首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Based on the statistical analysis the teleconnections between circulation anomalies in the atmospheric centers of action and sea surface temperature anomalies are revealed for two types of El Niño. It is demonstrated that for the Eastern Pacific El Niño stronger teleconnections are registered in the Northern Hemisphere whereas the response to the Central Pacific El Niño is much stronger in the Southern Hemisphere. The Central Pacific El Niño is characterized by the more rapid signal propagation from the tropical zone to distant regions. In some cases the pattern of interaction with the atmospheric circulation considerably differs for two types of El Niño that defines differences in the fields of weather anomalies.  相似文献   

2.
3.
Bryan C. Weare 《Climate Dynamics》2013,41(7-8):2165-2177
Teleconnections associated with warm El Niño/southern oscillation (ENSO) events in 20 climate model intercomparison project 5 (CMIP5) models have been compared with reanalysis observations. Focus has been placed on compact time and space indices, which can be assigned a specific statistical confidence. Nearly all of the models have surface temperature, precipitation and 250 hPa geopotential height departures in the Tropics that are in good agreement with the observations. Most of the models also have realistic anomalies of Northern Hemisphere near-surface temperature, precipitation and 500 hPa geopotential height. Model skill for these variables is significantly related to the ability of a model to accurately simulate Tropical 250 hPa height departures. Additionally, most models have realistic temperature and precipitation anomalies over North America, which are linked to a model’s ability to simulate Tropical 250 hPa and Northern Hemisphere 500 hPa height departures. The skills of temperature and precipitation departures over the Northern Hemisphere and North America are associated with the ability to realistically simulate realistic ENSO frequency and length. Neither horizontal nor vertical resolution differences for either the model atmosphere or ocean are significantly related at the 95 % level to variations in El Niño simulation quality. Overall, recent versions of earlier models have improved in their ability to simulate El Niño teleconnections. For instance, the average model skills of temperature and precipitation for the Tropics, Northern Hemisphere and North America for 11 CMIP5 models are all larger than those for prior versions.  相似文献   

4.
The change in the teleconnections of both El Niño and La Niña over the North Pacific and American regions due to a future greenhouse warming has been analyzed herein by means of diagnostics of the Intergovernmental Panel on Climate Change-Fourth Assessment Report (IPCC-AR4) coupled general circulation models (CGCMs). Among the IPCC-AR4 CGCM simulations, the composites of the eight-member multimodel ensemble are analyzed. In most CGCMs, the tropical Pacific warming due to the increase of CO2 concentration in the atmosphere promotes the main convection centers in the equatorial Pacific associated with both El Niño and La Niña to the east. The eastward shift of the convection center causes a systematic eastward shift of not only El Niño but also La Niña teleconnection patterns over the North Pacific and America, which is demonstrated in the composite maps of 500 hPa circulation, surface temperature, and the precipitation against El Niño and La Niña, as observed in a comparison between the pre-industrial and CO2 doubling experiments. Thus, a systematic eastward migration of convection centers in the tropical Pacific associated with both El Niño and La Niña due to a future global warming commonly causes the eastward shift of the atmospheric teleconnection patterns over the Northern Hemisphere.  相似文献   

5.
The NCEP–NCAR reanalysis dataset and the Had ISST dataset(1959–2014) are used to analyze the impact of two types of El Nio events, i.e., eastern Pacific El Nio(EP-El Nio) and central Pacific El Nio(CP-El Nio) events, on the duration of major and minor sudden stratospheric warmings(SSWs) in Northern Hemisphere winter(November to February). Although the frequency of major and minor SSWs during different types of El Nio shows no distinct differences, the duration of both major and minor SSWs during CP-El Nio is shorter than that during EP-El Nio. The spatial distribution of geopotential height anomalies preceding major SSWs resembles the western Pacific(WP) teleconnection pattern, while the spatial distribution of geopotential height anomalies preceding minor SSWs bears similarity to the Pacific–North America(PNA)teleconnection pattern. An enhancement of the strength of both wavenumber 1 and wavenumber 2 is found before major SSWs. Before minor SSWs, wavenumber 1 is also strengthened, but wavenumber 2 is weakened. The analysis also reveals that EP-El Nio tends to induce positive phases of PNA and WP teleconnections, while CP-El Nio induces negative-phase WP teleconnection. As the positive phases of the PNA and WP teleconnections are related to the strengthening of wavenumber 1, EP-El Nio causes an enhancement of wavenumber 1 in the high-latitude upper troposphere and an enhancement of the upward wave flux in the high-latitude stratosphere, accompanied by a negative anomaly in Eliassen–Palm flux divergence in the subpolar stratosphere, which accounts for the longer SSW duration during EP-El Nio than during CP-El Nio.  相似文献   

6.
This paper compares data from linearized and nonlinear Zebiak–Cane model, as constrained by observed sea surface temperature anomaly(SSTA), in simulating central Pacific(CP) and eastern Pacific(EP) El Nio. The difference between the temperature advections(determined by subtracting those of the linearized model from those of the nonlinear model),referred to here as the nonlinearly induced temperature advection change(NTA), is analyzed. The results demonstrate that the NTA records warming in the central equatorial Pacific during CP El Nio and makes fewer contributions to the structural distinctions of the CP El Nio, whereas it records warming in the eastern equatorial Pacific during EP El Nio, and thus significantly promotes EP El Nio during El Nio–type selection. The NTA for CP and EP El Nio varies in its amplitude,and is smaller in CP El Nio than it is in EP El Nio. These results demonstrate that CP El Nio are weakly modulated by small intensities of NTA, and may be controlled by weak nonlinearity; whereas, EP El Nio are significantly enhanced by large amplitudes of NTA, and are therefore likely to be modulated by relatively strong nonlinearity. These data could explain why CP El Nio are weaker than EP El Nio. Because the NTA for CP and EP El Nio differs in spatial structures and intensities, as well as their roles within different El Nio modes, the diversity of El Nio may be closely related to changes in the nonlinear characteristics of the tropical Pacific.  相似文献   

7.
Present work compares impacts of El Niño Modoki and El Niño on anomalous climate in the Pacific rim during boreal winters of 1979–2005. El Niño Modoki (El Niño) is associated with tripole (dipole) patterns in anomalies of sea-surface temperature, precipitation, and upper-level divergent wind in the tropical Pacific, which are related to multiple “boomerangs” of ocean-atmosphere conditions in the Pacific. Zonal and meridional extents of those “boomerangs” reflect their independent influences, which are seen from lower latitudes in the west to higher latitudes in the east. In the central Pacific, more moisture is transported from the tropics to higher latitudes during El Niño Modoki owing to displacement of the wet “boomerang” arms more poleward toward east. Discontinuities at outer “boomerang” arms manifest intense interactions between tropical and subtropical/extratropical systems. The Pacific/North American pattern and related climate anomalies in North America found in earlier studies are modified in very different ways by the two phenomena. The seesaw with the dry north and the wet south in the western USA is more likely to occur during El Niño Modoki, while much of the western USA is wet during El Niño. The moisture to the southwestern USA is transported from the northward shifted ITCZ during El Niño Modoki, while it is carried by the storms traveling along the southerly shifted polar front jet during El Niño. The East Asian winter monsoon related anticyclone is over the South China Sea during El Niño Modoki as compared to its position over the Philippine Sea during El Niño, causing opposite precipitation anomalies in the southern East Asia between the two phenomena.  相似文献   

8.
9.
A central Pacific(CP) El Ni?o event occurred in 2018/19. Previous studies have shown that different mechanisms are responsible for different subtypes of CP El Ni?o events(CP-I El Ni?o and CP-II El Ni?o). By comparing the evolutions of surface winds, ocean temperatures, and heat budgets of the CP-I El Ni?o, CP-II El Ni?o, and 2018/19 El Ni?o, it is illustrated that the subtropical westerly anomalies in the North Pacific, which led to anomalous convergence of Ekman flow and surface warming in the ...  相似文献   

10.
A relation between the timing of the El Niño onset and its subsequent evolution is examined by emphasizing its association with the Indian Ocean (IO) SST variation. Two types of El Niño events based on the timing of their onset are classified and their characteristics are examined and compared. In general, spring onset (SP) events grow greater in magnitude and their evolutions have a faster transition. On the contrary, summer onset (SU) events are relatively weaker in magnitude and have a slower transition. Moreover, in contrast to the SU events, the SP events have a strong tendency for accompanying an IO dipole and basin-wide type of warming pattern in the El Niño developing and mature phases, respectively. It is demonstrated here that the distinctive evolutions in transition phase of the two events are resulted from the difference in IO SST. The warm IO SST in the SP El Niño event, lead an anomalous easterlies over the western Pacific, which forces a fast termination of El Niño events.  相似文献   

11.
In the summers of 2003 and 2007, eastern China suffered similar climate disasters with severe flooding in the Huaihe River valley and heat waves in the southern Yangtze River delta and South China. Using SST data and outgoing longwave radiation (OLR) data from NOAA along with reanalysis data from NCEP/NCAR, the 2002/03 and 2006/07 El Nio episodes in the central Pacific and their delayed impacts on the following early summertime climate anomalies of eastern China were analyzed. The possible physical progres...  相似文献   

12.
Being triggered by different physical processes, the eastern Pacific (EP) and central Pacific (CP) El Niño events have several different teleconnection features around the globe. Using the ERA-Interim re-analysis monthly data during the period 1980–2016, the El Niño-Southern Oscillation (ENSO) teleconnections on the global scale and their statistical significance are investigated, with an emphasis on the contrasting features of the EP and CP El Niño events. With some exceptions, the EP El Niño and La Niña have generally similar teleconnection patterns with the reversed sign, while in some parts of the globe different and occasionally contrasting teleconnections of the EP and CP El Niño events are identified. Compared to the CP El Niño, more regions of the world are influenced by the statistically significant positive surface pressure anomalies during the EP El Niño, particularly over the Indian Ocean, tropical Atlantic and Northern Africa. It is found that the mid-tropospheric geopotential height anomalies across the globe are significantly different during the EP and CP El Niño events. Associated with different surface pressure and mid-tropospheric geopotential height anomalies, precipitation anomalies in many regions of the world are found different during the EP and CP El Niño events, particularly over the tropical Pacific, central to eastern equatorial Atlantic and the eastern Sahara. While central and eastern equatorial Atlantic experience statistically significant negative (positive) rainfall anomalies during the EP El Niño (La Niña), the CP El Niño does not have a strong influence on the amount of annual rainfall over the equatorial Atlantic. For the first time, statistically significant anomalously dry conditions are found over some parts of the Middle East and Southwest Asia during La Niña, and over the eastern Sahara during the EP El Niño.  相似文献   

13.
14.
Johnson  Nathaniel C.  Kosaka  Yu 《Climate Dynamics》2016,47(12):3737-3765
Climate Dynamics - It is widely recognized that no two El Niño episodes are the same; hence the predictable variations of the climate impacts associated with El Niño remain an open...  相似文献   

15.
Recent extensive studies have suggested that the occurrence of warm-pool El Niño has increased since the late 1970s and will increase in future climate. Occurrence frequencies of cold-tongue and warm-pool El Niño have been investigated in the observational record (1980–2006) and in the future 50 years (2007–2056) based on 100 synthetic SST datasets with estimates of statistical confidence. In the observational record, 80% of the warm-pool El Niño occurred since 1980 over a period of 27 years; only 20% of the warm-pool El Niño occurred prior to 1980 over a period of 110 years. The 100 synthetic datasets, on average, produce 142 months of cold-tongue El Niño in 2007–2056 as opposed to an average 107 months in the same length of the observational data; this is a 20.7% increase in the occurrence of cold-tongue El Niño compared with the observational period. Warm-pool El Niño occurred for 112 months in 2007–2056 as opposed to an average occurrence of 42 months in the observational record; this is 2.5 times the occurrence frequency in the 1980–2006 period in the synthetic datasets. As a result, occurrence frequencies of cold-tongue and warm-pool El Niño in the period of 2007–2056 become quite comparable to each other in the synthetic datasets. It is expected in the next 50 years that warm-pool El Niño will be nearly as frequent as cold-tongue El Niño.  相似文献   

16.
17.
18.
Hu  Shijian  Hu  Dunxin  Guan  Cong  Xing  Nan  Li  Jianping  Feng  Junqiao 《Climate Dynamics》2017,49(7-8):2431-2449
Climate Dynamics - Sea surface temperature (SST) structure inside the western Pacific warm pool (WPWP) is usually overlooked because of its distinct homogeneity, but in fact it possesses a clear...  相似文献   

19.
20.
The present study suggests that the off-equatorial North Atlantic (NATL) SST warming plays a significant role in modulating El Niño teleconnection and its impact on the North Atlantic and European regions. The El Niño events accompanied by NATL SST warming exhibit south-north dipole pattern over the Western Europe to Atlantic, while the ENSO teleconnection pattern without NATL warming exhibits a Rossby wave-like pattern confined over the North Pacific and western Atlantic. Especially, the El Niño events with NATL warming show positive (negative) geopotential-height anomalies over the North Atlantic (Western Europe) which resemble the negative phase of the NAO. Consistently, it is shown using a simple statistical model that NATL SSTA in addition to the tropical Pacific SSTA leads to better prediction on regional climate variation over the North Atlantic and European regions. This role of NATL SST on ENSO teleconnection is also validated and discussed in a long term simulation of coupled global circulation model (CGCM).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号