首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Peat commonly occurs as extremely soft, wet, unconsolidated surface deposits that are integral parts of wetland systems. Cement is widely used for the stabilization of peat by deep mixing method. This paper presents the results of the shear strength parameters of study models (fibrous, hemic and sapric peats stabilized with columns formed by dry mixing method). The columns were formed of peat treated with cement in different proportions. Triaxial test was performed after curing the samples for 28?days to evaluate the shear strength parameters. The results showed that the shear strength of peats can be improved significantly by the installation of cement stabilized soil columns. The amount of cement used to form the column and its diameter were observed to influence the strain–stress graph of peat reinforced. Furthermore, the result showed that the effect of cement was the highest on sapric peat due to its physico-chemical properties.  相似文献   

2.
The compressibility at room temperature and the thermal expansion at room pressure of two disordered crystals (space group C2/c) obtained by annealing a natural omphacite sample (space group P2/n) of composition close to Jd56Di44 and Jd55Di45, respectively, have been studied by single-crystal X-ray diffraction. Using a Birch–Murnaghan equation of state truncated at the third order [BM3-EoS], we have obtained the following coefficients: V 0 = 421.04(7) Å3, K T0 = 119(2) GPa, K′ = 5.7(6). A parameterized form of the BM3 EoS was used to determine the axial moduli of a, b and c. The anisotropy scheme is β c  ≤ β a  ≤ β b , with an anisotropy ratio 1.05:1.00:1.07. A fitting of the lattice variation as a function of temperature, allowing for linear dependency of the thermal expansion coefficient on the temperature, yielded αV(1bar,303K) = 2.64(2) × 10−5 K−1 and an axial thermal expansion anisotropy of α b  ≫ α a  > α c . Comparison of our results with available data on compressibility and thermal expansion shows that while a reasonable ideal behaviour can be proposed for the compressibility of clinopyroxenes in the jadeite–diopside binary join [K T0 as a function of Jd molar %: K T0 = 106(1) GPa + 0.28(2) × Jd(mol%)], the available data have not sufficient quality to extract the behaviour of thermal expansion for the same binary join in terms of composition.  相似文献   

3.
Twenty-eight samples of peat, peaty lignites and lignites (of both matrix and xylite-rich lithotypes) and subbituminous coals have been physically activated by pyrolysis. The results show that the surface area of the activated coal samples increases substantially and the higher the carbon content of the samples the higher the surface area.The adsorption capacity of the activated coals for NO, SO2, C3H6 and a mixture of light hydrocarbons (CH4, C2H6, C3H8 and C4H10) at various temperatures was measured on selected samples. The result shows a positive correlation between the surface area and the gas adsorption. In contrast, the gas adsorption is inversely correlated with the temperature. The maximum recorded adsorption values are: NO = 8.22 × 10− 5 mol/g at 35 °C; SO2 = 38.65 × 10− 5 mol/g at 60 °C; C3H6 = 38.9 × 10− 5 mol/g at 35 °C; and light hydrocarbons = 19.24 × 10− 5 mol/g at 35 °C. Adsorption of C3H6 cannot be correlated with either NO or SO2. However, there is a significant positive correlation between NO and SO2 adsorptions. The long chain hydrocarbons are preferentially adsorbed on activated lignites as compared to the short chain hydrocarbons.The results also suggest a positive correlation between surface area and the content of telohuminite maceral sub-group above the level of 45%.  相似文献   

4.
A number of studies have revealed that the climate in the eastern margin of the Tibetan Plateau and Northeast China is sensitive to postglacial changes. Unfortunately, the link of the past climate evolution between the two regions is not well understood. In this study, two cores are analyzed to determine this link directly. The high-resolution n-alkanol distribution patterns from two typical peat sequences covering the past 16,000 cal years in the northeastern margin of the Tibetan Plateau and Northeast China, respectively, are closely examined by gas chromatograph–mass spectrometry analysis. In combination with other palaeoclimatic proxies, it is proposed that the n-alkanol average chain length and (C22 + C24)/(C26 + C28) ratio could reflect past climate changes in the two peat sequences. The n-alkanol proxies reveal several climatic intervals in the period from the last deglaciation through the Holocene. A comparison of n-alkanol records between the northeastern margin of the Tibetan Plateau and Northeast China indicates that the start and end of the warm Holocene Optimum differed at the two locations. The spatially asynchronous pattern of climatic change is possibly a result of different responses to change in solar radiation. The evolution of the Holocene paleoclimate is more consistent with changes in Northern Hemisphere solar radiation in Northeast China than on the Tibetan Plateau. The Holocene Optimum began and terminated earlier in Northeast China than in the northeastern margin of the Tibetan Plateau. Thus, the two n-alkanol proxies provide valuable insights into the regional Holocene climate and local environmental conditions.  相似文献   

5.
Two synthetic single-crystals with composition Li(Al0.53Ga0.47)Si2O6 and LiGaSi2O6 and space group C2/c at room conditions have been studied under pressure by means of X-ray diffraction using a diamond anvil cell. The unit-cell parameters were determined at 12 and 10 different pressures up to P = 8.849 and P = 7.320 GPa for Li(Al0.53Ga0.47)Si2O6 and LiGaSi2O6, respectively. The sample with mixed composition shows a C2/c to P21/c phase transformation between 1.814 and 2.156 GPa, first-order in character. The transition is characterised by a large and discontinuous decrease in the unit-cell volume and by the appearance of the b-type reflections (h + k = odd) typical of the primitive symmetry. The Ga end-member shows the same C2/c to P21/c transformation at a pressure between 0.0001 and 0.39 GPa. The low-pressure value at which the transition occurred did not allow collecting any data in the C2/c pressure stability field except that on room pressure. Our results compared with those relative to spodumene (LiAlSi2O6, Arlt and Angel 2000a) indicate that the substitution of Al for Ga at the M1 site of Li-clinopyroxenes strongly affects the transition pressure causing a decrease from 3.17 GPa (spodumene) to less than 0.39 GPa (LiGaSi2O6) and decreases the volume discontinuity at the transition. As already found for other compounds, the C2/c low-pressure phases are more rigid than the P21 /c high-pressure ones. Moreover, the increase of the M1 cation radius causes a decrease in the bulk modulus K T0. The axial compressibility among the Li-bearing clinopyroxenes indicates that the c axis is the most rigid for the C2/c phases while it becomes the most compressible for the P21 /c phases.  相似文献   

6.
Carbon isotope and molecular compositions of Mississippian to Upper Cretaceous mud gases have been examined from four depth profiles across the Western Canada Sedimentary Basin (WCSB). The profiles range from the shallow oil sands in the east (R0 = 0.25) to the very mature sediments in the overthrust zone to the west (R0 = 2.5). In the undisturbed WCSB, δ13C1δ13C2 and δ13C2δ13C3 cross-plots show three maturity and alteration trends: (1) pre-Cretaceous gas sourced from type II kerogen; (2) Cretaceous Colorado Group gas; and (3) Lower Cretaceous Mannville Group biodegraded gas. A fourth set of distinctly different maturity trends is recognized for Lower Cretaceous gas sourced from type III kerogen in the disturbed belt of the WCSB. Displacement of these latter maturity trends to high δ13C2 values suggests that the sampled gas was trapped after earlier formed gas escaped, probably as a result of overthrusting. Unusually 13C-enriched gas (δ13C1 = −34‰, δ13C2 = −13‰, and δ13C3 = 0‰), from the Gething Formation in the disturbed belt, is the result of late stage gas cracking in a closed system. In general, gas maturity is consistent with the maturity of the host sediments in the WCSB, suggesting that migration and mixing of gases was not pervasive on a broad regional and stratigraphic scale. The ‘Deep Basin’ portion of the WCSB is an exception. Here extensive cross-formational homogenization of gases has occurred, in addition to updip migration along the most permeable stratigraphic units.  相似文献   

7.
The thermoelastic behavior of a natural clintonite-1M [with composition: Ca1.01(Mg2.29Al0.59Fe0.12)Σ3.00(Si1.20Al2.80)Σ4.00O10(OH)2] has been investigated up to 10 GPa (at room temperature) and up to 960°C (at room pressure) by means of in situ synchrotron single-crystal and powder diffraction, respectively. No evidence of phase transition has been observed within the pressure and temperature range investigated. PV data fitted with an isothermal third-order Birch–Murnaghan equation of state (BM-EoS) give V 0 = 457.1(2) ?3, K T0 = 76(3)GPa, and K′ = 10.6(15). The evolution of the “Eulerian finite strain” versus “normalized stress” shows a linear positive trend. The linear regression yields Fe(0) = 76(3) GPa as intercept value, and the slope of the regression line leads to a K′ value of 10.6(8). The evolution of the lattice parameters with pressure is significantly anisotropic [β(a) = 1/3K T0(a) = 0.0023(1) GPa−1; β(b) = 1/3K T0(b) = 0.0018(1) GPa−1; β(c) = 1/K T0(c) = 0.0072(3) GPa−1]. The β-angle increases in response to the applied P, with: βP = β0 + 0.033(4)P (P in GPa). The structure refinements of clintonite up to 10.1 GPa show that, under hydrostatic pressure, the structure rearranges by compressing mainly isotropically the inter-layer Ca-polyhedron. The bulk modulus of the Ca-polyhedron, described using a second-order BM-EoS, is K T0(Ca-polyhedron) = 41(2) GPa. The compression of the bond distances between calcium and the basal oxygens of the tetrahedral sheet leads, in turn, to an increase in the ditrigonal distortion of the tetrahedral ring, with ∂α/∂P ≈ 0.1°/GPa within the P-range investigated. The Mg-rich octahedra appear to compress in response to the applied pressure, whereas the tetrahedron appears to behave as a rigid unit. The evolution of axial and volume thermal expansion coefficient α with temperature was described by the polynomial α(T) = α0 + α1 T −1/2. The refined parameters for clintonite are as follows: α0 = 2.78(4) 10−5°C−1 and α1 = −4.4(6) 10−5°C1/2 for the unit-cell volume; α0(a) = 1.01(2) 10−5°C−1 and α1(a) = −1.8(3) 10−5°C1/2 for the a-axis; α0(b) = 1.07(1) 10−5°C−1 and α1(b) = −2.3(2) 10−5°C1/2 for the b-axis; and α0(c) = 0.64(2) 10−5°C−1 and α1(c) = −7.3(30) 10−6°C1/2for the c-axis. The β-angle appears to be almost constant within the given T-range. No structure collapsing in response to the T-induced dehydroxylation was found up to 960°C. The HP- and HT-data of this study show that in clintonite, the most and the less expandable directions do not correspond to the most and the less compressible directions, respectively. A comparison between the thermoelastic parameters of clintonite and those of true micas was carried out.  相似文献   

8.
This paper investigates kerogen carbon isotopes, the difference between carbonate and kerogen carbon isotopes (Δ13Ccarb-kero = δ 13Ccarb − δ 13Ckero) and the difference between carbonate and n-C19 alkane compound-specific carbon isotopes (Δ13Ccarb-n-C19 = δ 13Ccarb − δ 13C n-C19) during the Permian–Triassic transition at Meishan, South China. The results show that kerogen carbon isotopes underwent both gradual and sharp shifts in beds 23–25 and 26–29, respectively. The differences between carbonate and organic carbon isotopes, both the Δ13Ccarb-kero and Δ13Ccarb-n-C19, which are mainly affected by CO2-fixing enzyme and pCO2, oscillated frequently during the Permian–Triassic transition. Both the variations of Δ13Ccarb-n-C19 and Δ13Ccarb-kero coupled with the alternation between cyanobacteria and green sulfur bacteria indicated by biomarkers. The episodic low values of Δ13Ccarb-n-C19 corresponded to episodic blooms of green sulfur bacteria, while the episodic high values of Δ13Ccarb-n-C19 corresponded to episodic blooms of cyanobacteria. The relationships between the variation of carbon isotopes and biota show that the microbes which flourished after the extinction of macroorganism affected the carbon isotope fractionation greatly. Combining the carbon isotope compositions and the pattern of size variation of the conodont Neogondolella, this paper supposes that anoxia of the photic zone at bed 24 was episodic and it would be caused by the degradation of terrigenous organic matters by sulfate reducing bacteria in the upper water column. Considered together with results from previous research, the high resolution variation of the biogeochemistry presents the sequence of the important geo-events during the Permian–Triassic crisis.  相似文献   

9.
An in situ synchrotron X-ray diffraction study was carried out on ε-FeOOH at room temperature up to a pressure of 8.6 GPa using the energy-dispersive method. The linear compressibility was determined to be β a  = 1.69(3) × 10−3 GPa−1, β b  = 2.86(6) × 10−3 GPa−1, and β c  = 1.73(5) × 10−3 GPa−1. The b-axis of the unit cell is more compressible than the a and c axes. The pressure–volume data were fitted to a third-order Birch–Murnaghan equation of state. The best fit was found using a room temperature isothermal bulk modulus of K 0 = 126(3) GPa and its pressure derivative K′ = 10(1).  相似文献   

10.
The thermoelastic behaviour of anthophyllite has been determined for a natural crystal with crystal-chemical formula ANa0.01 B(Mg1.30Mn0.57Ca0.09Na0.04) C(Mg4.95Fe0.02Al0.03) T(Si8.00)O22 W(OH)2 using single-crystal X-ray diffraction to 973 K. The best model for fitting the thermal expansion data is that of Berman (J Petrol 29:445–522, 1988) in which the coefficient of volume thermal expansion varies linearly with T as α V,T  = a 1 + 2a 2 (T − T 0): α298 = a 1 = 3.40(6) × 10−5 K−1, a 2 = 5.1(1.0) × 10−9 K−2. The corresponding axial thermal expansion coefficients for this linear model are: α a ,298 = 1.21(2) × 10−5 K−1, a 2,a  = 5.2(4) × 10−9 K−2; α b ,298 = 9.2(1) × 10−6 K−1, a 2,b  = 7(2) × 10−10 K−2. α c ,298 = 1.26(3) × 10−5 K−1, a 2,c  = 1.3(6) × 10−9 K−2. The thermoelastic behaviour of anthophyllite differs from that of most monoclinic (C2/m) amphiboles: (a) the ε 1 − ε 2 plane of the unit-strain ellipsoid, which is normal to b in anthophyllite but usually at a high angle to c in monoclinic amphiboles; (b) the strain components are ε 1 ≫ ε 2 > ε 3 in anthophyllite, but ε 1 ~ ε 2 ≫ ε 3 in monoclinic amphiboles. The strain behaviour of anthophyllite is similar to that of synthetic C2/m ANa B(LiMg) CMg5 TSi8 O22 W(OH)2, suggesting that high contents of small cations at the B-site may be primarily responsible for the much higher thermal expansion ⊥(100). Refined values for site-scattering at M4 decrease from 31.64 epfu at 298 K to 30.81 epfu at 973 K, which couples with similar increases of those of M1 and M2 sites. These changes in site scattering are interpreted in terms of Mn ↔ Mg exchange involving M1,2 ↔ M4, which was first detected at 673 K.  相似文献   

11.
The structural variations along the solid solution Sr2−x Ba x MgSi2O7 (0 ≤ x ≤ 2), combined to the high-pressure characterization of the two end-members, have been studied. A topological change from the tetragonal (melilite-type) to the monoclinic (melilite-related) structure along the join Sr2MgSi2O7 (e.g., P[`4]21 m P\bar{4}2_{1} m )–Ba2MgSi2O7 (e.g., C2/c) occurs with a Ba content higher than 1.6 apfu. Favored in the crystallization from a melt, the tetragonal form has a tetrahedral sheet topology exclusively based on five-membered rings, which provide a regular “4 up + 4 down” ligand arrangement. In contrast, the melilite-related structure, favored by solid-state reaction synthesis, is made by alternating six- and four-membered tetrahedral rings, which give an asymmetric arrangement of alternated “5 up + 3 down” and “3 up + 5 down” ligands around Sr or Ba. This latter configuration is characterized by an additional degree of freedom with Ba polyhedra hosted in the interlayer with a more irregular and compact coordination and longer Ba–O bond distances. Further insights into the relationships between the two melilite typologies were achieved by investigating the in situ high-pressure behavior of these systems. The synchrotron high-pressure experiments allowed to calculate the elastic moduli for the Sr melilite-type end-member and for the Ba monoclinic polymorph (Sr2MgSi2O7: K T0 = 107, K a=b  = 121, and K c  = 84 GPa; m-Ba2MgSi2O7: K T0 = 85, K a  = 96, K b  = 72, and K c  = 117 GPa) and compare them with those reported in the literature for ?kermanite (Ca2MgSi2O7). The results show that, although the volume of Ba polyhedron in tetragonal polymorphs is larger than in the monoclinic forms, the interlayer compressibility is significantly lower in the former structures due to the occurrence of very short Ba–O distances. This unfavored Ba environment also makes tetragonal Ba2MgSi2O7 a metastable phase at room conditions, possibly favored by high pressure. However, no phase transition occurs from monoclinic to tetragonal form due to kinetic hindrance in reconstructing the sheet topology.  相似文献   

12.
A novel preconcentration method is presented for the determination of Mo isotope ratios by multi‐collector inductively coupled plasma‐mass spectrometry (MC‐ICP‐MS) in geological samples. The method is based on the separation of Mo by extraction chromatography using N‐benzoyl‐N‐phenylhydroxylamine (BPHA) supported on a microporous acrylic ester polymeric resin (Amberlite CG‐71). By optimising the procedure, Mo could be simply and effectively separated from virtually all matrix elements with a single pass through a small volume of BPHA resin (0.5 ml). This technique for separation and enrichment of Mo is characterised by high selectivity, column efficiency and recovery (~ 100%), and low total procedural blank (~ 0.18 ng). A 100Mo‐97Mo double spike was mixed with samples before digestion and column separation, which enabled natural mass‐dependent isotopic fractionation to be determined with a measurement reproducibility of  < 0.09‰ (δ98/95Mo, 2s) by MC‐ICP‐MS. The mean δ98/95MoSRM 3134 (NIST SRM 3134 Mo reference material; Lot No. 891307) composition of the IAPSO seawater reference material measured in this study was 2.00 ± 0.03‰ (2s, n = 3), which is consistent with previously published values. The described procedure facilitated efficient and rapid Mo isotopic determination in various types of geological samples.  相似文献   

13.
《Applied Geochemistry》2005,20(11):2017-2037
The Tertiary Thrace Basin located in NW Turkey comprises 9 km of clastic-sedimentary column ranging in age from Early Eocene to Recent in age. Fifteen natural gas and 10 associated condensate samples collected from the 11 different gas fields along the NW–SE extending zone of the northern portion of the basin were evaluated on the basis of their chemical and individual C isotopic compositions. For the purpose of the study, the genesis of CH4, thermogenic C2+ gases, and associated condensates were evaluated separately.Methane appears to have 3 origins: Group-1 CH4 is bacteriogenic (Calculated δ13CC1–C = −61.48‰; Silivri Field) and found in Oligocene reservoirs and mixed with the thermogenic Group-2 CH4. They probably formed in the Upper Oligocene coal and shales deposited in a marshy-swamp environment of fluvio-deltaic settings. Group-2 (δ13CC1–C = −35.80‰; Hamitabat Field) and Group-3 (δ13C1–C = −49.10‰; Değirmenköy Field) methanes are thermogenic and share the same origin with the Group-2 and Group-3 C2+ gases. The Group-2 C2+ gases include 63% of the gas fields. They are produced from both Eocene (overwhelmingly) and Oligocene reservoirs. These gases were almost certainly generated from isotopically heavy terrestrial kerogen (δ13C = −21‰) present in the Eocene deltaic Hamitabat shales. The Group-3 C2+ gases, produced from one field, were generated from isotopically light marine kerogen (δ13C = −29‰). Lower Oligoce ne Mezardere shales deposited in pro-deltaic settings are believed to be the source of these gases.The bulk and individual n-alkane isotopic relationships between the rock extracts, gases, condensates and oils from the basin differentiated two Groups of condensates, which can be genetically linked to the Group-2 and -3 thermogenic C2+ gases. However, it is crucial to note that condensates do not necessarily correlate to their associated gases.Maturity assessments on the Group-1 and -2 thermogenic gases based on their estimated initial kerogen isotope values (δ13C = −21‰; −29‰) and on the biomarkers present in the associated condensates reveal that all the hydrocarbons including gases, condensates and oils are the products of primary cracking at the early mature st age (Req = 0.55–0.81%). It is demonstrated that the open-system source conditions required for such an early-mature hydrocarbon expulsion exist and are supported by fault systems of the basin.  相似文献   

14.
CoGeO3 was synthesized at 1,273 and 1,448 K using ceramic sintering techniques in the monoclinic and orthorhombic modification, respectively. The two compounds were analysed by magnetic susceptibility measurements and neutron diffraction in order to study magnetic ordering and spin structures at low temperature. The monoclinic form of CoGeO3 has C2/c symmetry and orders magnetically below 36 K with a small negative paramagnetic Curie temperature θ P = −4.6 (2) K. The magnetic structure can be described with k = (1, 0, 0) in the magnetic space group C2′/c′ having a ferromagnetic spin arrangement within the chains of M1 sites, but a dominating antiferromagnetic coupling between the chains. At the M1 sites the magnetic spins are aligned within the a–c plane forming an angle of 120° with the +a-axis and they are not parallel to the spins at M2. Here spins are also ferromagnetically coupled within, but antiferromagnetically coupled between the M1/M2 site bands. The orthorhombic phase of CoGeO3 displays Pbca symmetry and transforms to an antiferromagnetically ordered state [θ P = −18.6(2) K] below 33 K. The magnetic spin structure can be described with k = (0, 0, 0) in space group Pbca′ and it is similar to the one of the C2/c phase except that it is non-collinear in nature, i.e. there are components of the magnetic moment along all three crystallographic axes. Small magneto-elastic coupling is observed in the orthorhombic phase.  相似文献   

15.
A single crystal X-ray diffraction study on lithium tetraborate Li2B4O7 (diomignite, space group I41 cd) has been performed under pressure up to 8.3 GPa. No phase transitions were found in the pressure range investigated, and hence the pressure evolution of the unit-cell volume of the I41 cd structure has been described using a third-order Birch–Murnaghan equation of state (BM-EoS) with the following parameters: V 0  = 923.21(6) Å3, K 0  = 45.6(6) GPa, and K′ = 7.3(3). A linearized BM-EoS was fitted to the axial compressibilities resulting in the following parameters a 0  = 9.4747(3) Å, K 0a  = 73.3(9) GPa, K′ a  = 5.1(3) and c 0  = 10.2838(4) Å, K 0c  = 24.6(3) GPa, K′ c  = 7.5(2) for the a and c axes, respectively. The elastic anisotropy of Li2B4O7 is very large with the zero-pressure compressibility ratio β 0c 0a  = 3.0(1). The large elastic anisotropy is consistent with the crystal structure: A three-dimensional arrangement of relatively rigid tetraborate groups [B4O7]2− forms channels occupied by lithium along the polar c–axis, and hence compression along the c axis requires the shrinkage of the lithium channels, whereas compression in the a direction depends mainly on the contraction of the most rigid [B4O7]2− units. Finally, the isothermal bulk modulus obtained in this work is in general agreement with that derived from ultrasonic (Adachi et al. in Proceedings-IEEE Ultrasonic Symposium, 228–232, 1985; Shorrocks et al. in Proceedings-IEEE Ultrasonic Symposium, 337–340, 1981) and Brillouin scattering measurements (Takagi et al. in Ferroelectrics, 137:337–342, 1992).  相似文献   

16.
A synthetic clinopyroxene with composition LiFe3+Ge2O6, monoclinic s.g. P21/c, a = 9.8792(7), b = 8.8095(5), c = 5.3754(3) Å, β = 108.844(6)°, V = 442.75(16) Å3, has been studied by in situ low- and high-temperature single-crystal X-ray diffraction. The variation of lattice parameters and the intensity of the b-type reflections (h + k = 2n + 1, only present in the P-symmetry) with increasing temperature showed a displacive phase transition from space group P21/c to C2/c at a transition temperature T tr = 789 K, first order in character, with a sudden volume increase of 1.6% and a decrease of β by 1° at the transition. This spontaneous dilatation is reversible, shows a limited hysteresis of ±10°C, and corresponds to the vanishing of the b-type reflections, thus indicating a symmetry increase to space group C2/c. Below T tr an expansion is observed for all the cell parameters, while the β angle remained almost constant; at T > T tr the thermal volume expansion is due to dilatation of the structure in the $(\bar{1}\,0\,1) A synthetic clinopyroxene with composition LiFe3+Ge2O6, monoclinic s.g. P21/c, a = 9.8792(7), b = 8.8095(5), c = 5.3754(3) ?, β = 108.844(6)°, V = 442.75(16) ?3, has been studied by in situ low- and high-temperature single-crystal X-ray diffraction. The variation of lattice parameters and the intensity of the b-type reflections (h + k = 2n + 1, only present in the P-symmetry) with increasing temperature showed a displacive phase transition from space group P21/c to C2/c at a transition temperature T tr = 789 K, first order in character, with a sudden volume increase of 1.6% and a decrease of β by 1° at the transition. This spontaneous dilatation is reversible, shows a limited hysteresis of ±10°C, and corresponds to the vanishing of the b-type reflections, thus indicating a symmetry increase to space group C2/c. Below T tr an expansion is observed for all the cell parameters, while the β angle remained almost constant; at T > T tr the thermal volume expansion is due to dilatation of the structure in the ([`1] 0 1)(\bar{1}\,0\,1) plane, mostly along [0 1 0], and pure shear in the (0 1 0) plane due to the decrease of β. From comparison with silicate analogues, the germanate clinopyroxenes are more expansible, while the P21/c expands more than the C2/c phase. The evolution of Q 2 (calculated as the normalized intensity of b-type reflections) with T in the framework of the Landau theory has been done using a standard expression for a first order phase transition. We observe a jump of Q 02 = 0.538(2) at T tr, with T c of 481(7) K, b/a = −2,290 K, and c/a = 3,192 K, and thus far from being tri-critical point. A closely related composition (LiFe3+Si2O6) shows an equivalent phase transition at 228 K, which is very close to the tri-critical point and 561 K cooler. This result indicates that a change in the composition of tetrahedral sites can have dramatic effects on the P21/c ↔ C2/c displacive phase transition in clinopyroxenes. The major changes observed in the evolution of the crystal structure with T are observed in the M2 polyhedron, with a volume decrease by ca. 13.3%, compared to ca. 1.3% observed in the M1 polyhedron. The tetrahedra behave as rigid units with neither a significant change of volume at T > T tr (<1‰), nor a change of tilting of the basal plane. No change in coordination is observed at T > T tr in the M2 polyhedron, which remains sixfold coordinated although a strong deformation of this polyhedron is observed. This deformation is related to a strong change by 51.4° at T tr of the kinking angle (O3–O3–O3 angle) of the B-chain of tetrahedra, which switches from O-rotated to S-rotated [from 143.3(5)° to 194.7(6)°]. The A-chain is S-rotated at T < T tr [206.8(5)° at 703 K] and extends by 12° at the transition.  相似文献   

17.
Two sediment cores of up to 550 cm length from an intertidal flat of the German Wadden Sea near the island of Spiekeroog were investigated for the quantity and composition of fossil organic matter (OM). The lowermost parts of the cores are dominated by grey mud of a salt marsh facies containing mainly terrestrial OM estimated to account for 60–75% of the total OM, based on δ13C values and the ratio of short to long chain n-alkanols. The terrigenous origin of the dominant fraction is indicated, among others, by high proportions of C29 sterols and long chain n-alkanes typical of plant waxes. Coarse shell beds overlying the grey mud at 2–2.5 m depth represent a flooding and erosion event possibly related to heavy storm floods in the Middle Ages. Within the intertidal sand-dominated sediments in the upper parts of the cores total organic carbon (TOC) contents are generally low, ranging from 0.1% to 0.5%, and correlate well with the amount of mud fraction (r2 0.90). At the surface, marine OM has not undergone intense diagenetic alteration and so is the dominant fraction. Eroded peat particles are common throughout most of the sequence and values of the Phragmites peat indicator (PPI) > 5 indicate an origin from reed peat due to a high relative abundance of the n-C24 alkane. Changes in the composition of microbial communities over the depth interval investigated are documented by varying compositions of unsaturated fatty acids with 16 and 18 carbons. Eicosapentaenoic acid (EPA) was detected along the entire cores and indicates the presence of EPA-producing bacterial strains.  相似文献   

18.
Novel ecosystem development is occurring within the western boreal forest of Canada due to land reclamation following oil sand surface mining. Sphagnum peat is the primary organic amendment used to reconstruct soil in these novel ecosystems. We hypothesised that ecosystem recovery would be indicated by an increasing similarity in the biomolecular characteristics of novel soil organic matter (SOM) derived from peat to those of natural boreal ecosystems. We evaluated the use of the homologous series of long chain (⩾ C21) n-alkanes with odd/even predominance to monitor the re-establishment of boreal forest on these anthropogenic soils. The lipids were extracted from dominant vegetation inputs and SOM from a series of natural and novel ecosystem reference plots. Twice the concentration of n-alkanes was extracted from natural than from novel ecosystem SOM (p < 0.01). We observed unique n-alkane signatures for the source vegetation, e.g. peat material was dominated by C31, and aspen (Populus tremuloides Michx.) leaves by C25. The n-alkane distribution differed between the two systems (p < 0.001) and reflected the dominant vegetation input, i.e. peat or tree species. Our results indicate that further research is required to clarify the influence of vegetation or disturbance on the signature of n-alkanes in SOM; however, the use of n-alkanes as biomarkers of novel ecosystem development is a promising application.  相似文献   

19.
The structural behavior under pressure of three lanthanide pyrochlore zirconates Ln2Zr2O7 (Ln3+ = Ce, Nd and Gd) has been investigated by X-ray diffraction up to 50 GPa. For all three compounds, a symmetry reduction from cubic to monoclinic is observed under increasing pressure dependant on a pressure value that increases with the ionic radius of the lanthanide ions, r Ln. The cubic and monoclinic phases coexist over a wide pressure range which increases with r Ln. The zero-pressure bulk modulus of the cubic phase, B 0, and its pressure derivative, B 0′, have been determined by fitting the experimental compressibility curves to the Birch–Murnaghan equation of state.  相似文献   

20.
The high-pressure behavior of the lattice elasticity of spodumene, LiAlSi2O6, was studied by static compression in a diamond-anvil cell up to 9.3 GPa. Investigations by means of single-crystal XRD and Raman spectroscopy within the hydrostatic limits of the pressure medium focus on the pressure ranges around ~3.2 and ~7.7 GPa, which have been reported previously to comprise two independent structural phase transitions. While our measurements confirm the well-established first-order C2/cP21/c transformation at 3.19 GPa (with 1.2% volume discontinuity and a hysteresis between 0.02 and 0.06 GPa), both unit-cell dimensions and the spectral changes observed in high-pressure Raman spectra give no evidence for structural changes related to a second phase transition. Monoclinic lattice parameters and unit-cell volumes at in total 59 different pressure points have been used to re-calculate the lattice-related properties of spontaneous strain, volume strain, and the bulk moduli as a function of pressure across the transition. A modified Landau free energy expansion in terms of a one component order parameter has been developed and tested against these experimentally determined data. The Landau solution provides a much better reproduction of the observed anomalies than any equation-of-state fit to data sets truncated below and above P tr, thus giving Landau parameters of K 0 = 138.3(2) GPa, K′ = 7.46(5), λ V  = 33.6(2) GPa, a = 0.486(3), b = −29.4(6) GPa and c = 551(11) GPa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号