首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
Five Devonian plutons (West Charleston, Echo Pond, Nulhegan, Derby, and Willoughby) that constitute the Northeast Kingdom batholith in Vermont show wide ranges in elemental abundances and ratios consistent with major crustal contributions during their evolution. The batholith consists of metaluminous quartz gabbro, diorite and quartz monzodiorite, peraluminous granodiorite and granite, and strongly peraluminous leucogranite. Contents of major elements vary systematically with increasingSiO<2 (48 to 77 wt.%). The batholith has calc-alkaline features, for example a Peacock index of 57, and values for K<2O/Na2O (<1), K/Rb (60–350), Zr/Hf (30–50), Nb/Ta (2–22), Hf/Ta (up to 10), and Rb/Zr (<2) in the range of plutonic rocks found in continental magmatic ares. Wide diversity and high values of minor- and trace-element ratios, including Th/Ta (0.5–22), Th/Yb (0–27), Ba/La (0–80), etc., are attributed to intracrustal contributions. Chondrite-normalized REE patterns of metaluminous and relatively mafic intrusives have slightly negative slopes (La/Ybcn<10) and negative Eu anomalies are small orabsent. The metaluminous to peraluminous inter-mediate plutons are relatively enriched in the light REE (La/Ybcn>40) and have small negative Eu anomalies. The strongly peraluminous Willoughby leucogranite has unique trace-element abundances and ratios relative to the rest of the batholith, including low contents of Hf, Zr, Sr, and Ba, low values of K/Rb (80–164), Th/Ta (<9), Rb/Cs (7–40), K/Cs (0.1–0.5), Ce/Pb (0.5–4), high values of Rb/Sr (1–18) low to moderate REE contents and light-REE enriched patterns (with small negative Eu anomalies). Flat REE patterns (with large negative Eu anomalies) are found in a small, hydrothermally-altered area characterized by high abundances of Sn (up to 26 ppm), Rb (up to 670 ppm), Li (up to 310 ppm), Ta (up to 13.1 ppm), and U (up to 10 ppm). There is no single mixing trend, fractional crystallization assemblage, or assimilationscheme that accounts for all trace elementvariations from quartz gabbro to granite in the Northeast Kingdom batholith. The plutons originated by mixing mantle-derived components and crustal melts generated at different levels in the heterogeneous lithosphere in a continental collisional environment. Hybrid rocks in the batholith evolved by fractional crystallization and assimilation of country rocks (<50% by mass), and some of the leucogranitic rocks were subsequently disturbed by a mild hydrothermal event that resulted in the deposition of small amounts of sulfide minerals.  相似文献   

2.
The Suguti volcanic rocks of the southern Musoma-Mara greenstone belt in northern Tanzania comprise mainly of a bimodal suite of tholeiitic basalts-basaltic andesites and calc-alkaline rhyolites with a subordinate amount of intermediate rocks. Zircon U–Pb and whole rock Sm–Nd geochronology suggests that the two suites are cogenetic and were emplaced at 2755 ± 1 Ma with a common initial Nd value of 2.1.The tholeiitic basalts are characterised by relatively flat chondrite-normalised REE patterns with La/YbCN ratios of 0.8–1.6 (mean = 1.0). The basalts also exhibit negative Ti and Nb anomalies in primitive mantle-normalised multi-element diagrams. The flat REE patterns, the presence of prominent negative Nb anomalies and the positive initial Nd value of 2.1 suggest that the basalts were formed by low pressure melting of a mantle wedge in an active continental margin setting.Compared to the tholeiitic basalts, the calc-alkaline rhyolites are characterised by low abundances of the transition elements (Cr < 20 ppm, Ni < 20 ppm) and moderately high HFSE (e.g. Zr = 111–250 ppm) abundances. The rhyolites display strongly fractionated, slightly concave upward chondrite normalised REE patterns that are characterised by a slight depletion of the MREE relative to the HREE and minor to large negative Eu anomalies (Eu/Eu* = 0.3–0.9) and their epsilon Nd values range from +2.05 to +2.33. The depletion of the MREE relative to the HREE is an indication of fractionation of clinopyroxene and hornblende during petrogenesis whereas the negative Eu anomalies indicate plagioclase fractionation. The rhyolites are interpreted to have formed from the parental magma of the basalts by fractional crystallization and/or partial melting of a relatively young basaltic crust.  相似文献   

3.
A detailed study of the florencite and xenotime assemblage from quartz veins of Au-REE occurrences in the Subpolar Urals allowed the REE fractionation and distribution of REE mixtures in the crystal structure to be characterized. In minerals of selective composition, isomorphic mixtures of LREE and HREE are divided into lanthanum Lasg (La-Pr) and samarium Smsg (Nd-Eu) subgroups in florencite and gadolinium Gdsg (Gd-Dy) and ytterbium Ybsg (Ho-Lu) subgroups in xenotime. Concentrations of elements from these subgroups are inversely proportional to each other. Each florencite or xenotime crystal is characterized by several mineral varieties: xenotime-(Y) and Gd-bearing xenotime-(Y), florencite-(Sm), -(Nd), and -(Ce); they are selectively distributed by growth zones and pyramids of the crystal with formation of direct and inverse zoning. In both cases, cores of the crystals are enriched in HREE. The correlation between REEs, Y, and such trace elements as As, S, Ca, Sr, U, and Sc is established. REE deportment is considered in minerals formed as products of primary crystallization and hydrothermal redeposition. The REE fractionation is interpreted in terms of quantum mechanics.  相似文献   

4.
The 1.0-1.2 b.y. old rocks of the southeastern Llano Uplift, Texas include a 7 km thick sequence of amphibolite-grade, stratified, mafic metasedimentary rock (Packsaddle Schist) which is intruded by a varied suite of syntectonic and late-kinematic intrusions. The metasediments contain large blocks of serpentinized peridotite (Coal Creek serpentinite) and coarse hornblendite and metagabbro. Prior to the end of maximum deformation, the sequence was intruded by low to medium-K2O tholeiitic basalts (0.40-0.72% K2O). Late-kinematic low-K2O tholeiitic basalts (0.38-0.40% K2O) were intruded as dikes into the folded rocks. The Coal Creek serpentinite contains both syntectonic and late-kinematic low-K2O tholeiitic metabasalts (0.13–0.36% K2O). The Llano metabasalts and metagabbros are characterized by low Cr (67–378 ppm) and Ni (36–170 ppm), variable Rb (1.5–14.7 ppm), Sr (140–1229 ppm), TiO2 (0.40–2.20%), P (568–2707 ppm), and Zr (18–230 ppm), and Y (16–45 ppm), Co (40–57 ppm), and Sc (36–49 ppm) similar to modern MORB. The metabasalts have La abundances from 7 to 39 times chondritic and exhibit light REE enrichment with ¦La/Sm¦N from 1.13 to 1.45 and ¦La/Yb¦N from 1.12 to 2.99. The metabasalts show a strong correlation of increasing Zr, Ti, and Y and decreasing Eu/Eu* (1.56–1.00), CaO/TiO2, Al2O3/TiO2, and MgO/ MgO+FeO* with increasing REE enrichment (LaN). The Llano metabasalts and metagabbros have initial 87Sr/86Sr=0.7029±0.0001. A likely petrogenetic model for these metabasalts is an island arc in which events from early arc development to final late-kinematic intrusion were dominated by tholeiitic volcanism and intrusion. The chemical systematics of the Llano mafic metaigneous rocks suggest they are products of fractionation of olivine, clinopyroxene, and plagioclase from more primitive basaltic magmas generated beneath the island arc complex.  相似文献   

5.
皖北新元古界望山组灰岩微量元素地球化学特征*   总被引:2,自引:0,他引:2       下载免费PDF全文
为研究皖北新元古界望山组灰岩地球化学特征及地质背景,对该地区灰岩进行了系统的岩石学和微量元素地球化学测试。研究结果表明:望山组灰岩中,元素U、Pb、Sr、Sm富集,Nb、Pr、Zr、Hf明显亏损;稀土总量偏低(6.68~42.78 μg/g),轻稀土略亏损,NdSN/YbSN值在0.65~0.91之间变化,轻重稀土分异微弱,灰岩样品均具有程度不同的La和Y正异常。U、Th、Ce等元素特征反映了研究区望山组形成于缺氧的水体环境,Sr/Ba、Sr/Cu值反映了望山组灰岩形成于盐度较大的海水环境和干旱的气候条件;La-Th-Sc和Th-Sc-Zr/10图解指示望山组灰岩可能形成于大陆岛弧环境。  相似文献   

6.
In this study, the mobilization, redistribution, and fractionation of trace and rare earth elements (REE) during chemical weathering in mid-ridge (A), near mountaintop (B), and valley (C) profiles (weak, weak to moderate, and moderate to intense chemical weathering stage, respectively), are characterized. Among the trace elements, U and V were depleted in the regolith in all three profiles, Sr, Nb, Ta, Zr, and Hf displayed slight gains or losses, and Th, Rb, Cs, and Sc remained immobile. Mn, Ba, Zn, Cu, and Cr were enriched at the regolith in profiles A and B, but depleted in profile C. Mn, Pb, and Co were also depleted in the saprock and fractured shale zones in profiles A and B and enriched in profile C. REEs were enriched in the regolith and depleted at the saprock zone in profiles A and B and depleted along profile C. Mobility of trace and REEs increased with increasing weathering intensity. Normalized REE patterns based on the parent shale revealed light REE (LREE) enrichment, middle REE (MREE), and heavy REE (HREE) depletion patterns. LREEs were less mobile compared with MREEs and HREEs, and this differentiation increased with increasing weathering degree. Positive Ce anomalies were higher in profile C than in profiles A and B. The Ce fractionated from other REE showed that Ce changed from trivalent to tetravalent (as CeO2) under oxidizing conditions. Minimal REE fractionation was observed in the saprock zone in profiles A and B. In contrast, more intense weathering in profile C resulted in preferential retention of LREE (especially Ce), leading to considerable LREE/MREE and LREE/HREE fractionation. (La/Yb)N and (La/Sm)N ratios displayed maximum values in the saprock zone within low pH values. Findings demonstrate that acidic solutions can mobilize REEs and result in leaching of REEs out of the highly acidic portions of the saprock material and transport downward into fractured shale. The overall behavior of elements in the three profiles suggests that solution pH, as well as the presence of primary and secondary minerals, play important roles in the mobilization and redistribution of trace elements and REEs during black shale chemical weathering.  相似文献   

7.
Kajan subvolcanic rocks in the Urumieh–Dokhtar magmatic arc (UDMA), Central Iran, form a Late Miocene-Pliocene shallow-level intrusion. These subvolcanics correspond to a variety of intermediate and felsic rocks, comprising quartz diorite, quartz monzodiorite, tonalite and granite. These lithologies are medium-K calc-alkaline, with SiO2 (wt.%) varying from 52% (wt.%) to 75 (wt.%). The major element chemical data also show that MgO, CaO, TiO2, P2O5, MnO, Al2O3 and Fe2O3 define linear trends with negative slopes against SiO2, whilst Na2O and K2O are positively correlated with silica. Contents of incompatible trace elements (e.g. Ba, Rb, Nb, La and Zr) become higher with increasing SiO2, whereas Sr shows an opposite behaviour. Chondrite-normalized multi-element patterns show enrichment in LILE relative to HFSE and troughs in Nb, P and Ti. These observations are typical of subduction related magmas that formed in an active continental margin. The Kajan rocks show a strong affinity with calc-alkaline arc magmas, confirmed by REE fractionation (LaN/YbN = 4.5–6.4) with moderate HREE fractionation (SmN/YbN = 1.08–1.57). The negative Eu anomaly (Eu/Eu* <1), the low to moderate Sr content (< 400 ppm) and the Dy/Yb values reflect plagioclase and hornblende (+- clinopyroxene) fractionation from a calc-alkaline melt Whole–rock Sr and Nd isotope analyses show that the 87Sr/86Sr initial ratios vary from 0.704432 to 0.705989, and the 143Nd/144Nd initial ratios go from 0.512722 to 0.512813. All the studied samples have similar Sr-Nd isotopes, indicating an origin from a similar source, with granite samples that has more radiogenic Sr and low radiogenic Nd isotopes, suggesting a minor interaction with upper crust during magma ascent. The Kajan subvolcanic rocks plot within the depleted mantle quadrant of the conventional Sr-Nd isotope diagram, a compositional region corresponding to mantle-derived igneous rocks.  相似文献   

8.
The Vulsinian lavas are dominated by a suite of undersaturated leucite-bearing basic to intermediate compositions. The remaining lavas are mainly oversaturated and have shoshonitic affinities. One hundred and thirty-five samples have been analysed for major elements and most for 20 trace elements. Twenty-seven lavas have been analysed for REE. They are all perpotassic (for the undersaturated lavas: K2O/Na2O=2–8) and have very high LIL element concentrations, (e.g. Rb=400–800 ppm, Th=25–150 ppm, REE/REEcho=c.200, (LREE/HREE)cho=c.20) even in the most basic rocks.The undersaturated lavas appear to be interrelated by fractional crystallization of cpx±olivine (from 14 to 11 wt.% CaO), cpx+leu±plg±mica (from 11 to 8 wt.% CaO), cpx+leu+plg+apa+magnetite±mica (from 8 to 5 wt.% CaO), and additional sanidine (or hyalophane)±haüyne (from 5 to 3 wt.% CaO). The saturated lavas and the few slightly undersaturated shoshonite basalts are thought to be evolved from the undersaturated magma(s) by crustal contamination or mixing with silica-rich magmas. The parental Vulsinian magma having: Mg-value=c.73, Cr=300–700 ppm, Ni=100–125 ppm, Sc= 40–50 ppm, Fo89–92, Di77–97 approximates a primary, mantle-derived liquid. Enrichment in LIL elements (incl. REE) and LREE/HREE suggest a small degree of partial melting from fertile mantle; whereas the low concentrations of Na, Ti and P suggest larger degrees of partial melting. This indicates that either the primary magma or the parental mantle was metasomatized by a fluid, which previously equilibrated with subducted continental material. This model agrees with published high 18O, high 87Sr/86Sr and low 143Nd/144Nd.  相似文献   

9.
Summary Early Miocene calc-alkaline igneous rocks from the easternmost segment of the Periadriatic fault system can be subdivided into two series of different alkalinity: (1) Volcanics which occur in the vicinity of the Velenje-Rogatec Line range from high-alumina basalt via low-K and medium-K andesites to medium-K dacites. (2) In the Pohorje Mountains mafic rocks are lacking. A high-K tonalitic pluton crystallized at pressures of about 0.7 GPa as indicated by Al-in-hornblende barometry and accessory magmatic epidote. Rapid exhumation of the tonalite during dextral transtension along the Periadriatic fault system is indicated by tonalitic pebbles in Helvetian (?) clastic sediments. High-K andesitic to dacitic volcanics are interlayered with, and dikes cut, the clastic sediments.Compositional variations shown by the volcanics from the Velenje-Rogatec Line are consistent with fractionation of the observed phenocryst assemblages (olivine, plagioclase, clinopyroxene, orthopyroxene, titanomagnetite). Substantial fractionation of plagioclase is indicated by decreasing Sr/Nd and Sr/Y values and increasing negative Eu anomalies with increasing SiO2. All samples have chondrite-normalized HREE > 9.6 and low (Tb/Yb)n ratios (1.29–1.08). With increasing SiO2, the abundances of HREE and Y (18 to 39 ppm) increase and those of Sc (32.5 to 20.9 ppm) decrease slightly. These features, together with low Hf/Lu and Zr/Y values (10.1–5.7 and 5.7–3.6, respectively), rule out garnet as a major fractionating phase. Since (La/Yb)n values (3.24–6.59) do not increase with SiO2 and chondrite-normalized REE patterns do not show concave-upward shapes, fractionation of amphibole was probably insignificant. Although Rb/Cs values ( 18) are generally low, a significant contribution by continental crustal materials to the magmas by an AFC process is suggested by negative correlations of Nb/U(7.16 to 3.14) and Nb/Th(2.14 to 0.87) values with SiO2, as well as by low Hf/Ta(7.8–3.4), and in part also by K/Rb (340-71) and Zr/Rb (5.0–1.7) values.Rocks from the Pohorje Mountains have high abundances of U. Values of Nb/U and Nb/Th are low (3.55 to 1.85 and 1.27 to 0.64, respectively) and are negatively correlated with SiO2. These features, in combination with high values of Ba/Nb (56 to 93), Ba/La (23–30), and Rb/Cs (19–56), as well as with previously published 18O values ( 9) for the tonalite indicate a substantial contribution of the continental crust to these magmas. High Sr abundances (455 to 984 ppm) and moderate negative Eu anomalies suggest that fractionation of plagioclase was of minor importance. Although the rocks have relatively low Sc (9.3 to 3.8 ppm) and Y (21 to 14 ppm) contents, low (Tb/Yb)n values (1.67–1.14) indicate that garnet was not a major fractionating phase. Instead, fractionation of amphibole is a viable mechanism to explain the combination of high (La/Yb)n (21.8–13.1) and low (Tb/Yb)n.
Untermiozäner, kalkalkaliner Post-Kollisions-Magmatismus entlang des östlichsten Segmentes des periadriatischen Störungssystems (Slowenien und Kroatien)
Zusammenfassung Untermiozäne Kalkalkali-Magmatite aus dem östlichen Bereich des Periadriatischen Lineaments gliedern sich in zwei Serien unterschiedlicher Alkalinität: (1) Entlang der Velenje-Rogatec-Linie treten High-Al-Basalte, Low-K- und Medium-K-Andesite und Medium-K-Dazite auf. (2) Im Pohorje-Gebirge, wo basische Magmatite fehlen, kristallisierte ein High-K-Tonalit bei Drücken von ca. 0.7 GPa (Al-in-Hornblende-Barometer, magmatischer Epidot). Gerölle dieses Tonalits in einer untermiozänen (Helvet?) klastischeu Abfolge belegen eine schnelle Heraushebung des Tonalits durch dextrale Transtension im östlichsten Bereich des periadriatischen Lineaments. Eingeschaltet in die klastischen Sedimente sind andesitische bis dazitische Pyroklastika und Laven sowie diskordante dazitische Gänge, die alle der High-K-Serie angehören.Die chemische Variation innerhalb der Vulkanitserie von der Velenje-Rogatec-Linie läßt sich durch Fraktionierung der Einsprenglingsminerale Olivin, Plagioklas, Klinopyroxen, Orthopyroxen und Titanomagnetit erklären. Abnehmende Sr/Nd- und Sr/Y-Werte und zunehmende negative Eu-Anomalien mit steigendem SiO2 weisen auf eine bedeutende Plagioklas-Fraktionierung hin. Alle Vulkanite besitzen hohe Gehalte an schweren Seltenen Erden (chondritnormiert > 9.6) und geringe (Tb/Yb)n-Werte (1.29–1.08). Mit zunehmendem SiO2 nehmen die Gehalte an Yb(2.02 bis 4.30 ppm) und Y(18 bis 39 ppm) zu, während die Sc-Gehalte (32.5 bis 20.9 ppm) nur geringfügig abnehmen. Diese Charakteristika, zusammen mit geringen Hf/Lu- und Zr/Y-Werten (10.1–5.87 bzw. 5.7–3.6), schließen Granat als wesentliche, fraktionierende Phase aus. Da die (La/Yb)n-Verhältnisse (3.24–6.59) nicht mit SiO2 korrelieren und die chondritnormierten SeltenenErden-Muster keine nach oben konkaven Formen aufweisen, spielte die Fraktionierung von Amphibol keine wesentliche Rolle. Trotz geringer Rb/Cs-Werte ( 18) wird eine beträchtliche krustale Kontamination der Magmen angenommen. Für einen AFC-Prozeß sprechen negative Korrelationen von Nb/U(7.16–3.14) und Nb/Th(2.14–0.87) mit SiO2 (bei steigenden Nb-, U- und Th-Gehalten), geringe Hf/Ta-Werte (7.8–4.3) und teilweise auch geringe K/Rb- (340-71) und Zr/Rb-Verhältnisse (5.0–1.7).Die Magmatite des Pohorje-Gebirges weisen hohe U-Gehalte sowie geringe Nb/U-und Nb/Th-Verhältnisse auf (3.55–1.85 bzw. 1.27–0.64), die eine schwache negative Korrelation mit SiO2 zeigen. Zusammen mit hohen Ba/Nb-(56–93), Ba/La-(23-30) und Rb/Cs-Verhältnissen (19–56) sowie bereits publizierten 8O-Werten ( 9) weisen diese Eigenschaften auf einen beträchtlichen Anteil assimilierten Krustenmaterials in den Magmen hin. Hohe Sr-Gehalte (455–984 ppm) und relativ geringe negative Eu-Anomalien machen es unwahrscheinlich, daß während des AFC-Prozesses in der Unterkruste wesentliche Mengen an Plagioklas fraktioniert wurden. Obwohl die Gehalte an Sc (9.3–3.8 ppm) und Y (21–14 ppm) relativ gering sind, scheidet Granat aufgrund der geringen (Tb/Yb)n- Verhältnisse (1.67–1.14) als dominierende Fraktionierungsphase aus. Die Kombination von hohen (La/Yb)n- Verhältnissen (21.8–13.1) und geringen (Tb/Yb)n-Verhältnissen deutet eher auf Amphibol als wichtige, fraktionierende Phase hin.


With 9 Figures  相似文献   

10.
Amphibole-bearing, Late Archean (2.73–2.68 Ga) granitoids of the southern Superior Province are examined to constrain processes of crustal development. The investigated plutons, which range from tonalite and diorite to monzodiorite, monzonite, and syenite, share textural, mineralogical and geochemical attributes suggesting a common origin as juvenile magmas. Despite variation in modal mineralogy, the plutons are geochemically characterized by normative quartz, high Al2O3 (> 15 wt%), Na-rich fractionation trends (mol Na2O/K2O >2), low to moderate Rb (generally<100 ppm), moderate to high Sr (200–1500 ppm), enriched light rare earth elements (LREE) (CeN generally 10–150), fractionated REE (CeN/YbN 8–30), Eu anomaly (Eu/Eu*) 1, and decreasing REE with increasing SiO2. The plutons all contain amphibole-rich, mafic-ultramafic rocks which occur as enclaves and igneous layers and as intrusive units which exhibit textures indicative of contemporaneous mafic and felsic magmatism. Mafic mineral assemblages include: hornblende + biotite in tonalites; augite + biotite ± orthopyroxene ± pargasitic hornblende or hornblende+biotite in dioritic to monzodioritic rocks; and aegirine-augite ± silicic edenite ± biotite in syenite to alkali granite. Discrete plagioclase and microcline grains are present in most of the suites, however, some of the syenitic rocks are hypersolvus granitoids and contain only perthite. Mafic-ultramafic rocks have REE and Y contents indicative of their formation as amphibole-rich cumulates from the associated granitoids. Some cumulate rocks have skeletal amphibole with XMg(Mg/(Mg+ Fe2+)) indicative of crystallization from more primitive liquids than the host granitoids. Geochemical variation in the granitoid suites is compatible with fractionation of amphibole together with subordinate plagioclase and, in some cases, mixing of fractionated and primitive magmas. Mafic to ultramafic units with magnesium-rich cumulus phases and primitive granitoids (mol MgO/ (MgO+0.9 FeOTOTAL) from 0.60 to 0.70 and CT >150 ppm) are comagmatic with the evolved granitoids and indicate that the suites are mantle-derived. Isotopic studies of Archean monzodioritic rocks have shown LREE enrichment and initial 143Nd/144Nd ratios indicating derivation from mantle sources enriched in large ion lithophile elements (LILE) shortly before melting. Mineral assemblages record lower PH2O with increased alkali contents of the suites. This evidence, in conjunction with experimental studies, suggests that increased alkali contents may reflect decreased PH2O during mantle melting. These features indicate that 2.73 Ga tonalitic rocks are derived from more hydrous mantle sources than 2.68 Ga syenitic rocks, and that the spectrum of late Archean juvenile granitoid rocks is broader than previously recognized. Comparison with Phanerozoic and recent plutonic suites suggests that these Archean suites are subduction related.  相似文献   

11.
Geochemical and Nd-Sr isotopic compositions and U-Pb zircon ages of two Variscan granites (Neunburg and Oberviechtach) from southern Oberpfalz, NW Bohemian massif, have been investigated in order to place constraints on their formation and on the crustal reworking. Both granites exhibit similar mineralogical, chemical and isotopic characteristics. They have peraluminous compositions (A/CNK ratios 1.2-1.3) and display high K2O/Na2O ratios of 2.2-2.3, consistent with typical S-type granites. In terms of trace elements, they show an enrichment of LREE and strong fractionation between LREE and HREE (LaN/YbN ratios 46 to 60). Compared with the primordial mantle, distinct negative anomalies of several trace elements (Ba, Sr, Nb and Ti) are also observed in both granites. They are further characterised by low initial kNd-values of ш.2 to ъ.2 and high initial 87Sr/86Sr ratios of 0.7114 to 0.7147. Zircon U-Pb data indicate that the intrusion of both granites shortly post-dates the HT-LP metamorphism of the Moldanubian basement and crystallised at about 320 Ma. The samples studied contain zircons mostly having xenocrystic cores with diverse morphologies. These inherited zircons have Early Proterozoic to Early Palaeozoic ages. This points to melting of sources comprising substantial sedimentary rocks. The LaN/YbN and TbN/YbN ratios of both granites are the highest so far reported from granitoids within this region. Melting of lower crustal rocks leaving garnet as a restite phase in the source provides a viable mechanism to reproduce the REE characteristics.  相似文献   

12.
The paper summarizes data on the geochemistry of metaterrigenous rocks from 26 reference Archean territories: the Pilbara and Yilgarn blocks; Isua and Akilia complexes; Wittwatersrand, Swaziland, Pongola, and Yellowknife supergroups; Khapchanskaya and Gimol’skaya groups; Kan, Sharyzhalgai, Chupa, Slyudyanka, and Onot complexes; etc. The general sets of data points and the calculated median values of the concentrations of trace elements and their ratios are compared to those of Archean and post-Archean shales. In Ce/Cr-Co/Hf, Eu/Eu*-GdN/YbN, Ce/Cr-Th/Sc, Th/Sc-Sc, Th-La, La/Sm-Sc/Th, Yb-GdN/YbN, Th/Sc-Cr, Ni-Cr, and some other diagrams, the fields in which the most data points of Archean metaterrigenous rocks group are outlined. The results of this research indicate that there are no values of geochemical parameters that are inherent only in Archean or only in post-Archean fine-grained terrigenous rocks. Within 80–85% confidence levels, most individual compositions of Archean metaterrigenous rocks are characterized by the following geochemical parameters: (1) Th/Sc < 0.6–0.7, (2) Ce/Cr < 0.6, and (3) Eu/Eu* > 0.70–0.75. If the median values are used, these ranges can be further constrained to (i) Th/Sc < 0.55, (ii) Ce/Cr < 0.4, (iii) Cr/Th > 25, and (iv) Th < 12 ppm. Compared to PAAS, Archean metaterrigenous rocks are characterized by higher median concentrations of Cr and Ni and the Eu/Eu*, Sc/Th, Cr/Th, and Co/Hf ratios, whereas the Nb, La, Ce, Yb, Hf, Th, and U concentrations and the La/Sm and Ce/Cr ratios of PAAS are, conversely, lower. The median values of the LaN/YbN ratios of reference Archean terranes can be either higher or lower than in PAAS, likely depending on the proportions of various rock types in the sources of the terrigenous material. The medians of the GdN/YbN ratios of ~60% of the reference Archean metaterrigenous terranes in our databank are slightly higher than the GdN/YbN ratios of PAAS. The median values of the LaN/SmN ratios of Archean terrigenous rocks are mostly slightly lower than the typical PAAS ratios.  相似文献   

13.
Highly evolved rhyolite glass plus near-solidus mineral assemblages in voluminous, dacitic, crystal-rich ignimbrites provide an opportunity to evaluate the late magmatic evolution of granodiorite batholiths. This study reports laser-ablation ICP-MS analyses of trace element concentrations in feldspars, hornblende, biotite, titanite, zircon, magnetite, and interstitial glass of the crystal-rich Fish Canyon Tuff. The high-silica rhyolite glass is characterized by relatively high concentrations of feldspar-compatible elements (e.g., 100 ppm Sr and 500 ppm Ba) and low concentrations of Y (<7 ppm) and HREE (~1 ppm Yb), hence high LREE/HREE (Ce/Yb >40) compared to many well-studied high-silica rhyolite glasses and whole-rock compositions. Most minerals record some trace element heterogeneities, with, in particular, one large hornblende phenocryst showing four- to six-fold core-to-rim increases in Sr and Ba coupled with a decrease in Sc. The depletions of Y and HREE in the Fish Canyon glass relative to the whole-rock composition (concentrations in glass ~30% of those in whole rocks) reflect late crystallization of phases wherein these elements were compatible. As garnet is not stable at the low-P conditions at which the Fish Canyon magma crystallized, we show that a combination of modally abundant hornblende (~4%) + titanite (~0.5–1%) and the highly polymerized nature of the rhyolitic liquid led to Y and HREE depletions in melt. Relatively high Sr and Ba contents in glass and rimward Sr and Ba increases in euhedral, concentrically zoned hornblende suggest partial feldspar dissolution and a late release of these elements to the melt as hornblende was crystallizing, in agreement with textural evidence for feldspar (and quartz) resorption. Both observations are consistent with thermal rejuvenation of the magma body prior to eruption, during which the proportion of melt increased via feldspar and quartz dissolution, even as hydrous and accessory phases were crystallizing. Sr/Y in Fish Canyon glass (13–18) is lower than the typical adakitic value (>40), confirming that high Sr/Y is a reliable indicator of high-pressure magma generation and/or differentiation wherein garnet is implicated.  相似文献   

14.
The rare-earth element (REE) concentrations of representative granite samples from the southeast of the Obudu Plateau, Nigeria, were analyzed with an attempt to determine the signatures of their source, evolutionary history and tectonic setting. Results indicated that the granites have high absolute REE concentrations (190×10^-6-1191×10^-6; av.=549×10^-6) with the chondrite-normalized REE patterns characterized by steep negative slopes and prominent to slight or no negative Eu anomalies. All the samples are also characterized by high and variable concentrations of the LREE (151×10^-6-1169×10^-6; av.= 466×10^-6), while the HREE show low abundance (4×10^-6-107×10^-6; av.=28×10^-6). These are consistent with the variable levels of REE fractionation, and differentiation of the granites. This is further supported by the range of REE contents, the chondrite-normalized patterns and the ratios of LaN/YbN (2.30-343.37), CeN/YbN (5.94-716.87), LaN/SmN (3.14-11.68) and TbN/YbN (0.58-1.65). The general parallelism of the REE patterns, suggest that all the granites were comagmatic in origin, while the high Eu/Eu* ratios (0.085-2.807; av.=0.9398) indicate high fo2 at the source. Similarly, irregular variations in LaN/YbN, CeN/YbN and Eu/Eu* ratios and REE abundances among the samples suggest behaviors that are related to mantle and crustal sources.  相似文献   

15.
Eighteen flows from a basal stratigraphic sequence on the Aleutian Island of Atka were analyzed for major elements, trace elements and initial 87Sr/86Sr ratios. Petrographically, these lavas contain abundant plagioclase (24–45%) and lesser amounts of olivine (<7%), magnetite and clinopyroxene phenocrysts. Compositionally, the lavas are high-alumina (20wt%) basalts (48–51 wt% SiO2) with low TiO2 (<1%) and MgO (<5%). Within the section, compositional variations for all major elements are quite small. While MgO content correlates with olivine phenocryst contents, no such relationship exists between the other oxides and phenocryst content. These lavas are characterized by 8–10 ppm Rb, high Sr (610–669 ppm), 308–348 ppm Ba and very constant Zr (23–29 ppm) and Sc (23–29 ppm) abundances. Ni and Cr display extremely large compositional ranges, 12–118 ppm and 12–213 ppm, respectively. No correlation exists between trace element concentrations and phenocryst contents. Strontium isotopic ratios show a small but significant range (0.70314–0.70345) and are slightly elevated with respect to typical MORB. No systematic correlation between stratigraphic position and petrography or geochemistry is evident. REE abundances measured on six samples are LREE enriched ((La/ Yb)N = 2.20–2.81) and display similar chondrite normalized patterns. One sample has a slight positive Eu anomaly but the other lavas do not. Compared to other Aleutian basalts of similar silica content, these lavas are less LREE enriched and have lower overall abundances. The geochemical characteristics of these basalts suggest they represent true liquid compositions despite their highly porphyritic nature. Published phase relations indicate fractionation of a more MgO-rich magma could not have produced these lavas. The high Al2O3 and low MgO and compatible element abundances suggest a predominantly oceanic crustal source for parental high-alumina basalts.  相似文献   

16.
The Nagoundéré Pan-African granitoids in Central North Cameroon belong to a regional-scale massif, which is referred to as the Adamawa-Yade batholith. The granites were emplaced into a ca. 2.1 Ga remobilised basement composed of metasedimentary and meta-igneous rocks that later underwent medium- to high-grade Pan-African metamorphism. The granitoids comprise three groups: the hornblende–biotite granitoids (HBGs), the biotite ± muscovite granitoids (BMGs), and the biotite granitoids (BGs). New Th–U–Pb monazite data on the BMGs and BGs confirm their late Neoproterozoic emplacement age (ca. 615 ± 27 Ma for the BMGs and ca. 575 Ma for the BGs) during the time interval of the regional tectono-metamorphic event in North Cameroon. The BMGs also show the presence of ca. 926 Ma inheritances, suggesting an early Neoproterozoic component in their protolith.The HBGs are characterized by high Ba–Sr, and low K2O/Na2O ratios. They show fairly fractionated REE patterns (LaN/YbN 6–22) with no Eu anomalies. The BMGs are characterized by higher K2O/Na2O and Rb/Sr ratios. They are more REE-fractionated (LaN/YbN = 17–168) with strong negative Eu anomalies (Eu/Eu* = 0.2–0.5). The BGs are characterized by high SiO2 with K2O/Na2O > 1. They show moderated fractionated REE patterns (LaN/YbN = 11–37) with strong Eu negative anomalies (Eu/Eu* = 0.2–0.8) and flat HREE features (GdN/YbN = 1.5–2.2). In Primitive Mantle-normalized multi-element diagrams, the patterns of all rocks show enrichment in LILE relative to HFSE and display negative Nb–Ta and Ti anomalies. All the granitoids belong to high-K calc-alkaline suites and have an I-type signature.Major and trace element data of the HBGs are consistent with differentiation of a mafic magma from an enriched subcontinental lithospheric mantle, with possible crustal assimilation. In contrast, the high Th content, the LREE-enrichment, and the presence of inherited monazite suggest that the BGs and BMGs were derived from melting of the middle continental crust. Structural and petrochemical data indicate that these granitoids were emplaced in both syn- to post-collision tectonic settings.  相似文献   

17.
The Woxi W–Sb–Au deposit in Hunan, South China, is hosted by Proterozoic metasedimentary rocks, a turbiditic sequence of slightly metamorphosed (greenschist facies), gray-green and purplish red graywacke, siltstone, sandy slate, and slate. The mineralization occurs predominantly (> 70%) as stratabound/stratiform ore layers and subordinately as stringer stockworks. The former consists of rhythmically interbedded, banded to finely laminated stibnite, scheelite, quartz, pyrite and silty clays, whereas the latter occurs immediately beneath the stratabound ore layers and is characterized by numerous quartz + pyrite + gold + scheelite stringer veins or veinlets that are typically either subparallel or subvertical to the overlying stratabound ore layers. The deposit has been the subject of continued debate in regard to its genesis. Rare earth element geochemistry is used here to support a sedimentary exhalative (sedex) origin for the Woxi deposit. The REE signatures of the metasedimentary rocks and associated ores from the Woxi W–Sb–Au deposit remained unchanged during post-depositional processes and were mainly controlled by their provenance. The original ore-forming hydrothermal fluids, as demonstrated by fluid inclusions in quartz from the banded ores, are characterized by variable total REE concentrations (3.5 to 136 ppm), marked LREE enrichment (LaN/YbN = 28–248, ∑LREE/∑HREE = 16 to 34) and no significant Eu-anomalies (Eu/Eu = 0.83 to 1.18). They were most probably derived from evolved seawater that circulated in the clastic sediment pile and subsequently erupted on the seafloor. The bulk banded ores are enriched in HREE (LaN/YbN = 4.6–11.4, ∑LREE/∑HREE = 3 to 14) and slightly depleted in Eu (Eu/Eu = 0.63 to 1.14) relative to their parent fluids. This is interpreted as indicating the influence of seawater rather than a crystallographic control on REE content of the ores. Within a single ore layer, the degree of HREE enrichment tends to increase upward while the total REE concentrations decrease, reflecting greater influence and dilution of seawater. There is a broad similarity in chondrite-normalized REE patterns and the amount of REE fractionation of the banded ores in this study and exhalites from other sedex-type polymetallic ore deposits, suggesting a similar genesis for these deposits. This conclusion is in agreement with geologic evidence supporting a syngenetic (sedex) model for the Woxi deposit.  相似文献   

18.
The discoveries of oil and gas reservoirs in the volcanic rocks of the Songliao Basin(SB) have attracted the attention of many researchers. However, the lack of studies on the genesis of the volcanic rocks has led to different opinions being presented for the genesis of the SB. In order to solve this problem, this study selected the volcanic rocks of the Yingcheng Formation in the Southern Songliao Basin(SSB) as the research object, and determined the genesis and tectonic setting of the volcanic rocks by using LA-ICP-MS zircon U-Pb dating and a geochemical analysis method(major elements, trace elements, and Hf isotopes). The volcanic rocks of the Yingcheng Formation are mainly composed of rhyolites with minor dacites and pyroclastic rocks. Our new zircon U-Pb dating results show that these volcanic rocks were erupted in the Early Cretaceous(113–118 Ma). The primary zircons from the rhyolites have εHf(t) values of +4.70 to +12.46 and twostage model age(TDM2) of 876–374 Ma. The geochemical data presented in this study allow these rhyolites to be divided into I-type rhyolites and A-type rhyolites, both of which were formed by the partial melting of the crust. They have SiO2 contents of 71.62 wt.%–75.76 wt.% and Al2 O3 contentsof 10.88 wt.% to 12.92 wt.%. The rhyolites have distinctively higher REE contents than those of ordinary granites, with obvious negative Eu anomalies. The light to heavy REE fractionation is not obvious, and the LaN/YbN(average value = 9.78) is less than 10. The A-type rhyolites depleted in Ba, Sr, P, and Ti, with relatively low Nb/Ta, indicating that the rocks belong A2 subtype granites formed in an extensional environment. The adakitic dacites are characterized by high Sr contents(624 to 1,082 ppm), low Y contents(10.6 to 12.6 ppm), high Sr/Y and Sr/Yb ratios, and low Mg# values(14.77 to 36.46), indicating that they belong to "C" type adakites. The adakitic dacite with high Sr and low Yb were likely generated by partial melting of the lower crust under high pressure conditions at least 40 km depth. The I-type rhyolites with low Sr and high Yb, and the A-type rhyolites with very low Sr and high Yb, were formed in the middle and upper crust under low pressure conditions, respectively. In addition, the formation depths of the former were approximately 30 km, whereas those of the latter were less than 30 km. The geochemical characteristics reveal that the volcanic rocks of Yingcheng Formation were formed in an extensional environment which was related to the retreat of subducted Paleo-Pacific Plate. At the late Early Cretaceous Period, the upwelling of the asthenosphere mantle and the lithosphere delamination caused by the retreat of the subducted Paleo-Pacific Plate, had resulted in lithosheric extension in the eastern part of China. Subsequently, a large area of volcanic rocks had formed. The SB has also been confirmed to be a product of the tectonic stress field in that region.  相似文献   

19.
Geochemical and isotopic data were used for a comparative analysis of Late Mesozoic (150–120 Ma) granitoids in various geological structures of the upper Amur area. The granitoids are metaluminous high-potassic I-type rocks of the magnetite series. They have variable alkalinity and consist of the monzonite-granite and granosyenite-granite associations. The monzonite-granite association consists of calc-alkaline granitoids of normal alkalinity belonging to the Umlekan-Ogodzhinskaya volcanic-plutonic zone and the Tynda-Bakaran Complex of the Stanovoy terrane. The rocks are characterized by negative anomalies of U, Ta, Nd, Hf, and Ti (in patterns normalized to the primitive mantle), with Eu anomalies pronounced weakly in the granodiorites and quartz and monzodiorites and more clearly in the granites: Eu/Eu* = 0.37–0.95, and (La/Yb)n = 7–24, Tbn/Ybn = 1.4–3.2. The granosyenite-granite association comprises of moderately alkaline rocks, which are subdivided into three groups according to their geochemistry. The first group consists of phase-I granosyenites of the Uskalinskii Massif of the Umlekan-Ogodzhinskaya zone with the highest concentrations of Sc, V, Cr, Co, Ni, Cu, Cs, Rb, Sr, Y, Zr, Yb, and Th; negative anomalies at Ba, Ta, Sr, and Hf; Eu/Eu* = 0.50–0.58, (La/Yb)n = 15–16, and Tbn/Ybn = 1.8. The second group comprises of moderately alkaline granitoids of the Umlekan-Ogodzhinskaya zone and the Khaiktinskii Complex of the Baikal-Vitim superterrane. Geochemically, the granitoids of this group are generally similar to the monzodiorite-granite association and differ from it in having lower concentrations of REE and Y, Eu/Eu* = 6.2–1.0, (La/Yb)n = 28–63, and Tbn/Ybn = 2.1–4.5. The third group consists of granitoids of the Chubachinskii Complex of the Stanovoi terrane, which typically show negative Cs, Rb, Th, U, Ta, Hf, and Ti anomalies; the lowest concentrations of V, Cr, Co, and Ni; and the highest contents of Sr. The granosyenites of the first phase display clearly pronounced negative Eu anomalies (Eu/Eu* = 0.53–0.68), (La/Yb)n = 7–24, and Tbn/Ybn = 0.8–2.0. The granitoids of the second phase have (La/Yb)n = 51–84, no Eu anomalies, or very weak Eu anomalies (Eu/Eu* = 0.97–1.23). The silica-oversaturated leucogranites of the third phase are characterized by elevated concentrations of REE, clearly pronounced Eu anomalies (Eu/Eu* = 0.48), and flat REE patterns (Tbn/Ybn = 1.3). The diversity of the granitoids is demonstrated to have been caused largely by the composition of the Precambrian source, which was isotopically heterogeneous. The rocks of the monzodiorite-granite association and first-group granosyenites of the granosyenite-granite association of the Tynda-Bakaran Complex were supposedly derived from garnet-bearing biotite amphibolites. In contrast to these rocks, the source of the second-group granites of the granosyenite-granite association was of mixed amphibolite-metagraywacke composition. The third-group of granitoids were melted out of Early Proterozoic crustal feldspar-rich granulites of variable basicity, with minor amounts of Archean crustal material. The granitoids were emplaced in a collisional environment, perhaps, during the collision of the Amur superterrane and Siberian craton. This makes it possible to consider these rocks as components of a single continental volcanic-plutonic belt. Original Russian Text ? V.E. Strikha, 2006, published in Geokhimiya, 2006, No. 8, pp. 855–872.  相似文献   

20.
Three types of clinopyroxene megacrysts have been collected from Cenozoic basaltic rocks from Hainan Island and the Leizhou Peninsula in southern China. These megacrysts are dark green, black, and pale green in color, and are classified as Al-augite, Al-rich Fe-Na salite, and endiopside, respectively. Although they have different geochemical compositions, they all exhibit convex-upward, MREE-enriched patterns.

The Al-augite megacrysts contain 8.45 to 9.01% Al2O3, 1.26 to 1.59% TiO2, 1.60 to 1.88% Na2O; have Mg# values of 69.5 to 75.4; and possess ΣREE contents of 24.7 to 26.9 ppm. Their LREE contents are enriched relative to the HREE (La/Ybn = 3.05 to 4.09). The Al-rich Fe-Na salite megacrysts have higher FeOT (10.4 to 11.4%) and Na2O (2.07 to 2.78%) contents, and lower Mg' values (54.9 to 59.9), than do the Al-augite megacrysts. They contain high ΣREE contents (29.4 to 41.9 ppm) and have pronounced LREE/HREE enrichment (La/Ybn = 3.86 to 20.6). Their Al2O3 contents (10.1 to 12.2%) are much higher than those of the Al-augite megacrysts (8.45 to 9.01%). One Al-rich Fe-Na salite megacryst has 87Sr/86Sr of 0.702913 ± 25 and 143Nd/144Nd of 0.512939 ± 20. The endiopside megacrysts possess high En and low Fs contents (Mg# values up to 89.3), and are characterized by high Cr2O3 (0.35 to 0.61%) and low Al2O3 (6.38 to 6.98%), TiO2 (0.30 to 0.48%), and ΣREE (7.71 ppm) contents. They have similar values of normalized LREE and HREE (La/Ybn = 1.09). One endiopside megacryst has 87Sr/86Sr of 0.703946 + 40 and 143Nd/144Nd of 0.512816 ± 18.

The Al-rich Fe-Na salite megacrysts in this study can be distinguished compositionally from Fe-Na salite megacrysts of previous studies. On the basis of the present study, these megacrysts are considered representative of a distinctive type of megacryst that may have a unique origin. Prior to this, endiopside megacrysts have not been described from alkaline basalts. A total of four types of clinopyroxene megacrysts now can be described from Cenozoic basaltic rocks worldwide—i.e. Al-augite, Fe-Na salite, Al-rich Fe-Na salite, and endiopside.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号