首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ancient Maya subsisted in an environment limited by shallow soils and unpredictable weather patterns until their collapse ∼A.D. 800–900. Ancient subsistence can be a difficult subject, with little physical evidence of agricultural artifacts and structures. This study characterized soil profiles and utilized changes in stable carbon isotope ratios of soil organic matter (SOM) to locate and interpret areas of ancient C4 plant growth and maize (Zea mays) cultivation among the Maya. The investigation indicated some of the challenges the Maya faced, including shallow and sloped soils in some areas. The C4 plant signature was found in seasonal wetland soils on the opposite side of the Laguneta Aguateca from the ruins of Aguateca, but not in the perennial wetlands on the immediate side. No C4 plant signature was detected in the shoulder and backslope soils. Based on these findings, the ancient Maya of Aguateca probably adapted to their environment by farming rich toeslope soils. It is possible that maize was also grown in the seasonal wetlands adjacent to the site. If the steep backslope soils around Aguateca were used in ancient agriculture, the evidence has probably eroded away. © 2007 Wiley Periodicals, Inc.  相似文献   

2.
Soil properties and stable carbon isotope ratios contained in the soil organic matter (SOM) were used to investigate the change in vegetative history of land cleared anciently for maize (Zea mays L.) agriculture in the Petexbatún region of Guatemala. Maize and other C4 plants associated with land clearance leave a carbon isotopic signature in the SOM different from the C3 plants of native forest vegetation. Soil profiles were collected from various landscape features around the Classic Maya site of Aguateca: control locations (areas likely not used in ancient agriculture), defensible locations (areas near defensive walls), rejolladas (natural karst depressions), upland locations (well‐drained soils atop the Aguateca escarpment), and bajos (seasonal and perennial wetlands). The chemical and physical properties of the profiles were examined and the soils were taxonomically classified to the great group level. The changes in d13C with soil depth were determined and compared statistically. The 13C enrichment of the SOM in bajo and rejollada profiles were similar and were significantly (p < 0.05) greater than the control, defensible, and upland soils. This isotopic signature of sustained C4 vegetation was likely associated with forest clearance and ancient Maya agriculture. Both the bajo and rejollada landscape features appear to have been valuable agricultural resources for ancient Maya. © 2009 Wiley Periodicals, Inc.  相似文献   

3.
我国农田土壤碳库演变研究:全球变化和国家粮食安全   总被引:99,自引:0,他引:99  
《京都议定书》已于2005年生效,我国面临着CO2减排的巨大压力。分析了我国农业土壤有机碳库及其演变研究的现状,认为当前我国农业在耕地资源严重短缺、耕地地力趋于下降的背景下面临着2个巨大挑战:提高和稳定粮食生产能力与补偿日益增加的工业CO2排放。有机碳贫乏作为我国耕地土壤的基本特点,这一方面提供了我国较大的固碳空间,另一方面也体现了我国实施固碳农业的必要性和紧迫性。目前迫切需要了解我国农业土壤在最近20年来的碳库演变态势与规模,明确我国农业土壤的固碳潜力与容量,在国家层面上实施农业固碳稳产工程,以在农业可持续发展和争取国家CO2排放的较大配额上实现双嬴。   相似文献   

4.
Overpopulation and food security are the main global problems alert decision makers. In developing countries, such problem put extra pressure for horizontal expansion for agricultural development. The rapid sprawl of urbanized areas on the alluvial land of the River Nile and delta to accommodate the population growth has encouraged governmental and private sector for agricultural expansion in the desert. Unless there are reliable information and accurate studies for land and soil suitability, there will be a collapse of such investment. To evaluate the potential suitability of soil for agriculture development in areas of the western desert, satellite images, geographic information, and field survey including soil profiles and artesian water samples with laboratory analysis were integrated to classify the soils according their suitability for specific crop. The main land qualities of the different mapping units and the crop requirement were rated and matched to obtain the current and potential land suitability using Automated Land Evaluation System “ALES”. The study found that the main physiographic units are plateaus, hilland, mountain, and depression floor. But there are three limiting parameters for land suitability which are the lack of nutrient elements, wind erosion vulnerability, and soil texture. The study concluded that the best crops adapted with the soil conditions and could be feasible for economic use are: (1) native vegetation such as agol, sand trees, sammar, halfaa, bawaal, qordaob, bardi, and qortom; (2) filed crops such as onion, garlic, watermelon and wheat; and (3) fruits such as olive and date palms.  相似文献   

5.
Farmers in the Zuni area of the semiarid American Southwest have successfully cultivated maize and other crops for over three millennia without using artificial fertilizers. Zuni agricultural fields are among the oldest, more or less continuously cultivated areas in the United States. Traditional Zuni agriculture is based on runoff farming, a system whereby runoff and organic‐rich sediment generated in small watersheds are captured and directed onto fields for crop use. We conducted a study to compare soil properties associated with paired and unpaired cultivated, abandoned, and uncultivated fields to evaluate the long‐term effects of cultivation on soil quality. Sampling and analytical methods of this research are especially applicable to geoarchaeological studies of anthropogenic effects on soil fertility and agricultural sustainability in ancient and traditional historical farming systems. Results of the Zuni soil study indicate that cultivation has altered some soil properties, including bulk density, organic carbon, total nitrogen, and C:N ratios in paired fields, but there is no indication that agricultural soils are degraded. This assessment supports the perception of Zuni farmers that long‐term cultivation has not caused a decline in agricultural productivity. © 2005 Wiley Periodicals, Inc.  相似文献   

6.
在实地采访、地块土地利用/覆盖调查和1 260个土样的收集和实验室分析等野外工作的基础上,对比分析了1984—1985年和2003—2004年265个家户的人口、农业系统、土地利用和土壤质量数据,研究了孟加拉国6个村庄农业诱导强度增强对土地和土壤质量的影响。1984—2004年家户和土质数据的百分比变化用来构建诱导强度增强模型和土地退化模型中的统计变量和土地退化指标。结果表明:研究区种植强度和土地生产力的增加主要是由于低压泵灌溉的普及,化肥和杀虫剂的使用以及水稻、蔬菜和虾生产的多元化高产。诱导强度增强模型可以解释研究区81%的种植强度增量和73%的土地生产力增量。人口压力和市场驱动也诱发了农业利用强度的增加;环境约束起到了一定制约作用;低压泵灌溉等应对干旱的技术也对农业增产有一定贡献。然而动力耕作机、低压泵灌溉和化学物质的持续利用再加上除草性水稻、蔬菜和虾的频繁耕作和养殖已经导致土壤结构、质地和化学属性的退化,生产力也有所降低。利用强度越大的土地退化现象越严重,生产力下降得也更多。土地的不断退化将有可能会引发孟加拉国的马尔萨斯危机。  相似文献   

7.
The soils and subsistence of ancient Maya Chunchucmil in northwestern Yucatán are the focus of this paper. Today and historically, the population and crop yields here have been very low. Archaeological field work, however, has shown the Late Classic site to be highly populated with densely packed walled mound and field groups. It is enigmatic that this high ancient Maya population existed in a region of meager crop and soil potential. This enigma is addressed by investigating contemporary Maya agriculture, geoarchaeological evidence, and soil potential for intensive agriculture. The local Maya soil classification of kancab and boxluum synthesizes the Alfisols, Inceptisols, and Mollisols described here. The major soil limitations are shallowness, broad areas with no soil, insufficient water holding capacity, and variable deficiencies in phosphorous, potassium, and zinc. Evidence for intensive agriculture and alternative crops can be seen in widespread field walls compartmentalizing the landscape, sascaberas, and preliminary phosphate fractionation signatures. © 1998 John Wiley & Sons, Inc.  相似文献   

8.
Geoarchaeological investigations of Bronze Age (10th–4th centuries B.C.), early historical (4th–10th centuries A.D.), and premodern to modern paddy soils (11th Century A.D. to contemporary) in South Korea were carried out to understand soil alteration by irrigated rice agriculture. After a review of ancient cultivation micromorphology, especially in the context of wet‐rice agriculture, paddy soils were examined from two archaeological sites, Gulhwa and Pyunggeo, which had been both intermittently occupied since the Bronze Age. This paper highlights anomalous pedofeatures (silty clay concentration features or SCCFs), repeatedly observed in both historical and modern paddy fields, which were studied using soil micromorphology, energy dispersive X‐ray spectrometry (EDS), and microprobe analysis. Results suggest that there are several types of SCCFs, optically distinguishable from other textural pedofeatures. It is concluded that these SCCFs are probably associated with hydromorphic processes, formed under the influence of a tillage and repeated irrigation specific to paddy fields.  相似文献   

9.
A study was made to determine the influence of pasture degradation on soil quality indicators that included physical, chemical, biological and micromorphological attributes, along the hillslope positions in Chaharmahal and Bakhtiari province, western Iran. Soil samples from different slope positions were collected from 0 to 30 cm depth for physical and chemical properties and from 0 to 15 cm depth for biological properties at two adjacent sites in the two ecosystems: natural pasture and cultivated land. Soil quality indicators including bulk density, mean weight diameter, soil organic carbon (SOC), particulate organic material (POM) in aggregate fractions, total nitrogen, available potassium, available phosphorus, cation exchange capacity, soil microbial respiration (SMR) and microbial biomass C and N were determined. The results showed that SOC decreased cultivation from 1.09 to 0.77 % following pasture degradation. The POM decreased by about 19.35 % in cultivated soils when compared to natural pasture; also, SMR and microbial biomass C and N decreased significantly following pasture degradation. Furthermore, aggregate stability and pore spaces decreased, and bulk density increased in the cultivated soils. Overall, our results showed that long-term cultivation following pasture degradation led to a decline in soil quality in all selected slope positions at the site studied in the semiarid region.  相似文献   

10.
The present study examines the geoarchaeological history of an oasis in Kharga Depression in central Egypt. El‐Deir is renowned for its Ptolemaic temple and Roman fortress on the road from former Hibis (Kharga) to the Nile Valley. During the survey, spring mounds and irrigation soils belonging to an ancient agricultural zone were discovered, and further documented by ceramics found on the site. Our methodology combines the geomorphological interpretation of landforms (especially yardangs) with ceramics and 14C‐dated charcoal to distinguish and date former agricultural areas in El‐Deir. The results show that the oasis experienced several phases of soil accretion and destruction through time. Playa sediments were deposited in the humid early Holocene and severely eroded by deflation before the onset of irrigated agriculture between Pharaonic and Persian times. Very fast vertical soil accretion occurred in the Ptolemaic period, but irrigation soils were later destroyed during the Roman period by a combination of wind deflation and flash floods (second to fourth century A.D.), suggesting a period of climate instability. The case of El‐Deir invites reevaluation of constructive agencies for the development of irrigated land and destructive agencies as limiting factors for the sustainability of agricultural practices in late antiquity.  相似文献   

11.
水田和旱地土壤氧化甲烷的温度响应   总被引:1,自引:0,他引:1       下载免费PDF全文
为了探讨温度对农耕区土壤氧化CH4的影响,文中分别采用2种旱地(吉林暗棕壤和河北潮土)和2种水田土壤(江西水稻土和安徽水稻土)样品进行了4个温度下(5、15、25和35℃)氧化高浓度CH4的模拟实验研究。结果表明,4种土壤氧化高浓度CH。的最佳温度为25~35℃,除江西水稻土外,其余土壤在5和15℃没有表现出氧化高浓度...  相似文献   

12.
The pedogenic histories of four adjacent profiles of a polygenetic palaeosol developed on a Middle Pleistocene terrace of the proto-Thames from Wivenhoe in southeast England are reconstructed on the basis of superposition of key micromorphological features. Despite a considerable variation in macromorphology, partly resulting from large-scale periglacial features, three of the profiles have similar micromorphological records in that they retain evidence for two phases of clay illuviation separated by a period of periglacial disruption. This reconstruction, however, seems to be incomplete because the fourth profile contains micromorphological evidence for a further illuviation–disruption cycle. The extent of this variation suggests that soil micromorphology should be used only with care to reconstruct pedogenic or pedosedimentary histories of complex polygenetic palaeosols, or to compare such palaeosols on different surfaces of chronosequences spanning periods of major climatic change. The variable and possibly limited resolution of micromorphology, together with the current uncertainty over the exact environmental signifiance of illuvial clay features, means that inferred pedogenic phases should be correlated with specific climatic stages only with considerable caution. © 1998 John Wiley & Sons, Ltd.  相似文献   

13.
Expansion of agricultural at the cost of forested land is a common cause of watershed degradation in the mountain zones of developing countries. Many studies have been conducted to demonstrate land use changes in such regions. However, current knowledge regarding the changes, driving forces and implications of such change within the context of watershed development is limited. This study analyses changes in spatial patterns of agricultural land use and their consequences for watershed degradation during the 1976–2000 period along an altitude gradient in a watershed in Nepal, by means of remote sensing, GIS and the universal soil loss equation. Estimated soil loss ranged from 589 to 620 t ha−1 y−1, while areas of extreme hazard severity (>100 t ha−1) increased from 9 to 14.5% from 1990 to 2000. Spatial distribution of soil loss in 2000 was characterized by 88% of total soil losses being from upland agricultural areas. The study determined that without considering other forms of land degradation, only water erosion was responsible for erosion of a substantial area in a short timeframe. Areas under upland cultivation are in an extremely vulnerable state, with these areas potentially no longer cultivable within a period of 6 years. As sustainability of the watershed is dependent on forests, continued depletion of forest resources will result in poor economic returns from agriculture for local people, together with loss of ecosystem services. Thus, in order to achieve the goal of watershed development, remaining forest lands must be kept under strict protection.  相似文献   

14.
15.
Assessment of soil suitability for sustainable intensive agriculture is an appropriate tool to select the land suitable for agricultural production with the least economic and environmental costs. This study was conducted to evaluate the agricultural soil quality in the northeast area of Tadla plain (Morocco) using geographic information system (GIS) and analytical hierarchy process (AHP). Six soil quality indicators, i.e., pH, organic carbon, cation exchange capacity, texture, salinity and slope were considered and performed in 60 subsurface soil samples. AHP method was utilized to identify the weight of each indicator from the pairwise comparison matrix. The weighted sum overlay analysis was then used to generate the soil quality map in a GIS environment, by overlaying both indicator weights and sub-indicator weights. The studied area was classified into four soil quality categories, i.e., poor, medium, good, and excellent, the percentage of each category is 1.12, 20.98, 61.07 and 16.83%, respectively. The results indicated that 1.12% of the study area has poor suitability for sustainable intensive agriculture due to their unsuitable texture and low salinity, while about 77% of cultivated soils are adapted to agricultural production. The above results could be useful for the management of agricultural activity.  相似文献   

16.
Research on soil fertility is presented in the context of runoff agriculture, a venerable farming system that has been used for millennia in arid to semiarid regions, where water is a major limiting resource for crop production. The agroecology of runoff farming was studied with the Zuni to evaluate nutrient and hydrologic processes, management, maize productivity, and soil quality in some of the oldest recognized fields in the United States. This ancient Southwest agriculture has functioned without conventional irrigation or fertilization by tapping into biogeochemical processes in natural watersheds connected to fields. Carefully placed fields are managed on alluvial fans and other valley margin landforms to intercept runoff and associated sediment and organic debris transported from adjoining forested uplands. We report on research to evaluate and link nitrogen and phosphorus, two key nutrients for crop production, in watershed, soil, and crop components of this agroecosystem. Nutrient data have been collected by observational and experimental methods for each component and the transport of nutrients from watershed to field to maize. The condition of Zuni agricultural soils suggests that their knowledge and management of soils contributed to effective conservation. This study and others indicate the need for further long‐term monitoring and experimental research on watersheds, runoff processes, field soils, and crops across a range of arid to semiarid ecosystems. © 2007 Wiley Periodicals, Inc.  相似文献   

17.
西北干旱区土壤资源特征与可持续发展   总被引:12,自引:2,他引:10  
分析了干旱区主要土壤类型、分布规律,土壤的理化性状、养分特征以及在盐碱化、沙化和灌耕条件下的变化,并论证了干旱区土壤资源的基本特征对区域可持续发展的影响。认为干旱区土壤分布具明显的空间垂直地带性及径向分布规律。极端干旱条件下的暖温带棕漠土的资源性能最差,其他土壤的资源性能排序依次为灰棕漠土<灰漠土<灰钙土(棕钙土)<灌耕土<草甸土类。土壤资源性能在灌耕、风沙及盐碱化条件下发生显著变化,在干旱区广为分布的荒漠土壤多数具有显著的中深部盐化表现和易于沙化的条件。干旱区可持续发展依赖于绿洲灌耕土壤资源的稳定发展、高生产力水平及可持续利用,在明确土壤资源特性与分布规律的基础上,土壤资源的合理利用与保护及其与生态环境的可持续协调是关键问题。  相似文献   

18.
In contrast to overpopulated Java the neighbouring island of Sumatra still provides huge unused land reserves. However, by far not all of these reserves can be regarded as real agricultural potentials, e.g. for resettlement projects. Especially the poor soils often prove an agricultural handicap. Besides soil fertility the existing vegetation has to be conidered. Thus, for example, the so called “alang alang grass savannas” in general show better potentialities than forest areas, while most of the swamps prove rather unsuitable for agricultural development. With regard to the already existing landuse types the cultivation of perennial bush- and tree crops, for instance rubber, seems to be best suited for further expansions. An expansion of annual food crops would be feasible too, however only be applying heavy capital inputs; here wet rice cultivation would be more appropiate than the permanent cultivation of annual upland crops like cassava, maize, etc. The traditional shifting cultivation does not serve as an alternative any longer. Animal breeding will have its difficulties, with the exception of certain highland areas. Taking into account all ecological, social, and economic reservations it is concluded that, in spite of considerable restrictions, a good part of the land reserves in southern Sumatra could still be opened and used successfully for agricultural purposes.  相似文献   

19.
The understanding of the temporal and spatial dynamics of soil moisture and hydraulic property is crucial to the study of several hydrological and ecological processes. Karst environments are extremely fragile because of thin soil and small soil water holding capacity. A marked intensification of agricultural land use and deforestation due to increase of population and thus expansion of agricultural areas has made the karst environment even more delicate. In this study, the soil moisture contents (SMC) and hydraulic conductivities (K) along four karst hillslopes were measured in situ by time domain reflectometry and the Guelph Permeameter, respectively, at test plots, each of which has a different vegetative cover, landform, land surface slope, soil property and content of rock fragment. The statistical results from the measurements show that land cover changes strongly affect the distribution of soil moisture and hydraulic properties. Compared with SMC in the bare soil areas, SMC values are 30.5, 20.1 and 10.2% greater in the forest, shrub and grass areas, respectively. Vegetation roots significantly increase permeability of low-layer silt soils. Measured K values were 0.8, 0.6 and 0.01 cm/min for the forest, agriculture and bare soil areas, respectively. When the forest was destroyed by fire or cut to become an agricultural area or bare soils, SMC would be reduced by 13.1 and 32.1%, respectively. If deforestation leads to strong rock desertification, SMC was reduced by 70%. Bedrock fractures significantly reduce the SMC in the overlying layer, but increase K values. SMC values of 30–45% would be reduced to 17–30% for the soil layer embedding rocks with and without fractures, respectively. K values could be increased from 1.0 to 8.5 cm/min. SMC are sensitive to terrain. A slope angle increase of 1° would reduce SMC about 0.82%. These changes resulting from land cover and land use alterations offer useful information to further investigate the response of ecosystem evolution to hydrodynamic processes.  相似文献   

20.
富硒土地资源研究进展与评价方法   总被引:13,自引:0,他引:13  
周国华 《岩矿测试》2020,39(3):319-336
硒是重要的生命必需元素,开发富硒农产品是提升我国人体硒摄入水平的安全有效途径,富硒土地资源评价与利用规划是土地质量地球化学调查成果服务于特色农产品发展与脱贫攻坚的重要切入点。本文评述了近年来在土壤和作物硒含量、土壤硒成因来源、土壤硒赋存形态及其生物有效性影响因素、土壤-作物系统硒吸收运移、硒与重金属镉等元素之间的相互作用等调查研究成果。针对我国土壤硒背景值约0.20mg/kg,远低于世界土壤背景值0.40mg/kg,整体上处于低硒水平的实际情况,认为采用0.40mg/kg Se作为富硒土壤标准具有较强的科学依据;多数情况下土壤硒主要来源于成土地质背景,部分地区与人为活动密切有关;富硒土壤可分为地质高背景、次生富集作用、人为输入及其多种作用的叠加成因,元素地球化学性质决定了硒与镉等重金属元素共生的普遍性;土壤硒成因来源以及pH、Eh、有机质、铁铝氧化物等土壤理化条件决定了硒和重金属赋存形态与生物有效性,进而影响到富硒土地的可利用性,成为制定富硒土壤地方标准的理论基础与考虑因素;不同作物种类对硒吸收富集能力不同,筛选适应当地农田生态环境、富硒低镉的农作物具有实际意义;现有的部分富硒农产品标准未充分考虑人体补硒目的,并存在标准间协调性差等问题,急需加强富硒农产品标准的制定。本文提出,富硒土地资源评价不仅需要考虑土壤硒和重金属含量,而且需综合土壤硒成因来源及其生物有效性、土壤-作物系统硒迁移累积、硒与重金属镉等元素之间的相互作用机制,以及当地气候、土壤和景观条件下作物种植的适宜性,依据富硒土地资源可利用性进行分类分区、科学规划和合理种植管理。同时建议,为满足富硒土地资源调查评价与可利用性分析、富硒农产品健康效应研究的需要,需要加强土壤和作物硒含量及其形态的提取分离与分析测试方法技术研究与应用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号