首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
对基本气候态和降水日变化的分析是检验模式模拟性能、理解模式误差来源的重要手段。为了评估出对热带气候模拟效果较好的物理参数化方案组合,本文应用WRF带状区域模式,主要比较了四种积云对流参数化方案:NewTiedtke、Kain-Fritsch、newSAS、Tiedtke,和两种辐射参数化方案:RRTMG和CAM,对热带带状区域的气候模拟结果。研究表明:使用NewTiedtke积云对流参数化方案和RRTMG辐射方案的试验,表现出对气温、降水及降水日变化等综合性最好的模拟性能;NewTiedtke积云对流参数化方案能模拟出较好的降水空间分布和降水日变化位相分布特征;与RRTMG辐射方案相比,CAM辐射方案会使温度模拟偏低,特别是陆地上更明显,这种陆地上的冷偏差可能主要来源于Tmin的模拟偏冷。  相似文献   

2.
朱娟  于杰  张铭 《暴雨灾害》2017,22(3):267-275

从多层原始方程组出发,分析了不同尺度天气系统各层的动能水平梯度与该层地转偏差之间的关系,并对南京2010年7月22日暴雨过程的动能水平梯度模进行了诊断。结果表明:在天气尺度和α中尺度系统中,各层动能水平梯度模与该层地转偏差的模大致成正比。对天气尺度系统,该比例系数为地转参数,与该系统本身无关。对α中尺度系统,该比例系数与该系统本身有关。在β中尺度系统中,各层动能水平梯度模小于等于两项之和,而这两项中第一项与地转偏差的模成正比,另一项则为地转偏差时间导数的模。动能水平梯度大值区运动的非平衡性和爆发性强。在暴雨落区和飑线上,各层动能水平梯度的模均较大。通过对动能水平梯度模的诊断,能够从风场角度来分析各尺度系统,这对中尺度系统的诊断分析尤为重要。

  相似文献   

3.
Summary A set of mesoscale numerical simulations using the Emanuel and Kain-Fritsch deep convection schemes has been performed in order to determine the sensitivity of the forecast-especially, the rainfall-to the scheme used. The study is carried out for two cases of heavy precipitation in the coastal zone of the Western Mediterranean, where the topographic forcing is of primary influence. The first one, characterized by an almost stationary synoptic situation, is dominated by warm, moist advection at low levels; the second one, of frontal type, presents a much stronger dynamic forcing at upper levels. Although the comparison attempt is conditioned by the limited number of considered cases, the numerical results provide at least some preliminary conclusions. The inclusion of a convective scheme improves the forecast precipitation, through two actions: directly, producing more realistic rainfall patterns in areas of convection; indirectly, avoiding excessive precipitation in areas with orographic or dynamical upward forcing by drying and stabilizing the atmosphere upstream. In particular, the Kain-Fritsch scheme seems to be more sensitive to the orographic forcing, in agreement with observations.With 21 Figures  相似文献   

4.
Low-frequency time-space regimes in tropical convection   总被引:2,自引:0,他引:2  
Summary The multi-scale time-space regimes of the low-frequency convective activity over the maritime continent and tropical western Pacific are investigated using the monthly infrared radiance black body temperature (IRTBB) over a latitude band of 5S–9S, 80E–160W for the time period of 1980–1993. The complex Morlet wavelet transform and the complex empirical orthogonal function (CEOF) analysis are used. The zonal mean of the monthly IRTBB is dominated by the annual cycle which is influenced by a monsoon regime. An interannual signal around the time scale of 4.8-year and a decadal signal are obvious. In the zonal deviation, each CEOF represents a particular spatial regime; its corresponding principal component exhibits different multi-scale temporal behavior. The first leading component represents the variability due to large scale land-ocean distribution (the maritime continent, the Indian Ocean and the western Pacific) related to monsoon, with a dominant annual time scale. The second leading component represents the fluctuation of Walker circulation, associated with the El Niño-Southern Oscillation (ENSO) events having a main time scale around 4.8-year and the quasi-biennial oscillation (QBO) around 2.4-year. The third leading component represents the variability due to small-scale land-ocean distribution (Java, New Guinea and the surrounding seas), with a dominant annual time scale. The main time scales in all the components seem to be modulated by longer time scales in either amplitude or frequency or both.Different time scales, as well as their in-phase interference, may play different roles in developing an individual ENSO event. The 1982/1983 event is dominated by an enhanced QBO. The 1986/1987 event is dominated by an enhanced 4.8-year oscillation. The 1991 and 1993 events may have resulted from an in-phase interference among several interannual time scales, abnormal annual cycles, and also highfrequency variability.SAIC/General Sciences Corporation.With 6 Figures  相似文献   

5.
Tropical cyclone track forecasts have been improved, and forecast intervals have been extended to five days, owing to improved global and regional numerical model guidance. Critical time requirements that must be met for operational use of the deterministic model track forecasts are summarized for the U.S. and other selected non-U.S. tropical cyclone warning centers. One of the most accurate deterministic model forecasts from the European Center for Medium-range Weather Forecasts arrives too late to be used with other models at the + 6 h warning time, and thus is at least 12 h old before it can be operationally used. The time-critical nature of the tropical cyclone warning system is a major obstacle to operational use of single-model, or proposed multi-model, ensemble prediction system (EPS) mean and spread information, which is 12 h (or 18 h) delayed. This EPS mean and spread must also be superior to the mean and spread of the consensus of deterministic models that are available six hours earlier. These requirements must be met before the EPS tropical cyclone tracks will be operationally useful in specifying the uncertainty in the official track forecasts, which is the next challenge in tropical cyclone track warnings.  相似文献   

6.
Based on a decade of research on cloud processes, a new version of the LMDZ atmospheric general circulation model has been developed that corresponds to a complete recasting of the parameterization of turbulence, convection and clouds. This LMDZ5B version includes a mass-flux representation of the thermal plumes or rolls of the convective boundary layer, coupled to a bi-Gaussian statistical cloud scheme, as well as a parameterization of the cold pools generated below cumulonimbus by re-evaporation of convective precipitation. The triggering and closure of deep convection are now controlled by lifting processes in the sub-cloud layer. An available lifting energy and lifting power are provided both by the thermal plumes and by the spread of cold pools. The individual parameterizations were carefully validated against the results of explicit high resolution simulations. Here we present the work done to go from those new concepts and developments to a full 3D atmospheric model, used in particular for climate change projections with the IPSL-CM5B coupled model. Based on a series of sensitivity experiments, we document the differences with the previous LMDZ5A version distinguishing the role of parameterization changes from that of model tuning. Improvements found previously in single-column simulations of case studies are confirmed in the 3D model: (1) the convective boundary layer and cumulus clouds are better represented and (2) the diurnal cycle of convective rainfall over continents is delayed by several hours, solving a longstanding problem in climate modeling. The variability of tropical rainfall is also larger in LMDZ5B at intraseasonal time-scales. Significant biases of the LMDZ5A model however remain, or are even sometimes amplified. The paper emphasizes the importance of parameterization improvements and model tuning in the frame of climate change studies as well as the new paradigm that represents the improvement of 3D climate models under the control of single-column case studies simulations.  相似文献   

7.
Diurnal Variation of Tropical Convection during TOGA COARE IOP   总被引:1,自引:0,他引:1  
Diurnal variation of tropical convection and kinematic and thermodynamic conditions was investigated for different large-scale environments of the convectively active and inactive periods by using satellite observations and surface measurements during the Intensive Observation Period (IOP) of the Tropical Ocean Global Atmosphere/Coupled Ocean-Atmosphere Response Experiment (TOGA/COARE). During the convectively active period, the features of nocturnal convection appear in vertical profiles of convergence, vertical velocity, heat source, and moisture sink. The specific humidity increases remarkably in the middle troposphere at dawn. On the other hand, the altitude of maximum convergence and that of the upward motion is lower during the convectively inactive period. The specific humidity peaks in the lower troposphere in the daytime and decreases in the middle troposphere. Spectral analyses of the time series of the infrared (IR) brightness temperature (TBB) and amounts of rainfall suggest multiscale temporal variation with a prominent diurnal cycle over land and oceanic regions such as the Intensive Flux Array (IFA) and the South Pacific Convergence Zone (SPCZ). Over land, the daily maximum of deep convection associated with cloud top temperature less than 208 K appears at midnight due to the daytime radiative heating and the sea-land breeze. Over the ocean, convection usually tends to occur at dawn for the convectively active period while in the afternoon during the inactive period. Comparing the diurnal variation of convection with large-scale variables, the authors inferred that moisture in the middle troposphere contributes mostly to the development of nocturnal convection over the ocean during the convectively active period.  相似文献   

8.
A regional mesoscale multi-level primitive equation model is used to predict the landfall and structure of a tropical cyclone. Three areas of model sensitivity are addressed in this paper; (1) the horizontal resolution, which includes the representation of orography; (2) the impact of an improved representation of the distribution of land surface soil moisture on the landfall problem; and (3) the sensitivity of the storm to lateral boundary conditions. A diagnostic part of this study describes a statistical regression approach to determining a ground wetness parameterization from moisture budget computations to derive estimates of surface fluxes, which are used to determine the parameterization. The model sensitivity analysis compares several versions of ground wetness parameterization. The experiment where perfect (i.e., based on analysis of observations) boundary conditions are used is defined as a bench-mark. At the highest horizontal resolution (=50km) using the ground wetness obtained from the regression, the best results were found for the structure and motion of the tropical cyclone. When the boundary conditions from a global model are used at a resolution T106 (roughly 100 km resolution for the transformed grid), the results degrade somewhat. The rain bands are predicted, but do not contain the same detail. Several other sensitivity experiments illustrate the degree of degradation of rain bands, precipitation distribution, hurricane structure, and phase speed errors as the lateral boundaries, resolution, and ground wetness parameterization are altered.  相似文献   

9.
Using a large set of WRF ensemble simulations at 70-km horizontal resolution over a domain encompassing the Warm Pool region and its surroundings [45°N–45°S, 10°E–240°E], this study aims at quantifying how nudging techniques can modify the simulation of deep atmospheric convection. Both seasonal mean climate, transient variability at intraseasonal timescales, and the respective weight of internal (stochastic) and forced (reproducible) variability are considered. Sensitivity to a large variety of nudging settings (nudged variables and layers and nudging strength) and to the model physics (using 3 convective parameterizations) is addressed. Integrations are carried out during a 7-month season characterized by neutral background conditions and strong intraseasonal variability. Results show that (1) the model responds differently to the nudging from one parameterization to another. Biases are decreased by ~50 % for Betts–Miller–Janjic convection against 17 % only for Grell–Dévényi, the scheme producing yet the largest biases; (2) relaxing air temperature is the most efficient way to reduce biases, while nudging the wind increases most co-variability with daily observations; (3) the model’s internal variability is drastically reduced and mostly depends on the nudging strength and nudged variables; (4) interrupting the relaxation before the end of the simulations leads to an abrupt convergence towards the model’s natural solution, with no clear effects on the simulated climate after a few days. The usefulness and limitations of the approach are finally discussed through the example of the Madden–Julian Oscillation, that the model fails at simulating and that can be artificially and still imperfectly reproduced in relaxation experiments.  相似文献   

10.
Results are presented from two versions of a global R15 atmospheric general circulation model (GCM) coupled to a nondynamic, 50-m deep, slab ocean. Both versions include a penetrative convection scheme that has the effect of pumping more moisture higher into the troposphere. One also includes a simple prescribed functional dependence of cloud albedo in areas of high sea-surface temperature (SST) and deep convection. Previous analysis of observations has shown that in regions of high SST and deep convection, the upper-level cloud albedos increase as a result of the greater optical depth associated with increased moisture content. Based on these observations, we prescribe increased middle- and upper-level cloud albedos in regions of SST greater than 303 K where deep convection occurs. This crudely accounts for a type of cloud optical property feedback, but is well short of a computed cloud-optical property scheme. Since great uncertainty accompanies the formulation and tuning of such schemes, the prescribed albedo feedback is an intermediate step to examine basic feedbacks and sensitivities. We compare the two model versions (with earlier results from the same model with convective adjustment) to a model from the Canadian Climate Centre (CCC) having convective adjustment and a computed cloud optical properties feedback scheme and to several other GCMs. The addition of penetrative convection increases tropospheric moisture, cloud amount, and planetary albedo and decreases net solar input at the surface. However, the competing effect of increased downward infrared flux (from increased tropospheric moisture) causes a warmer surface and increased latent heat flux. Adding the prescribed cirrus albedo feedback decreases net solar input at the surface in the tropics, since the cloud albedos increase in regions of high SST and deep convection. Downward infrared radiation (from increased moisture) also increases, but this effect is overpowered by the reduced solar input in the tropics. Therefore, the surface is somewhat cooler in the tropics, latent heat flux decreases, and global average sensitivity to a doubling of CO2 with regard to temperature and precipitation/evaporation feedback is reduced. Similar processes, evident in the CCC model with convective adjustment and a computed cloud optical properties feedback scheme, occur over a somewhat expanded latitudinal range. The addition of penetrative convection produces global effects, as does the prescribed cirrus albedo feedback, although the strongest local effects of the latter occur in the tropics.Portions of this study are supported by the Office of Health and Environmental Research of the U.S. Department of Energy as part of its Carbon Dioxide Research Program, and by the Electric Power Research Institute as part of its Model Evaluation Consortium for Climate Assessment ProjectThe National Center for Atmospheric Research is sponsored by the National Science Foundation  相似文献   

11.
A cloud-resolving model is configured to span the full meridional extent of the tropical atmosphere and have sufficient zonal extent to permit the representation of tropical cloud super-clusters. This is made computationally feasible by the use of anisotropic horizontal grids where one horizontal coordinate direction has over an order of magnitude finer resolution than the other direction. Typically, the meridional direction is chosen to have the coarser resolution (40 km grid spacing) and the zonal direction has enough resolution to ‘permit’ crude convective squall line ascent (1 km grid spacing). The aim was to run in cloud-resolving model (CRM) mode yet still have sufficient meridional resolution and extent to capture the equatorial trapped waves and the Hadley circulation. The large-scale circulation is driven by imposed uniform tropospheric cooling in conjunction with a fixed sea surface temperature distribution. At quasi-equilibrium the flow is characterized by sub-tropical jetstreams, tropical squall line systems that form eastward-propagating super-clusters, tropical depressions and even hurricanes.Two scientific issues are briefly addressed by the simulations: what forces the Hadley circulation and the nature of stratospheric waves appearing in the simulation. It is found that the presence of a meridional sea surface temperature gradient is not sufficient on its own to force a realistic Hadley circulation even though convection communicates the underlying temperature gradient to the atmosphere. It is shown in a simulation that accounts for the observed time and zonal-mean momentum forcing effect of large-scale eddies (originating in middle latitudes) that the heaviest precipitation is concentrated near the equator in association with moisture flux convergence driven by the Trade winds.A spectral analysis of the stratospheric waves found on the equator using the dispersion relation for equatorially-trapped waves provides strong evidence for the existence of a domain-scale Kelvin wave together with eastward and westward propagating inertia-gravity waves. The eastward-propagating stratospheric waves appear to be part of a convectively coupled wave system travelling at about 15 ms−1.  相似文献   

12.
A cloud-resolving model is configured to span the full meridional extent of the tropical atmosphere and have sufficient zonal extent to permit the representation of tropical cloud super-clusters. This is made computationally feasible by the use of anisotropic horizontal grids where one horizontal coordinate direction has over an order of magnitude finer resolution than the other direction. Typically, the meridional direction is chosen to have the coarser resolution (40 km grid spacing) and the zonal direction has enough resolution to ‘permit’ crude convective squall line ascent (1 km grid spacing). The aim was to run in cloud-resolving model (CRM) mode yet still have sufficient meridional resolution and extent to capture the equatorial trapped waves and the Hadley circulation. The large-scale circulation is driven by imposed uniform tropospheric cooling in conjunction with a fixed sea surface temperature distribution. At quasi-equilibrium the flow is characterized by sub-tropical jetstreams, tropical squall line systems that form eastward-propagating super-clusters, tropical depressions and even hurricanes.Two scientific issues are briefly addressed by the simulations: what forces the Hadley circulation and the nature of stratospheric waves appearing in the simulation. It is found that the presence of a meridional sea surface temperature gradient is not sufficient on its own to force a realistic Hadley circulation even though convection communicates the underlying temperature gradient to the atmosphere. It is shown in a simulation that accounts for the observed time and zonal-mean momentum forcing effect of large-scale eddies (originating in middle latitudes) that the heaviest precipitation is concentrated near the equator in association with moisture flux convergence driven by the Trade winds.A spectral analysis of the stratospheric waves found on the equator using the dispersion relation for equatorially-trapped waves provides strong evidence for the existence of a domain-scale Kelvin wave together with eastward and westward propagating inertia-gravity waves. The eastward-propagating stratospheric waves appear to be part of a convectively coupled wave system travelling at about 15 ms−1.  相似文献   

13.
Despite recent advances in supercomputing, current general circulation models (GCMs) have significant problems in representing the variability associated with organized tropical convection. Furthermore, due to high sensitivity of the simulations to the cloud radiation feedback, the tropical convection remains a major source of uncertainty in long-term weather and climate forecasts. In a series of recent studies, it has been shown, in paradigm two-baroclinic-mode systems and in aquaplanet GCMs, that a stochastic multicloud convective parameterization based on three cloud types (congestus, deep and stratiform) can be used to improve the variability and the dynamical structure of tropical convection, including intermittent coherent structures such as synoptic and mesoscale convective systems. Here, the stochastic multicloud model is modified with a parameterized cloud radiation feedback mechanism and atmosphere-ocean coupling. The radiative convective feedback mechanism is shown to increase the mean and variability of the Walker circulation. The corresponding intensification of the circulation is associated with propagating synoptic scale systems originating inside of the enhanced sea surface temperature area. In column simulations, the atmosphere ocean coupling introduces pronounced low frequency convective features on the time scale associated with the depth of the mixed ocean layer. However, in the presence of the gravity wave mixing of spatially extended simulations, these features are not as prominent. This highlights the deficiency of the column model approach at predicting the behavior of multiscale spatially extended systems. Overall, the study develops a systematic framework for incorporating parameterized radiative cloud feedback and ocean coupling which may be used to improve representation of intraseasonal and seasonal variability in GCMs.  相似文献   

14.
Comprehensive sensitivity analyses on physical parameterization schemes of Weather Research Forecast (WRF-ARW core) model have been carried out for the prediction of track and intensity of tropical cyclones by taking the example of cyclone Nargis, which formed over the Bay of Bengal and hit Myanmar on 02 May 2008, causing widespread damages in terms of human and economic losses. The model performances are also evaluated with different initial conditions of 12?h intervals starting from the cyclogenesis to the near landfall time. The initial and boundary conditions for all the model simulations are drawn from the global operational analysis and forecast products of National Center for Environmental Prediction (NCEP-GFS) available for the public at 1° lon/lat resolution. The results of the sensitivity analyses indicate that a combination of non-local parabolic type exchange coefficient PBL scheme of Yonsei University (YSU), deep and shallow convection scheme with mass flux approach for cumulus parameterization (Kain-Fritsch), and NCEP operational cloud microphysics scheme with diagnostic mixed phase processes (Ferrier), predicts better track and intensity as compared against the Joint Typhoon Warning Center (JTWC) estimates. Further, the final choice of the physical parameterization schemes selected from the above sensitivity experiments is used for model integration with different initial conditions. The results reveal that the cyclone track, intensity and time of landfall are well simulated by the model with an average intensity error of about 8?hPa, maximum wind error of 12?m?s?1and track error of 77?km. The simulations also show that the landfall time error and intensity error are decreasing with delayed initial condition, suggesting that the model forecast is more dependable when the cyclone approaches the coast. The distribution and intensity of rainfall are also well simulated by the model and comparable with the TRMM estimates.  相似文献   

15.
A comparison is made between the magnitudes of observed large-scale weather waves over the tropical Pacific and the magnitudes of the corresponding waves, predicted by wave-CISK theories, which are driven by the observed amount of latent heating (i.e., precipitation). The theoretical wave fields of meridional velocity, vorticity, and temperature rate are shown to exceed the observed quantities by an order of magnitude. An attempt is made to simulate the observed balance between the diabatic heating and adiabatic cooling within the context of the inviscid theories. For a broad class of heating profiles, geometries and basic states, it is found that this compensation without temperature change cannot be satisfactorily modelled, regardless of the vertical shape of the heating, when the vertical wavelength of the disturbance exceeds about 6 km.Scale analysis demonstrates that an important dynamical term has been neglected in the inviscid models, viz., the vertical transport of horizontal momentum by cumulus clouds. When this process is included in the wave model, velocities, relative vorticity, and the time rate of temperature change are all comparable to the observed values. The general behavior of a system where both forcing and cumulus “friction” are proportional to each other has not been previously examined. We find the behavior of such a system to have several novel features. For example, we find that for a wide range of precipitation amplitudes (from 1/4 to 4 times the precipitation amplitudes of waves in the western Pacific) we get essentially constant amplitudes for wind. The implications of this and other features for various aspects of tropical wave modelling are discussed.  相似文献   

16.
Summary Pentad mean anomaly maps were used to study the climatology of tropical intraseasonal convection anomaly (TICA) as a dynamic system. One hundred and twenty-two events were identified and classified into three categories: eastward (77), independent northward (27), and westward (18) propagation. The eastward propagation is more active in boreal winter than in summer, while the independent northward propagation, which is not associated with equatorial eastward propagation, occurs in boreal summer from May to October.The eastward moving TICA exhibits three major paths: 1) eastward along the equator from Africa to the mid-Pacific, 2) first eastward along the equator, then either turning north-east to the northwest Pacific or turning southeast to the southwest Pacific at the maritime continent, and 3) the main anomaly moves eastward along the equator with split center(s) moving northward over the Indian and/or western Pacific Oceans. The equatorial Indian Ocean and the western Pacific intertropical convergence zone are preferred geographic locations for their development, while the maritime continent and central Pacific are regions of dissipation.Independent northward propagation is confined to the Indian and western Pacific monsoon regions. Its existence suggests that the mechanism responsible for meridional propagation may differ from that for eastward propagation.The dynamic effect of the equator and the thermodynamic effect of the underlying warm ocean water are basic factors in trapping TICA in the deep tropics, while the annual march of maximum SST (thermal equator) and the monsoon circulation have profound influences on the annual variation and meridional movement of TICA.With 12 FiguresContribution No. 89-11, Department of Meteorology, University of Hawaii.  相似文献   

17.
Many applied dispersion models require the knowledge of boundary-layer parameters such as sensible heat flux,Q H , friction velocity,u *, and turbulent energy components, w and v . Formulas are suggested for calculating these parameters over a wide variety of types of ground surfaces, based on simple observations of wind speed near the ground and fractional cloud cover, and specification of constants such as roughness length, albedo, and soil moisture availability. Observations ofu *,Q H , w , and v during field experiments in St. Louis and Indianapolis are used to test the formulas for urban sites. Relative errors of about ±20% in the predictions are seen to occur whenu *,Q H , w , and v are large. However, when these quantities are small (e.g.,u * < 0.2 m/s), the errors in the predictions are as large as the mean value of the quantity itself.In addition, it is concluded from studies of available field data and theories that the magnitude of w is not well-known at elevations above about 100m during the late afternoon and night. Some simple parameterizations for w . are suggested that are consistent with the observed steady decrease in ground-level concentration in the afternoon and the sudden increase in concentration that can occur a few hours after sunset due to wind shears associated with a low-level jet, for continuous plumes emitted from moderate to tall stacks.  相似文献   

18.
Summary The current opportunities of progress for short term numerical weather prediction in the domain of physical parametrizations are reviewed. Attention is paid to the fact that many models now resolve very short space and time scales, and the consequences of this situation in terms of physical parametrizations are outlined. It is argued that the most profitable areas of work are currently surface processes and cloud microphysics. The parametrization of deep cumulus convection will probably remain necessary for the next few years, but present operational schemes should be modified to take into account the breakdown of the quasi-equilibrium assumption as space and time resolutions of the models increase.With 13 Figures  相似文献   

19.
Forecasts of the intensity and quantitative precipitation of tropical cyclones(TCs) are generally inaccurate, because the strength and structure of a TC show a complicated spatiotemporal pattern and are affected by various factors. Among these, asymmetric convection plays an important role. This study investigates the asymmetric distribution of convection in TCs over the western North Pacific during the period 2005–2012, based on data obtained from the Feng Yun 2(FY2)geostationary satellite. The asymmetric distributions of the incidence, intensity and morphology of convections are analyzed.Results show that the PDFs of the convection occurrence curve to the azimuth are sinusoidal. The rear-left quadrant relative to TC motion shows the highest occurrence rate of convection, while the front-right quadrant has the lowest. In terms of intensity, weak convections are favored in the front-left of a TC at large distances, whereas strong convections are more likely to appear to the rear-right of a TC within a 300 km range. More than 70% of all MCSs examined here are elongated systems, and meso-β enlongated convective systems(MβECSs) are the most dominant type observed in the outer region of a TC. Smaller MCSs tend to be more concentrated near the center of a TC. While semi-circular MCSs [MβCCSs, MCCs(mesoscale convective complexes)] show a high incidence rate to the rear of a TC, elongated MCSs [MβECSs, PECSs(persistent elongated convective systems)] are more likely to appear in the rear-right quadrant of a TC within a range of 400 km.  相似文献   

20.
Summary This study examines the convection distribution associated with 18 TCs that made landfall along the South China coast during 1995 and 2005. Cloud-top temperatures from high-resolution satellite imageries of the Geosynchronous Meteorological Satellite 5 are used as proxy of strong convection. It is found that convection tends to be enhanced on the western side of the TC as it makes landfall in 10 of the cases, in agreement with the conclusion of some previous studies. Four cases have stronger convection on the eastern side. This “deviation” from the general rule appears to be related to the TCs being more slow-moving or their interaction of the TC with another land surface prior to its making landfall along the South China coast. For the remaining cases in which no significant asymmetries in convection can be identified, the vertical wind shear appears to enhance convection on the east side.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号