首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The model of Paillard and Parrenin (Earth Planet Sci Lett 227(3–4):263–271, 2004) has been recently optimized for the last eight glacial cycles, leading to two different relaxation models with model-data correlations between 0.8 and 0.9 (García-Olivares and Herrero (Clim Dyn 1–25, 2012b)). These two models are here used to predict the effect of an anthropogenic CO 2 pulse on the evolution of atmospheric CO 2, global ice volume and Antarctic ice cover during the next 300 kyr. The initial atmospheric CO 2 condition is obtained after a critical data analysis that sets 1300 Gt as the most realistic carbon Ultimate Recoverable Resources (URR), with the help of a global compartmental model to determine the carbon transfer function to the atmosphere. The next 20 kyr will have an abnormally high greenhouse effect which, according to the CO 2 values, will lengthen the present interglacial by some 25 to 33 kyr. This is because the perturbation of the current interglacial will lead to a delay in the future advance of the ice sheet on the Antarctic shelf, causing that the relative maximum of boreal insolation found 65 kyr after present (AP) will not affect the developing glaciation. Instead, it will be the following insolation peak, about 110 kyr AP, which will find an appropriate climatic state to trigger the next deglaciation.  相似文献   

2.
Various experiments have been conducted using theLouvain-la-Neuve two-dimensional Northern Hemisphereclimate model (LLN 2-D NH) to simulate climate for thenext 130 kyr into the future. Simulations start withvalues representing the present-day NorthernHemisphere ice sheet, using different scenarios forfuture CO2 concentrations. The sensitivity of themodel to the initial size of the Greenland ice sheet,and to possible impacts of human activities, has alsobeen tested. Most of the natural scenarios indicatethat: (i) the climate is likely to experience a longlasting (50 kyr) interglacial; (ii) the next glacialmaximum is expected to be most intense at around 100kyr after present (AP), with a likely interstadial at60 kyr AP; and (iii) after 100 kyr AP continentalice rapidly melts, leading to an ice volume minimum 20kyr later. However, the amplitude and, to a lesserextent, the timing of future climatic changes dependon the CO2 scenario and on the initial conditionsrelated to the assumed present-day ice volume.According to our modelling experiments, man'sactivities over the next centuries may significantlyaffect the ice-sheet's behaviour for approximately thenext 50 kyr. Finally, the existence of thresholds inCO2 and insolation, earlier shown to besignificant for the past, is confirmed to be alsoimportant for the future.  相似文献   

3.
 The Louvain-la-Neuve climate model (here referred to as the LLN 2-D model has been used extensively to simulate the Northern Hemisphere ice volume under both the insolation and CO2 forcings. The period analysed here covers the last 200 ky. First, sensitivity analyses to constant CO2 concentration were performed. The model was accordingly forced by insolation changes only, the CO2 concentration being kept constant to respectively 210, 250 and 290 ppmv. Results show that the simulated ice volume variations are comparable to the geological reconstructions only when the CO2 concentration is low (210 ppmv) and that the sensitivity of the simulated Northern Hemisphere ice volume to CO2 is not constant through time. Second, three CO2 reconstructions were used to force the LLN 2-D model in addition to insolation. Results show (1) a better agreement with the SPECMAP oxygen isotope time series, in particular as far as the amplitude of the signal is concerned, and (2) that the simulated Northern Hemisphere ice volume is not very sensitive to the slight differences between these three reconstructions.  相似文献   

4.
The multi-component “green” McGill Paleoclimate Model (MPM), which includes interactive vegetation, is used to simulate the next glacial inception under orbital and prescribed atmospheric CO2 forcing. This intermediate complexity model is first run for short-term periods with an increasing atmospheric CO2 concentration; the model's response is in general agreement with the results of GCMs for CO2 doubling. The green MPM is then used to derive projections of the climate for the next 100 kyr. Under a constant CO2 level, the model produces three types of evolution for the ice volume: an imminent glacial inception (low CO2 levels), a glacial inception in 50 kyr (CO2 levels of 280 or 290 ppm), or no glacial inception during the next 100 kyr (CO2 levels of 300 ppm and higher). This high sensitivity to the CO2 level is due to the exceptionally weak future variations of the summer insolation at high northern latitudes. The changes in vegetation re-inforce the buildup of ice sheets after glacial inception. Finally, if an initial global warming episode of finite duration is included, after which the atmospheric CO2 level is assumed to stabilize at 280, 290 or 300 ppm, the impact of this warming is seen only in the first 5 kyr of the run; after this time the response is insensitive to the early warming perturbation.  相似文献   

5.
We study the mechanisms of glacial inception by using the Earth system model of intermediate complexity, CLIMBER-2, which encompasses dynamic modules of the atmosphere, ocean, biosphere and ice sheets. Ice-sheet dynamics are described by the three-dimensional polythermal ice-sheet model SICOPOLIS. We have performed transient experiments starting at the Eemiam interglacial, at 126 ky BP (126,000 years before present). The model runs for 26 kyr with time-dependent orbital and CO2 forcings. The model simulates a rapid expansion of the area covered by inland ice in the Northern Hemisphere, predominantly over Northern America, starting at about 117 kyr BP. During the next 7 kyr, the ice volume grows gradually in the model at a rate which corresponds to a change in sea level of 10 m per millennium. We have shown that the simulated glacial inception represents a bifurcation transition in the climate system from an interglacial to a glacial state caused by the strong snow-albedo feedback. This transition occurs when summer insolation at high latitudes of the Northern Hemisphere drops below a threshold value, which is only slightly lower than modern summer insolation. By performing long-term equilibrium runs, we find that for the present-day orbital parameters at least two different equilibrium states of the climate system exist—the glacial and the interglacial; however, for the low summer insolation corresponding to 115 kyr BP, we find only one, glacial, equilibrium state, while for the high summer insolation corresponding to 126 kyr BP only an interglacial state exists in the model.
Reinhard CalovEmail:
  相似文献   

6.
Sea-level records show large glacial-interglacial changes over the past million years, which on these time scales are related to changes of ice volume on land. During the Pleistocene, sea-level changes induced by ice volume are largely caused by the waxing and waning of the large ice sheets in the Northern Hemisphere. However, the individual contributions of ice in the Northern and Southern Hemisphere are poorly constrained. In this study, for the first time a fully coupled system of four 3-D ice-sheet models is used, simulating glaciations on Eurasia, North America, Greenland and Antarctica. The ice-sheet models use a combination of the shallow ice and shelf approximations to determine sheet, shelf and sliding velocities. The framework consists of an inverse forward modelling approach to derive a self-consistent record of temperature and ice volume from deep-sea benthic δ18O data over the past 1 million years, a proxy for ice volume and temperature. It is shown that for both eustatic sea level and sea water δ18O changes, the Eurasian and North American ice sheets are responsible for the largest part of the variability. The combined contribution of the Antarctic and Greenland ice sheets is about 10 % for sea level and about 20 % for sea water δ18O during glacial maxima. However, changes in interglacials are mainly caused by melt of the Greenland and Antarctic ice sheets, with an average time lag of 4 kyr between melt and temperature. Furthermore, we have tested the separate response to changes in temperature and sea level for each ice sheet, indicating that ice volume can be significantly influenced by changes in eustatic sea level alone. Hence, showing the importance of a simultaneous simulation of all four ice sheets. This paper describes the first complete simulation of global ice-volume variations over the late Pleistocene with the possibility to model changes above and below present-day ice volume, constrained by observations of benthic δ18O proxy data.  相似文献   

7.
The sensitivity of the last glacial-inception (around 115 kyr BP, 115,000 years before present) to different feedback mechanisms has been analysed by using the Earth system model of intermediate complexity CLIMBER-2. CLIMBER-2 includes dynamic modules of the atmosphere, ocean, terrestrial biosphere and inland ice, the last of which was added recently by utilising the three-dimensonal polythermal ice-sheet model SICOPOLIS. We performed a set of transient experiments starting at the middle of the Eemiam interglacial and ran the model for 26,000 years with time-dependent orbital forcing and observed changes in atmospheric CO2 concentration (CO2 forcing). The role of vegetation and ocean feedback, CO2 forcing, mineral dust, thermohaline circulation and orbital insolation were closely investigated. In our model, glacial inception, as a bifurcation in the climate system, appears in nearly all sensitivity runs including a run with constant atmospheric CO2 concentration of 280 ppmv, a typical interglacial value, and simulations with prescribed present-day sea-surface temperatures or vegetation cover—although the rate of the growth of ice-sheets growth is smaller than in the case of the fully interactive model. Only if we run the fully interactive model with constant present-day insolation and apply present-day CO2 forcing does no glacial inception appear at all. This implies that, within our model, the orbital forcing alone is sufficient to trigger the interglacial–glacial transition, while vegetation, ocean and atmospheric CO2 concentration only provide additional, although important, positive feedbacks. In addition, we found that possible reorganisations of the thermohaline circulation influence the distribution of inland ice.  相似文献   

8.
Glacial geologic studies in the Southern Hemisphere (SH) mid-latitudes (40–54°S) indicate renewed glacial activity in southern South America (Patagonia) and New Zealand’s (NZ) South Island starting at ~7 kyr, the so-called neoglaciation. Available data indicate that neoglacial advances in these regions occurred during a rising trend in atmospheric CO2 and CH4 concentrations, lower-than-present but increasing summer insolation and seasonality contrasts. In this paper we examine the climatological context in which neoglaciations occurred through analysis of the complete Paleoclimate Modelling Inter-comparison Project (PMIP2) database of simulations at 6 kyr for the SH. We observe that the amplitude of the annual insolation cycle in the SH did not change significantly at 6 kyr compared to the pre-industrial values, the largest difference occurring in autumn (MAM, negative anomalies) and spring (SON, positive anomalies). The simulated changes in temperatures over the SH respond to the insolation changes, with a 1–2 month delay over the oceans. This results in a reduced amplitude of the annual cycle of temperature and precipitation over most continental regions, except over Patagonia and NZ, that show a slight increase. In contrast, large-scale circulation features, such as the low and upper level winds and the subtropical anticyclones show an amplified annual cycle, as a direct response to the increased/decreased insolation during the transitional seasons SON/MAM. In the annual mean, there is a small but consistent equatorward shift of the latitude of maximum wind speed of 1–3° over the entire SH, which results in a small increase of wind speed over the South Pacific and Atlantic Oceans north of ~50°S and a widespread decline south of 50°S. PMIP2 simulations for 6 kyr, indicate that in the annual mean, the SH mid-latitudes were colder, wetter and with stronger winds north of about 50°S. These conditions are consistent with the observed neoglacial advances in the region, as well as with terrestrial paleoclimate records from Patagonia that indicate cooling and a multi-millennial rising trend in Southern Westerly Wind intensity starting at ~7.8 kyr.  相似文献   

9.
A new complex earth system model consisting of an atmospheric general circulation model, an ocean general circulation model, a three-dimensional ice sheet model, a marine biogeochemistry model, and a dynamic vegetation model was used to study the long-term response to anthropogenic carbon emissions. The prescribed emissions follow estimates of past emissions for the period 1751–2000 and standard IPCC emission scenarios up to the year 2100. After 2100, an exponential decrease of the emissions was assumed. For each of the scenarios, a small ensemble of simulations was carried out. The North Atlantic overturning collapsed in the high emission scenario (A2) simulations. In the low emission scenario (B1), only a temporary weakening of the deep water formation in the North Atlantic is predicted. The moderate emission scenario (A1B) brings the system close to its bifurcation point, with three out of five runs leading to a collapsed North Atlantic overturning circulation. The atmospheric moisture transport predominantly contributes to the collapse of the deep water formation. In the simulations with collapsed deep water formation in the North Atlantic a substantial cooling over parts of the North Atlantic is simulated. Anthropogenic climate change substantially reduces the ability of land and ocean to sequester anthropogenic carbon. The simulated effect of a collapse of the deep water formation in the North Atlantic on the atmospheric CO2 concentration turned out to be relatively small. The volume of the Greenland ice sheet is reduced, but its contribution to global mean sea level is almost counterbalanced by the growth of the Antarctic ice sheet due to enhanced snowfall. The modifications of the high latitude freshwater input due to the simulated changes in mass balance of the ice sheet are one order of magnitude smaller than the changes due to atmospheric moisture transport. After the year 3000, the global mean surface temperature is predicted to be almost constant due to the compensating effects of decreasing atmospheric CO2 concentrations due to oceanic uptake and delayed response to increasing atmospheric CO2 concentrations before.  相似文献   

10.
We investigate the large-scale oceanic features determining the future ice shelf–ocean interaction by analyzing global warming experiments in a coarse resolution climate model with a comprehensive ocean component. Heat and freshwater fluxes from basal ice shelf melting (ISM) are parameterized following Beckmann and Goosse [Ocean Model 5(2):157–170, 2003]. Melting sensitivities to the oceanic temperature outside of the ice shelf cavities are varied from linear to quadratic (Holland et al. in J Clim 21, 2008). In 1% per year CO2-increase experiments the total freshwater flux from ISM triples to 0.09 Sv in the linear case and more than quadruples to 0.15 Sv in the quadratic case after 140 years at which 4 × 280 ppm = 1,120 ppm was reached. Due to the long response time of subsurface temperature anomalies, ISM thereafter increases drastically, if CO2 concentrations are kept constant at 1,120 ppm. Varying strength of the Antarctic circumpolar current (ACC) is crucial for ISM increase, because southward advection of heat dominates the warming along the Antarctic coast. On centennial timescales the ACC accelerates due to deep ocean warming north of the current, caused by mixing of heat along isopycnals in the Southern Ocean (SO) outcropping regions. In contrast to previous studies we find an initial weakening of the ACC during the first 150 years of warming. This purely baroclinic effect is due to a freshening in the SO which is consistent with present observations. Comparison with simulations with diagnosed ISM but without its influence on the ocean circulation reveal a number of ISM-related feedbacks, of which a negative ISM-feedback, due to the ISM-related local oceanic cooling, is the dominant one.  相似文献   

11.
The response of the climate at high northern latitudes to slowly changing external forcings was studied in a 9,000-year long simulation with the coupled atmosphere-sea ice-ocean-vegetation model ECBilt-CLIO-VECODE. Only long-term changes in insolation and atmospheric CO2 and CH4 content were prescribed. The experiment reveals an early optimum (9–8 kyr BP) in most regions, followed by a 1–3°C decrease in mean annual temperatures, a reduction in summer precipitation and an expansion of sea-ice cover. These results are in general agreement with proxy data. Over the continents, the timing of the largest temperature response in summer coincides with the maximum insolation difference, while over the oceans, the maximum response is delayed by a few months due to the thermal inertia of the oceans, placing the strongest cooling in the winter half year. Sea ice is involved in two positive feedbacks (ice-albedo and sea-ice insulation) that lead regionally to an amplification of the thermal response in our model (7°C cooling in Canadian Arctic). In some areas, the tundra-taiga feedback results in intensified cooling during summer, most notably in northern North America. The simulated sea-ice expansion leads in the Nordic Seas to less deep convection and local weakening of the overturning circulation, producing a maximum winter temperature reduction of 7°C. The enhanced interaction between sea ice and deep convection is accompanied by increasing interannual variability, including two marked decadal-scale cooling events. Deep convection intensifies in the Labrador Sea, keeping the overall strength of the thermohaline circulation stable throughout the experiment.  相似文献   

12.
Cr, Fe, Rb, Ba and U were determined by inductively coupled plasma sector field mass spectrometry (ICP-SFMS) in various sections of the 3,270 m deep ice core recently drilled at Dome C on the high East Antarctic plateau as part of the EPICA program. The sections were dated from 263 kyr bp (depth of 2,368 m) to 672 kyr bp (depth of 3,062 m). When combined with the data previously obtained by Gabrielli and co-workers for the upper 2,193 m of the core, it gives a detailed record for these elements during a 672-kyr period from the Holocene back to Marine Isotopic Stage (MIS) 16.2. Concentrations and fallout fluxes of all elements are found to be highly variable with low values during the successive interglacial periods and much higher values during the coldest periods of the last eight climatic cycles. Crustal enrichment factors indicates that rock and soil dust is the dominant source for Fe, Rb, Ba and U whatever the period and for Cr during the glacial maxima. The relationship between Cr, Fe, Rb, Ba and U concentrations and the deuterium content of the ice appears to be similar before and after the Mid-Brunhes Event (MBE, around 430 kyr bp). Mean concentration values observed during the successive interglacials from the Holocene to MIS 15.5 appear to vary from one interglacial to another at least for part of the elements. Concentrations observed during the successive glacial maxima suggest a decreasing trend from the most recent glacial maxima (MIS 2.2 and 4.2) to the oldest glacial maxima such as MIS 14.2, 14.4 and 16.2, which could be linked with changes in the size distribution of dust particles transported from mid-latitude areas to the East Antarctic ice cap.  相似文献   

13.
 The atmospheric CO2 concentrations have been reconstructed over the past 600 ka based on regression between the Vostok CO2 data and the SPECMAP oxygen isotope values. A lag of 4.5 ka (CO2 preceding δ18O) gives the best results. A polynomial of order 5 explains 66% of the Vostok CO2 variance over the last 220 ka. The Northern Hemisphere ice-sheet volume was simulated over the past 575 ka using the LLN 2-D model, forced by insolation and these statistically reconstructed atmospheric CO2 concentrations. The simulated ice volume fluctuations resemble the deep-sea oxygen isotope variations. CO2 of interglacial level is necessary for explaining both the interglacial at oxygen isotopic stage 11 and our present-day interglacial.  相似文献   

14.
The timing and nature of ice sheet variations on Greenland over the last ~5 million years remain largely uncertain. Here, we use a coupled climate-vegetation-ice sheet model to determine the climatic sensitivity of Greenland to combined sets of external forcings and internal feedbacks operating on glacial-interglacial timescales. In particular, we assess the role of atmospheric pCO2, orbital forcing, and vegetation dynamics in modifying thresholds for the onset of glaciation in late Pliocene and Pleistocene. The response of circum-Arctic vegetation to declining levels of pCO2 (from 400 to 200 ppmv) and decreasing summer insolation includes a shift from boreal forest to tundra biomes, with implications for the surface energy balance. The expansion of tundra amplifies summer surface cooling and heat loss from the ground, leading to an expanded summer snow cover over Greenland. Atmospheric and land surface fields respond to forcing most prominently in late spring-summer and are more sensitive at lower Pleistocene-like levels of pCO2. We find cold boreal summer orbits produce favorable conditions for ice sheet growth, however simulated ice sheet extents are highly dependent on both background pCO2 levels and land-surface characteristics. As a result, late Pliocene ice sheet configurations on Greenland differ considerably from late Pleistocene, with smaller ice caps on high elevations of southern and eastern Greenland, even when orbital forcing is favorable for ice sheet growth.  相似文献   

15.
It is investigated how abrupt changes in the North Atlantic (NA) thermohaline circulation (THC) affect the terrestrial carbon cycle. The Lund–Potsdam–Jena Dynamic Global Vegetation Model is forced with climate perturbations from glacial freshwater experiments with the ECBILT-CLIO ocean–atmosphere–sea ice model. A reorganisation of the marine carbon cycle is not addressed. Modelled NA THC collapses and recovers after about a millennium in response to prescribed freshwater forcing. The initial cooling of several Kelvin over Eurasia causes a reduction of extant boreal and temperate forests and a decrease in carbon storage in high northern latitudes, whereas improved growing conditions and slower soil decomposition rates lead to enhanced storage in mid-latitudes. The magnitude and evolution of global terrestrial carbon storage in response to abrupt THC changes depends sensitively on the initial climate conditions. These were varied using results from time slice simulations with the Hadley Centre model HadSM3 for different periods over the past 21 kyr. Changes in terrestrial storage vary between −67 and +50 PgC for the range of experiments with different initial conditions. Simulated peak-to-peak differences in atmospheric CO2 are 6 and 13 ppmv for glacial and late Holocene conditions. Simulated changes in δ13C are between 0.15 and 0.25‰. These simulated carbon storage anomalies during a NA THC collapse depend on their magnitude on the CO2 fertilisation feedback mechanism. The CO2 changes simulated for glacial conditions are compatible with available evidence from marine studies and the ice core CO2 record. The latter shows multi-millennial CO2 variations of up to 20 ppmv broadly in parallel with the Antarctic warm events A1 to A4 in the South and cooling in the North.  相似文献   

16.
In a previous dynamical model the late Cenozoic climate variations were simulated, taking into account free and forced variations of atmospheric carbon dioxide acting in concert with changes in global ice mass and the deep ocean thermal state, all under the influence of the known earth-orbital radiative changes. This model is now extended by adding another relevant variable, bedrock/asthenosphere depression, including its associated ice-calving effects. Within the context of this extended model we (1) demonstrate the main results of previous bedrock/ice sheet models in what we believe is the simplest possible manner, (2) show how these previous models can exhibit the mid-Pleistocene transition with the inclusion of CO2 effects, (3) discuss the limitations of these previous bedrock models, and (4) illustrate the possibility of removing some of these limitations and accounting for further aspects of the paleoclimate record by using the full dynamical system that includes forced and free effects of CO2, as well as effects of bedrock depression and Milankovitch forcing. As one example of a new possibility, with bedrock effects included in the full system we can obtain a solution characterized by irregularly spaced, intermittent episodes in which the behavior is dominated either by near-40 kyr period oscillations or by near-100 kyr periods (such as prevailed over the Pleistocene).  相似文献   

17.
Recent advances in the development and applications of the author's Hemispheric Thermodynamic Climate Model are presented. The model has been adapted to simulate the climates from 18 kyr BP to the present, and to study the effect of the ice sheets, the insolation anomalies and the atmospheric CO2 content on such climates. The surface ocean temperature anomaly is also simulated in the model, and comparison with values of CLIMAP (1981) for 18 kyr BP shows some agreement. A long series of numerical experiments have lead to the improvement in prediction of the monthly surface temperature anomalies. Verification of 93 predictions over the contiguous United States of America shows a useful skill in the predictions. The model is being adapted for forecasting in the Mexican Republic. Experiments to improve the skill in prediction of surface ocean temperature anomalies in the Northern Hemisphere have been carried out, and using a fine resolution grid, the model has been used to simulate the annual cycle of the normal sea surface temperatures in the Gulf of Mexico, that agrees well with observations.This paper was presented at the International Conference on Modelling of Global Climate Change and Variability, held in Hamburg 11–15 September 1989 under the auspices of the Meteorological Institute of the University of Hamburg and the Max Planck Institute for Meteorology. Guest Editor for these papers is Dr. L. Dümenil  相似文献   

18.
We report fossil coral records from the Seychelles comprising individual time slices of 14–20 sclerochronological years between 2 and 6.2 kyr BP to reconstruct changes in the seasonal cycle of western Indian Ocean sea surface temperature (SST) compared to the present (1990–2003). These reconstructions allowed us to link changes in the SST bimodality to orbital changes, which were causing a reorganization of the seasonal insolation pattern. Our results reveal the lowest seasonal SST range in the Mid-Holocene (6.2–5.2 kyr BP) and around 2 kyr BP, while the highest range is observed around 4.6 kyr BP and between 1990 and 2003. The season of maximum temperature shifts from austral spring (September to November) to austral autumn (March to May), following changes in seasonal insolation over the past 6 kyr. However, the changes in SST bimodality do not linearly follow the insolation seasonality. For example, the 5.2 and 6.2 kyr BP corals show only subtle SST differences in austral spring and autumn. We use paleoclimate simulations of a fully coupled atmosphere–ocean general circulation model to compare with proxy data for the Mid-Holocene around 6 kyr BP. The model results show that in the Mid-Holocene the austral winter and spring seasons in the western Indian Ocean were warmer while austral summer was cooler. This is qualitatively consistent with the coral data from 6.2 to 5.2 kyr BP, which shows a similar reduction in the seasonal amplitude compared to the present day. However, the pattern of the seasonal SST cycle in the model appears to follow the changes in insolation more directly than indicated by the corals. Our results highlight the importance of ocean–atmosphere interactions for Indian Ocean SST seasonality throughout the Holocene. In order to understand Holocene climate variability in the countries surrounding the Indian Ocean, we need a much more comprehensive analysis of seasonally resolved archives from the tropical Indian Ocean. Insolation data alone only provides an incomplete picture.  相似文献   

19.
Summary For astronomical seasons, Rubincam insolation deviations at latitude 65° N varied from 218.50 Wm−2 to 225.75 Wm−2 (3%). The periodicity of the insolation cycles varied from 36.7 Kyr to 44.7 Kyr (20%) due to phase shift. Phase shift of insolation variations can induce asymmetry of the insolation cycles, permitting rapid melting and prolonged glaciation of ice sheets to occur. For instance, an abnormal decrease of the insolation frequency during the longer period of glacial interval would prolong glaciation into deep ice age. In this study, we apply Rubincam’s insolation equations to investigate the phase shift effect of insolation variations on climate change. Using complex transforms of the changing insolation, we have detected a phase modulation signal in the insolation variations. As a result, an especially new and interesting series of the phase-related insolation pulsation is established. The phase modulated insolation is then introduced as a forcing function into energy balance climate models. Results of model computations shed new insights into the spectrum of the paleoclimatic proxy-data. It is shown that phase modulation of the insolation may provide an appropriate and complete external forcing mechanism to which the climate system would respond. The 100 Kyr cycle of the frequency modulation of the Rubincam’s insolation variations does seem adequate to change the climate. Received July 16, 1997 Revised May 18, 1998  相似文献   

20.
Abstract

Present‐day results and CO2 sensitivity are described for two versions of a global climate model (genesis) with and without sea‐ice dynamics. Sea‐ice dynamics is modelled using the cavitating‐fluid method of Flato and Hibler (1990, 1992). The atmospheric general circulation model originated from the NCAR Community Climate Model version 1, but is heavily modified to include new treatments of clouds, penetrative convection, planetary boundary‐layer mixing, solar radiation, the diurnal cycle and the semi‐Lagrangian transport of water vapour. The surface models include an explicit model of vegetation (similar to BATS and SiB), multilayer models of soil, snow and sea ice, and a slab ocean mixed layer.

When sea‐ice dynamics is turned off, the CO2‐induced warming increases drastically around ~60–80°S in winter and spring. This is due to the much greater (and unrealistic) compactness of the Antarctic ice cover without dynamics, which is reduced considerably when CO2 is doubled and exposes more open ocean to the atmosphere. With dynamics, the winter ice is already quite dispersed for 1 × CO2 so that its compactness does not decrease as much when CO2 is doubled.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号