首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
《Gondwana Research》2001,4(3):329-336
Granulites from the Usambara, Wami River and Uluguru areas in the northern part of the Mozambique Belt in Tanzania yield Sm-Nd garnet — whole rock ages of between 580 and 634 Ma with a mean of 609 ± 11 Ma (2σ). This mean age is only slightly younger than the previously published peak metamorphic age of 641 ± 2 Ma, suggesting that, contrary to some earlier arguments, garnet Sm-Nd ages can be used to closely constrain the age of peak metamorphism even in slowly cooled terranes. Using published peak metamorphic temperatures of ∼810°C and cooling rates of 1–4°C/Ma, the mean age translates into garnet closure temperatures of 690 to 780°C.The similarity in garnet ages over widely separated areas, coupled with the previously established similarity in equilibrium PT conditions, indicate that isolated complexes that form the Eastern Granulites in the Tanzanian sector of the Mozambique Belt share the same thermal history and were formed under the same geodynamic setting.A few published garnet ages of between 525 and 545 Ma indicate a younger, less pervasive event of granulite facies metamorphism in the Belt. The bimodal distribution of garnet ages supports a previously published hypothesis that the assembly of Gondwana took place in two stages. The ∼610 Ma old ages most likely date cooling from granulite facies metamorphism arising from regional crustal thickening associated with the amalgamation of India, Madagascar, parts of eastern Antarctica, the Kalahari craton, the Congo craton and the Arabian-Nubian shield (forming the IMSLEK-ANS collage). On the other hand, the 525–545 Ma ages may mark cooling from a thermal event associated with the collision of Australo-Antarctica with the IMSLEK-ANS collage.  相似文献   

2.
A section through the Neoproterozoic Mozambique Belt of Tanzania exposes western foreland (Archaean Tanzania Craton and Palaeoproterozoic Usagaran Belt), marginal (Western Granulites) and eastern, internal (Eastern Granulites) portions of the orogen. The assembly of granulite nappes at ca. 620 Ma displays westward emplacement along an eastward deepening basal decollement and forward propagation of thrusts, climbing from the deep crust to the surface. This goes along with eastward increase of syntectonic temperatures, derived from prevalent deformation mechanisms, and eastward decrease of the kinematic vorticity number. Distinctly different pressure - temperature paths with a branch of isothermal decompression (ITD) in Western Granulites and isobaric cooling (IBC) in Eastern Granulites reflect residence times of rocks within lower crustal levels. Western Granulites, exhumed rapidly at the orogen margin, display ITD and non-coaxial fabrics. Eastern Granulites in the internal orogen portions escaped from rapid exhumation and show IBC and co-axial flow fabrics. The vertical variation of structural elements, i.e. basement — cover relations within the Eastern Granulites, shows decoupling between lower and middle crust with horizontal west — east stretching in the basement and horizontal west — east shortening in the cover.A model of hot fold nappes [Beaumont, C., Nguyen, M.H., Jamieson, R.A., Ellis, S., 2006. Crustal flow modes in large hot orogens. In: Law, R.D., Searle, M.P., Godin, L., (eds). Channel Flow, Ductile Extrusion and Exhumation in Continental Collision Zones. Geological Society, London, Special Publications. vol. 268, 91–145] is adopted to explain flow diversity in the deep crust. The lower crust represented by Eastern Granulite basement flowed coaxially outwards (westward) in response to thickened crust and elevated gravitational forces, supported by a melt-weakened, viscous channel at the crustal base. Horizontal flow with rates faster than thermal equilibration gave rise to isobaric cooling. Simultaneously the mid crust (Eastern Granulite cover) was shortened when hot fold nappes moved along upward climbing thrust planes. Western Granulites preserved isothermal decompression through exhumation by thrusting and coeval erosion at the orogen front.Two different styles define the Neoproterozoic East African Orogen between northern Egypt and southern Mozambique. The Arabian Nubian Shield in the north is classified as small and cold orogen in which thin — skinned thrusting was associated with lateral extrusion. The Central Mozambique Belt in Tanzania/Southern Kenya is classified as large and hot orogen characterized by thick-skinned thrusting and assembly of large granulite nappes.  相似文献   

3.
《International Geology Review》2012,54(10):1194-1211
A belt of khondalite-series rocks in the Western Block of the North China craton (NCC) are considered to represent products of the collision between the north Yinshan and the south Ordos terranes before final amalgamation of the NCC basement. The Jining Complex of Inner Mongolia occurs in the eastern part of the Khondalite Belt and is crosscut by the Trans-North China Orogen. Khondalite rocks of the Jining Complex mainly comprise sillimanite-garnet gneiss, garnet/sillimanite-bearing granite, massive porphyritic granite, garnet quartzite, calc-silicate, and marble with minor felsic gneiss and mafic granulite. LA-ICP-MS, U–Pb dating and cathodoluminescence (CL) image analysis of zircons from five rocks from the complex, i.e. Sil-Bt-Grt leptynite gneiss, Spl-Sil-Ksp-Grt vein in (Crd)-Sil-Grt gneiss, Sil-Grt-K-Fsp mylonite from a shear zone, Crd-bearing Sil-Grt gneiss, and granite were used to determine protolith and metamorphic ages of the khondalite-series rocks. Results of 315 detrital zircon grains indicate five age populations: 2410–2550 Ma, 2162 Ma, 2047–2099 Ma, 1950–1993 Ma, and 1866 Ma. CL investigation reveals that zircon grains of most samples are rounded, unzoned with low Th/U, indicating a metamorphic origin, whereas quite a few grains in some rocks are characterized by magmatic oscillatory zoning and comparatively high Th/U, and are typically overgrown by metamorphic, low CL rims with low Th/U. Three samples of Sil-Bt-Grt gneiss record oldest ages of ~2550–2480 Ma, suggesting an Archaean/early Palaeoproterozoic provenance for the Jining Complex. Ages of ~2162–2047 Ma are interpreted as the metamorphic modified inherited source of supercrustal protoliths of the khondalite-series rocks. The khondalite depositional age is defined as 2228–2027 Ma by concordant ages obtained in this research. The Sil-Ksp-Grt vein and the granite have single population ages of 1985?±?28 Ma and 1957?±?19 Ma, respectively, and are inferred to record the same metamorphic event, i.e. formation of the Khondalite Belt within the Western Block owing to the collision of the north Yinshan and the south Ordos terranes. The Sil-Grt-K-Fsp mylonite yields a single group age of 1866?±?22 Ma, which may date final suturing of the Eastern Block and the Western Block and stabilization of the NCC.  相似文献   

4.
The integration of detrital and magmatic U – Pb zircon SHIRMP geochronology with facies analysis has allowed the development of a chronostratigraphic framework for the Leichhardt and Calvert Superbasins of the Western Fold Belt, Mt Isa Inlier. This new event chart recognises three supersequences in the Leichhardt Superbasin: the Guide, Myally and Quilalar Supersequences. The Guide Supersequence spans the interval ca 1800 – 1785 Ma and includes the Bottletree Formation and the Mt Guide Quartzite. Sequence relationships suggest that this sedimentary package represents an asymmetric second-order cycle, recording a thickened transgressive suite of deposits and a comparatively thin second-order highstand. The overlying Myally Supersequence spans the interval ca 1780 – 1765 Ma and includes the Eastern Creek Volcanics and syndepositional Lena Quartzite, and the Myally Subgroup. This package represents a second-order supersequence cycle in which mafic volcanism was initiated during a phase of east – west extension. Following the cessation of volcanism, transgression led to the deposition of the Alsace Quartzite and deeper water Bortala Formation. An increase in the rate of sediment supply over accommodation resulted in progradation and deposition of the Whitworth Quartzite and redbed playa facies of the Lochness Formation as accommodation closed. The Quilalar Supersequence spans the interval ca 1755 – 1740 Ma. Sequence analysis in the eastern part of the Leichhardt River Fault Trough identifies a transgressive suite of facies at the base of this supersequence. Black shales from the upper part of the transgressive deposits characterise the condensed section for this supersequence. Facies analysis indicates that deposition took place in a series of storm-, tide- and wave-dominated shelfal marine depositional systems. Although there are no new depositional age constraints for the younger Bigie Formation, field relationships suggest that it is coeval with, or immediately preceded, the ca 1710 Ma Fiery magmatic event. Therefore, a separate supersequence is defined for the Bigie Formation, the Big Supersequence, even though it may be more genetically related to the Fiery magmatic event. The Big Supersequence, together with the ca 1690 Ma Prize Supersequence, comprise the Calvert Superbasin. The evolution of the Leichhardt and Calvert Superbasins are temporally and spatially related to magmatism. In particular, the new maximum depositional ages for the Guide and Myally Supersequences refine the age of the Eastern Creek Volcanics to ca 1780 – 1775 Ma. The new age for the Weberra Granite is within error of the age for the Fiery Creek Volcanics, indicating that they are both part of the ca 1710 Ma Fiery event. New ages for the Sybella Granite confirm that magmatism associated with this magmatic event is refined to 1680 – 1670 Ma, and is followed by deposition of the Gun Supersequence. Combining the new geochronological constraints with previous work now provides a detailed stratigraphic event framework between 1800 and 1575 Ma for the Western Fold Belt of the Mt Isa Inlier, and allows detailed comparisons and correlations with the Eastern Fold Belt and other Proterozoic terranes.  相似文献   

5.
LA-ICPMS U–Pb data from metamorphic monazite in upper amphibolite and granulite-grade metasedimentary rocks indicate that the Nawa Domain of the northern Gawler Craton in southern Australia underwent multiple high-grade metamorphic events in the Late Paleoproterozoic and Early Mesoproterozoic. Five of the six samples investigated here record metamorphic monazite growth during the period 1730–1690 Ma, coincident with the Kimban Orogeny, which shaped the crustal architecture of the southeastern Gawler Craton. Combined with existing detrital zircon U–Pb data, the metamorphic monazite ages constrain deposition of the northern Gawler metasedimentary protoliths to the interval ca 1750–1720 Ma. The new age data highlight the craton-wide nature of the 1730–1690 Ma Kimban Orogeny in the Gawler Craton. In the Mabel Creek Ridge region of the Nawa Domain, rocks metamorphosed during the Kimban Orogeny were reworked during the Kararan Orogeny (1570–1555 Ma). The obtained Kararan Orogeny monazite ages are within uncertainty of ca 1590–1575 Ma zircon U–Pb metamorphic ages from the Mt Woods Domain in the central-eastern Gawler Craton, which indicate that high-grade metamorphism and associated deformation were coeval with the craton-scale Hiltaba magmatic event. The timing of this deformation, and the implied compressional vector, is similar to the latter stages of the Olarian Orogeny in the adjacent Curnamona Province and appears to be part of a westward migration in the timing of deformation and metamorphism in the southern Australian Proterozoic over the interval 1600–1545 Ma. This pattern of westward-shifting tectonism is defined by the Olarian Orogeny (1600–1585 Ma, Curnamona Province), Mt Woods deformation (1590–1575 Ma), Mabel Creek Ridge deformation (1570–1555 Ma, Kararan Orogeny) and Fowler Domain deformation (1555–1545 Ma, Kararan Orogeny). This westward migration of deformation suggests the existence of a large evolving tectonic system that encompassed the emplacement of the voluminous Hiltaba Suite and associated volcanic and mineral systems.  相似文献   

6.
Mapping carried out in the northern Murchison Terrane of the Archaean Yilgarn Craton, Western Australia, shows that correlation of units between isolated greenstone belts is very difficult and an informal stratigraphic subdivision is proposed where the greenstone sequences have been divided into a number of assemblages. The assemblages may not necessarily be time equivalent throughout the region. The lower units (Assemblages 1–3) consist of ultramafic, mafic and intermediate volcanic rocks deposited without significant breaks in volcanism. Felsic volcanic packages (Assemblage 4) are conformable with underlying units, but are spatially restricted. Discordant units of graphitic sedimentary rocks are developed along major crustal structures (Assemblage 5). SHRIMP and conventional U–Pb study of zircons reveal that felsic volcanic rocks of Assemblage 4 in the Dalgaranga Greenstone Belt were emplaced at 2747 ± 5 Ma, whereas those in the adjacent Meekatharra — Mt Magnet Greenstone Belt range in age from 2762 ± 6 to 2716 ± 4 Ma. The age of emplacement of a differentiated gabbro sill in the Dalgaranga Greenstone Belt at 2719 ± 6 Ma places a maximum age on major folding in the belt. The presence of 2.9–3.0 Ga inherited zircons in some of the felsic volcanic rocks indicates contamination with, or reworking of, underlying 3 Ga sialic crust. This distinguishes the Murchison Terrane from the central parts of the Eastern Goldfields terranes to the south, where there is no evidence for a 3 Ga imprint in zircons from volcanic or granitic rocks, and also from the Narryer Gneiss Terrane to the north and west, which is composed of older gneisses and granitoids. The ca 2.76–2.71 Ga felsic volcanism in the Murchison Terrane is significantly older than 2.71–2.67 Ga felsic volcanism in the Eastern Goldfields lending support to models advocating assemblage of the craton by terrane accretion.  相似文献   

7.
Granulite-facies rocks are intermittently exposed in a roughly E–W trending belt that extends for approximately 2000 km across the North China Craton, from the Helanshan, Qianlishan, Wulashan–Daqingshan, Guyang and Jining Complexes in the Western Block, through the Huai'an, Hengshan, Xuanhua and Chengde Complexes in the Trans-North China Orogen, to the Jianping (Western Liaoning), Eastern Hebei, Northern Liaoning and Southern Jilin Complexes in the Eastern Block. The belt is generally referred to as the North China Granulite-Facies Belt, previously interpreted as the lowest part of an obliquely exposed crust of the North China Craton. Recent data indicate that the North China Granulite-Facies Belt is not a single terrane. Instead, it represents components of three separate terranes: the Eastern and Western Blocks and Trans-North China Orogen. Each of these units records different metamorphic histories and reflect the complex tectonic evolution of the NCC during the late Archean and Paleoproterozoic. Mafic granulites in the Eastern Block and the Yinshan Terrane (Western Block) underwent medium-pressure granulite-facies metamorphism at about 2.5 Ga, with anticlockwise P–T paths involving near isobaric cooling following peak metamorphism, reflecting an origin related to intrusion and underplating of mantle-derived magmas. Pelitic granulites in the Khondalite Belt (Western Block) underwent medium-pressure granulite-facies metamorphism at about 2.0–1.9 Ga, with clockwise P–T paths, which record the Paleoproterozoic amalgamation of the Yinshan and Ordos Terranes to form the Western Block. Mafic and pelitic granulites in the Trans-North China Orogen experienced high- to medium-pressure granulite-facies metamorphism at 1.85 Ga, with clockwise P–T paths involving nearly isothermal decompression following peak metamorphism, which are in accord with the final collision between the Eastern and Western Blocks to form the North China Craton at 1.8 Ga. The NCGB cannot therefore represent a separate unique terrane; instead it reflects the amalgamation of three separate granulite terranes that evolved independently and at different times.  相似文献   

8.
Field observations integrated with new petrographic and sensitive high-resolution ion microprobe (SHRIMP) U–Pb age data for detrital zircons from the Paleoproterozoic Speewah Group of northern Western Australia provide evidence of depositional conditions, source of detritus, timing and evolution of the sedimentary rocks in the Speewah Basin. The Speewah Group is a 1.5 km-thick succession of poorly outcropping, predominantly siliciclastic rocks that preserve a fluviatile to marine, transgressive and regressive event. The Speewah Group unconformably overlies crystalline rocks of the Lamboo Province that were stabilised by the 1870–1850 Ma Hooper Orogeny, then accreted as the Kimberley region onto the North Australian Craton during the 1835–1810 Ma Halls Creek Orogeny. Unconformably overlying the Speewah Group is about 4 km of predominantly siliciclastic marine sedimentary rocks of the Kimberley Group in the Kimberley Basin. This study has detected a detrital zircon component within the Speewah Basin at 1814 ± 10 Ma, with a youngest zircon at 1803 ± 12 Ma (1σ) in fluviatile sandstones located beneath a volcaniclastic rock with magmatic zircons that have been dated at ca 1835 Ma. Previous studies proposed that the Speewah Basin developed as a retro-arc foreland basin during accretion of the North Australian Craton. We interpret the ca 1835 Ma zircons in the volcaniclastic rocks to be xenocrystic in origin. This new 20 million years younger maximum depositional age indicates that the Speewah Group in the Speewah Basin, similarly to the overlying Kimberley Group in the Kimberley Basin, developed in a post-orogenic setting on the North Australian Craton rather than in a syn-orogenic setting associated with the 1835–1810 Ma Halls Creek Orogeny.  相似文献   

9.
The Plutonic Well Greenstone Belt (PWGB) is located in the Marymia Inlier between the Yilgarn and Pilbara cratons in Western Australia, and hosts a series of major Au deposits. The main episode of Au mineralisation in the PWGB was previously interpreted to have either accompanied, or shortly followed, peak metamorphism in the late Archean at ca 2650 Ma with a later, minor, event associated with the Capricorn Orogeny. Here we present new Pb isotope model ages for sulfides and Rb–Sr ages for mica, as well as a new 207Pb–206Pb age for titanite for samples from the Plutonic Gold Mine (Plutonic) at the southern end of the PWGB. The majority of the sulfides record Proterozoic Pb isotope model ages (2300–2100 Ma), constraining a significant Au mineralising event at Plutonic that occurred >300 Myr later than previously thought. A Rb–Sr age of 2296 ± 99 Ma from muscovite in an Au-bearing sample records resetting or closure of the Rb–Sr system in muscovite at about the same time. A younger Rb–Sr age of 1779 ± 46 Ma from biotite from the same sample may record further cooling, or resetting during a late-stage episode of metasomatism in the PWGB. This could have been associated with the 1820–1770 Ma Capricorn Orogeny, or a late-stage hydrothermal event potentially constrained by a new 207Pb–206Pb age of 1725 ± 26 Ma for titanite in a chlorite–carbonate vein. This titanite age correlates with a pre-existing age for a metasomatic event dated at 1719 ± 14 Ma by U–Pb ages of zircon overgrowths in a sample from the Marymia Deposit. Based on the Pb-isotope data presented here, Au mineralising events in the PWGB are inferred to have occurred at ca 2630, 2300–2100 Ma, during the Glenburgh and Capricorn orogenies, and 1730–1660 Ma. The 2300–2100 Ma event, which appears to have been significant based on the amount of sulfide of this age, correlates with the inferred age for rifting of the Marymia Inlier from the northern margin of the Yilgarn Craton. The texturally-later visible Au may have been deposited during the Glenburgh and Capricorn orogenies.  相似文献   

10.
A SHRIMP 207Pb/206Pb zircon age of 1204 ± 10 Ma is reported for an east west trending dolerite dyke from near York in the southwestern Yilgarn Craton. This age is identical within analytical uncertainty to previously reported ages of ca 1210 Ma for dykes from the central Wheatbelt and the Western and Eastern Goldfields. The consistency of the dyke ages and the wide areal extent of the dykes suggests that emplacement occurred as a single magmatic pulse at ca 1210 Ma throughout the southwestern Yilgarn Craton. The similarities between the age of the dykes and the ages of late events in the Albany Fraser Orogeny, and the approximate parallelism of the east west trending dykes to the margin of the orogen, raises the possibility that these events are related.  相似文献   

11.
This paper presents 14 zircon U–Pb determinations (SHRIMP and LA-MC-ICP-MS) for key geological units from the Rio Apa Cratonic Terrane (RACT), which is considered the southernmost exposed part of the Amazonian Craton in southwestern Brazil. The zircon U–Pb ages and geological data indicate that the RACT was formed by the accretion of magmatic arcs in a continental margin active from 1950 to 1720 Ma. The RACT is composed of three major terranes (Western, Eastern and Southeastern Terranes) with distinct evolution histories. The Western Terrane presents orthogneisses and granites formed at ~ 1950–1940 Ma and subduction-related granites and volcanic rocks formed at 1900–1880 Ma and 1840–1830 Ma. These basement rocks are covered by a greenschist facies metavolcano-sedimentary succession (Rio Naicata Formation) with basal volcanic rocks formed at 1813 ± 18 Ma. A gabbronoritic dyke of the Rio Perdido Suite hosted by the Rio Naitaca Formation yields an age of 1589 ± 44 Ma. The Eastern and Southeastern Terranes present deformed leucogranites generated within the intervals 1780–1720 Ma and 1810–1790 Ma, respectively. Both terranes are covered by a metavolcano-sedimentary succession (Alto Tererê Formation) dominated by Barrovian-type amphibolite facies metamorphic assemblages, suggestive of a collisional event. Available 40Ar–39Ar data (hornblende, muscovite and biotite) indicate that the proto-RACT evolved to a collisional orogen between 1310 and 1270 Ma and behaved as a cratonic mass after 1270 Ma, preceding the assembly of Rodinia. The available data allow us to interpret the RACT as a part of the Ventuari–Tapajós Province of the Amazonian Craton, which was fragmented and dispersed as a microcontinent. It was subsequently reincorporated into the SW Amazonian Craton, along the Sunsás Belt, as an allochthonous terrane. In a global perspective, the tectono-magmatic events of the RACT are consistent with a long-lived accretionary orogen possibly related to an active margin of Columbia.  相似文献   

12.
Structural analysis along with 40Ar–39Ar and U–Pb datings in the Fuping massif provide new insight into the evolution of the eastern part of the Trans-North China Belt (North China Craton), from 2.7 Ga to 1.8 Ga. D1 is responsible for the development of a dome-and-basin structure coeval with crustal melting giving rise to migmatite and Nanying gneissic granites at 2.1 Ga. This dome-and-basin architecture resulted from the interference between a N–S compression of a weak ductile crust and gravity-driven vertical flow, in a high thermal regime. The next events involved flat lying ductile thrusting (D2) and normal faulting (D3) dated at around 1880 Ma and 1830 Ma, respectively. The D2 and D3 events belong to the Trans-North China Orogeny that results in the final amalgamation of the North China Craton. The D1 deformation is considered as evidence for an earlier orogen developed around 2.1 Ga prior to the Trans-North China Orogeny. The change in the deformation style between the 2.1 Ga and 1.8 Ga could be viewed as a consequence of the cooling of the continental crust in the North China Craton.  相似文献   

13.
U–Pb zircon analyses from a series of orthogneisses sampled in drill core in the northern Gawler Craton provide crystallisation ages at ca 1775–1750 Ma, which is an uncommon age in the Gawler Craton. Metamorphic zircon and monazite give ages of ca 1730–1710 Ma indicating that the igneous protoliths underwent metamorphism during the craton-wide Kimban Orogeny. Isotopic Hf zircon data show that 1780–1750 Ma zircons are somewhat evolved with initial εHf values –4 to +0.9, and model ages of ca 2.3 to 2.2 Ga. Isotopic whole rock Sm–Nd values from most samples have relatively evolved initial εNd values of –3.7 to –1.4. In contrast, a mafic unit from drill hole Middle Bore 1 has a juvenile isotopic signature with initial εHf zircon values of ca +5.2 to +8.2, and initial εNd values of +3.5 to +3.8. The presence of 1775–1750 Ma zircon forming magmatic rocks in the northern Gawler Craton provides a possible source for similarly aged detrital zircons in Paleoproterozoic basin systems of the Gawler Craton and adjacent Curnamona Province. Previous provenance studies on these Paleoproterozoic basins have appealed to the Arunta Region of the North Australian Craton to provide 1780–1750 Ma detrital zircons, and isotopically and geochemically similar basin fill. The orthogneisses in the northern Gawler Craton also match the source criteria and display geochemical similarities between coeval magmatism in the Arunta Region of the North Australian Craton, providing further support for paleogeographic reconstructions that link the Gawler Craton and North Australian Craton during the Paleoproterozoic.  相似文献   

14.
Zircon U–Pb ages of the Mesoproterozoic dyke swarms (Lakhna dyke swarm) at the interface between the Eastern Ghats Mobile Belt and Bastar Craton of the Indian Peninsula are reported here to decipher the tectonic evolution of the region. The dyke swarm, which is dominantly N–S in orientation, has intruded the Bastar Craton at ca. 1450 Ma. The dykes vary in composition from dolerite to trachyte and rhyolite and have been emplaced in a continental anorogenic setting. The above age puts a lower time constraint on the sedimentary sequences of the Purana basin (Khariar basin) that have been deposited unconformably over the Bastar Craton. The shale member of the Khariar basin shows evidence of synsedimentary shearing suggesting that the sedimentation probably continued up to 517 Ma, the age of shearing and overthrusting of the granulite nappes of the Eastern Ghats Mobile Belt on the Craton. Further, the compression accompanying thrusting of the nappes, uplifted the Purana basins during inversion.  相似文献   

15.
40Ar/39Ar age data from the boundary between the Delamerian and Lachlan Fold Belts identify the Moornambool Metamorphic Complex as a Cambrian metamorphic belt in the western Stawell Zone of the Palaeozoic Tasmanide System of southeastern Australia. A reworked orogenic zone exists between the Lachlan and Delamerian Fold Belts that contains the eastern section of the Cambrian Delamerian Fold Belt and the western limit of orogenesis associated with the formation of an Ordovician to Silurian accretionary wedge (Lachlan Fold Belt). Delamerian thrusting is craton-verging and occurred at the same time as the final consolidation of Gondwana. 40Ar/39Ar age data indicate rapid cooling of the Moornambool Metamorphic Complex at about 500 Ma at a rate of 20 – 30°C per million years, temporally associated with calc-alkaline volcanism followed by clastic sedimentation. Extension in the overriding plate of a subduction zone is interpreted to have exhumed the metamorphic rocks within the Moornambool Metamorphic Complex. The Delamerian system varies from a high geothermal gradient with syntectonic plutonism in the west to lower geothermal gradients in the east (no syntectonic plutonism). This metamorphic zonation is consistent with a west-dipping subduction zone. Contrary to some previous models involving a reversal in subduction polarity, the Ross and Delamerian systems of Antarctica and Australia are inferred to reflect deformation processes associated with a Cambrian subduction zone that dipped towards the Gondwana supercontinent. Western Lachlan Fold Belt orogenesis occurred about 40 million years after the Delamerian Orogeny and deformed older, colder, and denser oceanic crust, with metamorphism indicative of a low geothermal gradient. This orogenesis closed a marginal ocean basin by west-directed underthrusting of oceanic crust that produced an accretionary wedge with west-dipping faults that verge away from the major craton. The western Lachlan Fold Belt was not associated with arc-related volcanism and plutonism occurred 40 – 60 million years after initial deformation. The revised orogenic boundaries have implications for the location of world-class 440 Ma orogenic gold deposits. The structural complexity of the 440 Ma Stawell gold deposit reflects its location in a reworked part of the Cambrian Delamerian Fold Belt, while the structurally simpler 440 Ma Bendigo deposit is hosted by younger Ordovician turbidites solely deformed by Lachlan orogenesis.  相似文献   

16.
Zircon and monazite U–Pb data document the geochronology of the felsic crust in the Mozambique Belt in NE Mozambique. Immediately E of Lake Niassa and NW of the Karoo-aged Maniamba Graben, the Ponta Messuli Complex preserves Paleoproterozoic gneisses with granulite-facies metamorphism dated at 1950 ± 15 Ma, and intruded by granite at 1056 ± 11 Ma. This complex has only weak evidence for a Pan-African metamorphism. Between the Maniamba Graben and the WSW–ENE-trending Lurio (shear) Belt, the Unango and Marrupa Complexes consist mainly of felsic orthogneisses dated between 1062 ± 13 and 946 ± 11 Ma, and interlayered with minor paragneisses. In these complexes, an amphibolite- to granulite-facies metamorphism is dated at 953 ± 8 Ma and a nepheline syenite pluton is dated at 799 ± 8 Ma. Pan-African deformation and high-grade metamorphism are more intense and penetrative southwards, towards the Lurio Belt. Amphibolite-facies metamorphism is dated at 555 ± 11 Ma in the Marrupa Complex and amphibolite- to granulite-facies metamorphism between 569 ± 9 and 527 ± 8 Ma in the Unango Complex. Post-collisional felsic plutonism, dated between 549 ± 13 and 486 ± 27 Ma, is uncommon in the Marrupa Complex but common in the Unango Complex. To the south of the Lurio Belt, the Nampula Complex consists of felsic orthogneisses which gave ages ranging from 1123 ± 9 to 1042 ± 9 Ma, interlayered with paragneisses. The Nampula Complex underwent amphibolite-facies metamorphism in the period between 543 ± 23 to 493 ± 8 Ma, and was intruded by voluminous post-collisional granitoid plutons between 511 ± 12 and 508 ± 3 Ma. In a larger context, the Ponta Messuli Complex is regarded as part of the Palaeoproterozoic, Usagaran, Congo-Tanzania Craton foreland of the Pan-African orogen. The Unango, Marrupa and Nampula Complexes were probably formed in an active margin setting during the Mesoproterozoic. The Unango and Marrupa Complexes were assembled on the margin of the Congo-Tanzania Craton during the Irumidian orogeny (ca. 1020–950 Ma), together with terranes in the Southern Irumide Belt. The distinctly older Nampula Complex was more probably linked to the Maud Belt of Antarctica, and peripheral to the Kalahari Craton during the Neoproterozoic. During the Pan-African orogeny, the Marrupa Complex was overlain by NW-directed nappes of the Cabo Delgado Nappe Complex before peak metamorphism at ca. 555 Ma. The nappes include evidence for early Pan-African orogenic events older than 610 Ma, typical for the Eastern Granulites in Tanzania. Crustal thickening at 555 ± 11 Ma is coeval with high-pressure granulite-facies metamorphism along the Lurio Belt at 557 ± 16 Ma. Crustal thickening in NE Mozambique is part of the main Pan-African, Kuunga, orogeny peaking between 570 and 530 Ma, during which the Congo-Tanzania, Kalahari, East Antarctica and India Cratons welded to form Gondwana. Voluminous post-collisional magmatism and metamorphism younger than 530 Ma in the Lurio Belt and the Nampula Complex are taken as evidence of gravitational collapse of the extensive orogenic domain south of the Lurio Belt after ca. 530 Ma. The Lurio Belt may represent a Pan-African suture zone between the Kalahari and Congo-Tanzania Craton.  相似文献   

17.
Detrital zircon and apatite fission track (ZFT and AFT) data of the sandstones collected from the Liaoxi basins served as a significant probe to study the Meso-Cenozoic thermo-tectonic reactivation events in the northern margin of the North China Craton. All sandstones show wide ZFT and AFT age spectrum and most of ZFT and AFT ages are younger than depositional age of respective host rocks, which suggest widespread track resetting of the host rocks in the Liaoxi basins after deposition. This hot geothermal status in the Liaoxi basins deduced from ZFT and AFT data is temporal consistent with the lithospheric evolution of the North China Craton, which implies that the lithosphere under the northern margin of the North China Craton underwent similar thermo-tectonic destruction process as the intracratonic Bohai Sea. The young ZFT peak age, which ranges from ∼50 Ma to 20 Ma, to some extend, provides a temporal constraint on the time that lithosphere significantly thinned and following reverse of the Liaoxi basins and uplift of the eastern part of the Yan-Liao Orogenic Belt. Exhumation of 1.5–2 km can be estimated in the eastern part of the Yan-Liao Orogenic Belt since ∼30 Ma to 10 Ma.  相似文献   

18.
Apatite U-Pb thermochronology was applied to granitoid basement samples across the northern Gawler Craton to unravel the Proterozoic, post-orogenic, cooling history and to examine the role of major fault zones during cooling. Our observations indicate that cooling following the ~2500 Ma Sleaford Orogeny and ~1700 Ma Kimban Orogeny is restricted to the Christie and Wilgena Domains of the central northern Gawler Craton. The northern Gawler Craton mainly records post-Hiltaba Event(~1590 Ma) U-Pb cooling ages. Cooling following the ~1560 Ma Kararan Orogeny is preserved within the Coober Pedy Ridge,Nawa Domain and along major shear zones within the south-western Fowler Domain. The Nawa Domain samples preserve U-Pb cooling ages that are 150 Ma younger than the samples within the Coober Pedy Ridge and Fowler Domain, indicating that later(~1300 Ma) fault movement within the Nawa Domain facilitated cooling of these samples, caused by arc collision in the Madura Province of eastern Western Australia. When compared to~(40)Ar/~(39) Ar from muscovite, biotite and hornblende, our new apatite U-Pb ages correlate well, particularly in regions of higher data density. Our data also preserve a progressive younging of U-Pb ages from the nucleus of the craton to the periphery with a stark contrast in U-Pb ages across major structures such as the Karari Shear Zone and the Southern Overthrust, which indicates the timing of reactivation of these major crustal structures. Although this interpolation was based solely on thermochronological data and did not take into account structural or other geological data, these maps are consistent with the structural architecture of the Gawler Craton and reveal the thermal footprint of known tectonic and magmatic events in the Gawler Craton.  相似文献   

19.
胡波  翟明国  郭敬辉  彭澎  刘富  刘爽 《岩石学报》2009,25(1):193-211
化德群出露地区位于华北克拉通北缘中部,紧邻中亚造山带南缘,呈近东西向展布。在它的西边是早-中元古代的白云鄂博裂谷和渣尔泰—狼山裂谷,东南面是由长城系、蓟县系和青白口系组成的早-新元古代的燕辽裂陷槽,南边分布着1.9~1.8Ga麻粒岩相变质的丰镇群(孔兹岩系),北边出露有代表中亚造山带的古生代岩石。化德群由一套浅变质和未变质的沉积岩组成,无火山岩夹层。地层序列包含多个沉积旋回,每个旋回自下而上为含砾砂岩、砂岩、碳酸盐岩和泥质岩。岩石组合反映了从河流—滨海—浅海相的沉积环境。化德群的地层序列可以和白云鄂博群及渣尔泰群相对比。本文对化德群四个变质砂岩样品中的碎屑锆石进行了LA-ICP-MS U-Pb年龄测定,年龄主要集中在1800±50Ma和1850±50Ma,另外还有~2500Ma和~2000Ma的次要峰值。化德群底部变质含砾云母长石石英砂岩中碎屑锆石的最小谐和年龄是1758±7Ma,限定了化德群沉积时代的下限。碎屑锆石的CL图像显示,1800±50Ma和1850±50Ma的锆石主要是变质成因,少量岩浆成因,说明化德群的源区主要是古元古代的变质岩,少量岩浆岩。~2500Ma和~2000Ma的碎屑锆石代表了更为古老的源区。碎屑锆石的U-Pb年龄限制了化德群的沉积时代为古元古代晚期—中元古代,年龄峰值对应华北克拉通的重要构造热事件,而无与中亚造山带地质事件相关的年龄信息。沉积组合特征表明化德群属于稳定的浅水—半深水沉积盆地。化德盆地、渣尔泰—狼山盆地和白云鄂博盆地共同构成华北克拉通北缘的被动陆缘裂谷系,该裂谷系的形成可能与燕辽及熊耳裂陷槽的打开是同时期的。因此,华北克拉通的北界应该置于化德群出露区域以北。基于锆石特征的详细分析及对比,我们认为化德群以南的孔兹岩系可能是化德群的主要源区。  相似文献   

20.
Structural, metamorphic and geochronological studies of the Chewore Inliers of the Zambezi Belt within the Karoo age Zambezi Rift, allow recognition of a protracted multi-stage evolution, from the Mesoproterozoic to culminating in the Early. Palaeozoic Pan-African Orogeny. Tectono metamorphic events recognised in the Chewore Inliers occur throughout the Zambezi Belt and alternative models for the history of the Zambezi Belt are presented.Four terranes are recognised in the Chewore Inliers, and contacts between them are observed or inferred to be ductile thrusts, along which juxtaposition of the terranes occurred late in the Pan-African metamorphic cycle (M2, at 526 Ma). The oldest portion of the inliers is a metamorphosed sequence of mafic and ultramafic gneisses with an age of 1393 Ma. These constitute what is tentatively called the Ophiolite Terrane, together with closely associated high-P/moderate T schists possibly represents a suture. The other three terranes (Granulite, Zambezi and Quartzite Terranes) experienced a common history of tectonothermal events but show variable degrees of reworking during the latest tectono metamorphic event (M2). Concordant granitic orthogneisses were emplaced at 1087 Ma into supracrustal sequences. No Pan-African supracrustals are recognised in the Chewore Inliers, which are wholly basement gneisses and quartzites that have been reworked during successive orogenies including the Pan-African Orogeny.A high-T/low-P metamorphic event (M1 of possibly 1068–1071 Ma age, with a minimum age of 943 Ma, was responsible for totally recrystallizing the Granulite Terrane during south to north tectonic transport. M1 mineral parageneses are only preserved as inclusion phases and overgrown fabrics in the other terranes. These other terranes were pervasively recrystallised at high-P/moderate T conditions accompanying a clockwise P-T path related to northeast over southwest tectonic transport and crustal over-thickening during the Pan-African metamorphic cycle (M2) at approximately 526 Ma. Reworking of the Granulite Terrane during M2 was minor, leaving M1 fabrics and mineral assemblages preserved with little recrystallization. M2 orogenesis culminated in the juxtaposition of the terranes, rapid uplift through the thermal peak and eventual slow cooling accompanying a multitude of post-tectonic intrusions; pegmatites at 480 Ma, the Chewore Ultramafic Complex and dolerite dykes. The 830 Ma tectonothermal event involving pervasive syn-tectonic granitic orthogneisses in the south Zambezi Belt is not recognised in the Chewore Inliers, suggesting a localised, possibly extensional, regime restricted to the southern part of the Zambezi Belt at 830 Ma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号