatic climatic perturbations. The Palaeoproterozoic (Huronian) glaciations are best known from the Canadian Shield where there is evidence of at least three such episodes. Glacial deposits of comparable age are also known from Fennoscandia, South Africa and Western Australia. In the type area, the Huronian glacial deposits are preserved in an ancient rift system that preceded break‐up of the supercraton, Kenorland, whereas those in the southern hemisphere may have been deposited in a foreland basin setting. Detailed correlations between the two hemispheres must await more geochronological data. Following a long period (~1.5 Ga) with little evidence of glaciation, the climatic upheavals of the Neoproterozoic Era began. The two most widespread glacial events are known as the Sturtian and Marinoan. The Neoproterozoic glaciations also took place on a supercontinent (Rodinia). Some were accompanied by unexpected rock types such as dolomitic cap carbonates and iron formations, both of which show evidence of hydrothermal influence. Major influences on surface temperatures on Earth include solar luminosity (increasing throughout geological history) and the concentration of atmospheric greenhouse gases such as CO2 (generally diminishing with time). It is suggested that the two great Proterozoic climatic oscillation periods resulted from perturbations of the balance between these two variables, triggered by drawdown of atmospheric CO2 during intensive weathering of supercontinents. A weathering‐related negative feedback loop resulted in multiple glaciations with intervening warm periods. Climatic stability only returned after the supercontinent broke apart and reduced continental freeboard moderated continental weathering. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
This paper challenges the conventional interpretation of a major, economically important Mesoproterozoic intracratonic rift system as a group of aulacogens, proposing instead that they are rifts that developed in response to far‐field stress caused by continent–continent collision (impactogens) during supercontinent assembly. The tectonostratigraphic evolution of the Bylot basins (Arctic Canada) records dramatic alternations between extensional and compressional stress regimes, precluding an aulacogen interpretation and favouring an impactogen interpretation. New geochronological data (U–Th–Pb whole‐rock depositional age; detrital zircon signatures) provide a record of impactogens that developed in Laurentia's interior as a result of Grenvillian (~1.1 Ga) far‐field stress during assembly of the supercontinent Rodinia. Formation of the world‐class Nanisivik zinc deposit in one of the rifts is temporally associated with the Grenvillian orogeny, and consequently represents both (i) a rare exception to the global pattern of few ore deposits forming during supercontinent episodes, and (ii) a hitherto unrecognised tectonic setting for carbonate‐hosted zinc deposits.  相似文献   

20.
Breakup of Rodinia and early stages of evolution of the Paleoasian ocean   总被引:2,自引:0,他引:2  
The main stages of the evolution of newly formed structural elements are considered against the background of breakup of the epi-Grenville Rodinia supercontinent, which started about 950 Ma ago. The paleomagnetic data on pathways of the traveling of Rodinia’s fragments are analyzed and evidence for their geology, magmatism, and sedimentation are integrated with special emphasis on the evolution of the continental margins. A series of paleotectonic maps with elements of paleogeography for time intervals of 950–900, 850–800, 750–700, 650–630, and 570–550 Ma ago has been compiled on the basis of palinspastic reconstructions with allowance for new paleomagnetic data primarily concerning the position of Siberia in the Late Precambrian. Objects all over the world, not only in Russia, are involved in the analysis, though with less thoroughly described paleogeography. The structural elements of the Paleoasian ocean are included into the system of global paleooceans and framing paleocontinents. The history of the Paleoasian ocean is traced through 400 Ma from the breakup of the Rodinia supercontinent to the origin of the new Paleogondwana supercontinent about 550 Ma ago.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号