首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
为开展松辽盆地深部长期观测、流体实验和探索白垩纪火山事件,利用松科二井东孔丰富、齐全的测井资料,对营城组火山岩岩性进行评价。通过测井响应特征分析发现,松科二井东孔营城组凝灰岩具有最强的放射性和导电性,高孔隙度的集块熔岩密度为低值,流纹岩表现出高密度和低导电性。利用测井交会图和成像识别模式,识别出松科二井东孔营城组火山岩以流纹岩、凝灰熔岩和集块熔岩为主,少量的凝灰岩。结合凝灰岩处测井曲线变化特点,证明了火山喷发间断的存在。流纹岩具有高碱、高Si、低Fe和低黏土矿物特征。T_2谱分析认为流纹岩有利于后期深部长期观测和流体实验的开展。研究成果对松科二井东孔后续火石岭组火成岩及整个松辽盆地火山岩研究具有一定的参考价值。  相似文献   

2.
The Saurashtra region in the northwestern Deccan continental flood basalt province (India) is notable for compositionally diverse volcano-plutonic complexes and abundant rhyolites and granophyres. A lava flow sequence of rhyolite-pitchstone-basaltic andesite is exposed in Osham Hill in western Saurashtra. The Osham silicic lavas are Ba-poor and with intermediate Zr contents compared to other Deccan rhyolites. The Osham silicic lavas are enriched in the light rare earth elements, and have εNd (t = 65 Ma) values between −3.1 and −6.5 and initial 87Sr/86Sr ratios of 0.70709-0.70927. The Osham basaltic andesites have initial εNd values between +2.2 and −1.3, and initial 87Sr/86Sr ratios of 0.70729-0.70887. Large-ion-lithophile element concentrations and Sr isotopic ratios may have been affected somewhat by weathering; notably, the Sr isotopic ratios of the silicic and mafic rocks overlap. However, the Nd isotopic data indicate that the silicic lavas are significantly more contaminated by continental lithosphere than the mafic lavas. We suggest that the Osham basaltic andesites were derived by olivine gabbro fractionation from low-Ti picritic rocks of the type found throughout Saurashtra. The isotopic compositions, and the similar Al2O3 contents of the Osham silicic and mafic lavas, rule out an origin of the silicic lavas by fractional crystallization of mafic liquids, with or without crustal assimilation. As previously proposed for some Icelandic rhyolites, and supported here by MELTS modelling, the Osham silicic lavas may have been derived by partial melting of hot mafic intrusions emplaced at various crustal depths, due to heating by repetitively injected basalts. The absence of mixing or mingling between the rhyolitic and basaltic andesite lavas of Osham Hill suggests that they reached the surface via separate pathways.  相似文献   

3.
The basement beneath the Junggar basin has been interpreted either as a micro-continent of Precambrian age or as a fragment of Paleozoic oceanic crust. Elemental and Sr–Nd–Pb isotopic compositions and zircon Pb–Pb ages of volcanic rocks from drill cores through the paleo-weathered crust show that the basement is composed mainly of late Paleozoic volcanic rock with minor shale and tuff. The volcanic rocks are mostly subalkaline with some minor low-K rocks in the western Kexia area. Some alkaline lavas occur in the central Luliang uplift and northeastern Wulungu depression. The lavas range in composition from basalts to rhyolites and fractional crystallization played an important role in magma evolution. Except for a few samples from Kexia, the basalts have low La/Nb (<1.4), typical for oceanic crust derived from asthenospheric melts. Zircon Pb–Pb ages indicate that the Kexia andesite, with a volcanic arc affinity, formed in the early Carboniferous (345 Ma), whereas the Luliang rhyolite and the Wucaiwan dacite, with syn-collisional to within-plate affinities, formed in the early Devonian (395 and 405 Ma, respectively). Positive εNd(t) values (up to +7.4) and low initial 87Sr/86Sr isotopic ratios of the intermediate-silicic rocks suggest that the entire Junggar terrain may be underlain by oceanic crust, an interpretation consistent with the juvenile isotopic signatures of many granitoid plutons in other parts of the Central Asia Orogenic Belt. Variation in zircon ages for the silicic rocks, different Ba, P, Ti, Nb or Th anomalies in the mafic rocks, and variable Nb/Y and La/Nb ratios across the basin, suggest that the basement is compositionally heterogeneous. The heterogeneity is believed to reflect amalgamation of different oceanic blocks representing either different evolution stages within a single terrane or possibly derivation from different terranes.  相似文献   

4.
The Early Neoproterozoic Beiyixi Formation volcanic rocks of the southern Quruqtagh comprise mainly of a suite of tholeiitic basalts,alkaline andesites,and calc-alkaline rhyolites.The rhyolites are characterized by variably fractionated enrichment in light rare earth elements(LREE) and flat in heavy rare earth elements(HREE),and strongly negative Eu anomalies.Compared to the rhyolites,the andesites also exhibit enrichment in LREE and flat HREE(chondrite-normalized values of La/Yb,and La/Sm are 13.30-41.09,3.18-6.89 respectively).Their rare earth element patterns display minor negative Eu anomalies.Both of them exhibit coherent patterns with strongly to moderately negative anomalies of Nb,Zr,Ti,and Hf on spider diagrams.Two rhyolite and one andesite magmatic zircons with defined oscillatory zoning yielded weighted mean 206Pb/238U ages of 743±7 Ma,741±2 Ma,and 727±4 Ma.These ages are interpreted to represent the timing of volcanic eruptions. According to geochemistry and rock type,these volcanic rocks formed within a continental island-arc environment following subduction of the oceanic crust during the Early Neoproterozoic period.  相似文献   

5.
The Dir-Utror volcanic series forms a NE–SW trending belt within the northwestern portion of the Kohistan island arc terrane in the western Himalayas of northern Pakistan. The Kohistan arc terrane comprises a diverse suite of volcanic, plutonic, and subordinate sedimentary rocks of late Mesozoic to Tertiary age, developed prior to and after suturing of the Indo-Pakistan and Asiatic continental blocks. The Dir-Utror volcanic series near Dir is dominated by basaltic-andesite and andesite, with subordinate basalt, high-MgO basalt, dacite, and rhyolite. Porphyritic textures are dominant, with less common aphyric and seriate textures. Plagioclase is the dominant phenocryst in mafic to intermediate rocks, K-feldspar and quartz phenocrysts predominate in the dacites and rhyolites. Chlorite, epidote, albite, and actinolite are the most common metamorphic phases; blue-green amphibole, andesine, muscovite, biotite, kaolinite, sericite, carbonate, and opaques are widespread but less abundant. Phase assemblages and chemistry suggest predominant greenschist facies metamorphism with epidote-amphibolite facies conditions attained locally.Whole rock major element compositions define a calc-alkaline trend: CaO, FeO, MgO, TiO2, Al2O3, V, Cr, Ni, and Sc all decrease with increasing silica, whereas alkalis, Rb, Ba, and Y increase. MORB-normalized trace element concentrations show enrichment of the low-field strength incompatible elements (Ce, La, Ba, Rb, K) and deep negative Nb, P, and Ti anomalies—patterns typical of subduction related magmas. Mafic volcanic rocks plot in fields for calc-alkaline volcanics on trace element discrimination diagrams, showing that pre-existing oceanic crust is not preserved here. All rocks are LREE-enriched, with La=16–112×chondrite, La/Lu=2.6–9.8×chondrite, and Eu/Eu*=0.5–0.9. Dacites and rhyolites have the lowest La/Lu and Eu/Eu* ratios, reflecting the dominant role of plagioclase fractionation in their formation. Some andesites have La/Lu ratios which are too high to result from fractionation of the more mafic lavas; chondrite-normalized REE patterns for these andesites cross those of the basaltic andesites, indicating that these lavas cannot be related to a common parent.The high proportion of mafic lavas rules out older continental crust as the main source of the volcanic rocks. The scarcity of more evolved felsic volcanics (dacite, rhyolite) can be explained by the nature of the underlying crust, which consists of accreted intra-oceanic arc volcanic and plutonic rocks, and is mafic relative to normal continental margins. Andesites with high La, La/Lu, K2O, and Rb may be crustal melts; we suggest that garnet-rich high-pressure granulites similar to those exposed in the Jijal complex may be restites formed during partial melting of the crust.  相似文献   

6.
EWART  A. 《Journal of Petrology》1982,23(3):344-382
The magmas of the Tertiary volcanic province of S. Queenslandare chemically bimodal, and occur in numerous volcanic centres,at least three representing original shield volcanoes. The maficlavas are dominantly hawaiites and tholeiitic andesites, whereasthe silicic magmas comprise mainly trachytes, rhyolites, andcomendites. The silicic rocks exhibit variable trace element abundance patterns.There is a progressive depletion of Sr, Ba, V, Mg, Ni, Cr, Mn,and P, through the trachytes to the rhyolites and comenditeswhile the behaviour of Zr, Nb, LREE, Y and Zn is very variable.Rb, Th, and to a lesser extent Pb exhibit a more regular behaviour,becoming most generally concentrated in the comendites and rhyolites.These trace element patterns are modelled by application ofthe Rayleigh distillation model, using partition coefficientsbased on analysed phenocrysts from the S. Queensland siliciclavas. Trace mineral phases, namely zircon, chevkinite, andallanite, are shown to be important in the probable controlof LREE, Zr, and Th abundances, while Nb and Zn are probablycontrolled during fractionation by magnetite. Trace elementdata for the hawaiites and tholeiitic andesites also indicateextensive although variable levels of fractional crystallizationof these magmas. The Sr and O isotopic compositions of the mafic lavas, trachytes,comendites and rhyolites are as follows: initial 87Sr/86Sr ratios;0.70357–0.70456, 0.70432–0.70589, 0.70495–0.70917,and 0.70708–0.70863 respectively. 18O range between 5.6–7.0(mafic lavas), 4.9–8.7 (trachytes), 5.0–7.6 (comendites)and 8.1–10.4 per mil (rhyolites). Pb isotopic compositionsare variable, showing a variation of 6.7 per cent for 206Pb/204Pbratios through the range of volcanic compositions. The rhyolitesexhibit a much greater divergence in their O, Sr, and Pb isotopiccompositions compared with those of associated mafic lavas,than is found in the trachytes and comendites. Within the silicicvolcanics, positive correlations exist between 18O and initialSr ratios, and between Pb isotopic compositions and initialSr ratios (with one group of trachytes providing a noteworthyexception). These correlations are not so clearly defined forthe mafic lavas, although these do exhibit positive correlationsbetween differentiation index, 18O, and initial Sr isotope ratios. The development of the silicic magmas, excepting two groups,is interpreted in terms of a model in which assimilation andfractional crystallization occur concurrently, involving a basaltor hawaiite magma component and a crustal component (modelledon the analysed Carboniferous basement greywackes outeroppingin the region); the data indicate, however, that differentiationcontinued in isotopically closed systems (i. e. isolated fromthe wallrocks). The highly depleted Sr and Ba abundances ofthe rhyolites and comendites suggest that contamination didnot occur after differentiation had ceased. The rhyolites havethe highest isotopic input of the crustal components and areinterpreted as crustal anatectic melts, produced locally withinthe crust in response to basalt/hawaiite magma intrusion, whereasmost of the trachytes and comendites are interpreted as primarilythe differentiated products from original mafic parental magmas,with variable assimilation of crustal wallrock components. Theisotopic data suggest that only the Minerva Hills trachyticlavas, and a Glass House comendite, have not been significantlymodified by wallrock assimilation processes. The erpted maficmagmas were also evidently modified by isotopic crustal wallrockinteractions, which independent petrological data suggest hasoccurred at intermediate to lower crustal depths.  相似文献   

7.
Two main volcanic events are distinguished between Saraykent and Akçakışla in the Yozgat province of central Anatolia: (1) early Late Cretaceous–Palaeocene effusive activity, that produced a sequence of intermediate to felsic ‘basal lavas’; and (2) marginally later Palaeocene explosive activity that formed a series of covering ignimbrite flows. Due to their close temporal and spatial relation, geochemical comparisons were made between the silicic members of the lavas and ignimbrites, to identify chemical groups and their relative petrogenesis. The basal lavas range from calc‐alkaline basaltic andesites to dominant rhyolites. Based on trace element correlations three main geochemical groups were identified: the Akçakışla rhyolites (present as domes); Akçakışla rhyodacites‐dacites (lava flows); and Ozan‐Saraykent rhyolites (lava flows). Large‐ion lithophile elements have been mobile in all the groups, but mainly in the Akçakışla rhyolites. Rare earth element (REE) patterns show marked similarity between the Ozan and Saraykent basal lavas. The Akçakışla dome rhyolites are more fractionated with lower LaN/YbN ratios (c.10), whereas the Akçakışla basal lavas have much higher LaN/YbN ratios (c.30). The chemical coherence and petrographic similarities between the Saraykent and Ozan lavas suggest a single suite related via fractionation. Three geochemical groups were also established for the ignimbrites: Saraykent ignimbrite; Bağlıca ignimbrite‐Toklu‐Kızıldağ crystal tuffs; and Keklikpınar ignimbrite. The ignimbrites, like the basal lavas, display a pronounced depletion in Ba on ORG‐normalized plots. Relative to the basal lavas, chondrite‐normalized patterns for the ignimbrites are different in displaying negative Eu anomalies that indicate feldspar fractionation. The lack of geochemical overlap or coherence between any of the lava and ignimbrite groups suggests that they represent distinct eruptive events and are not related in any simple volcanic development and cogenetic sense. Two geochemical features are common to all the volcanic rock groups: (1) the presence of a Nb‐Ta anomaly, which is generally accepted as a crustal signature; and (2) the relatively low Y abundances which appear characteristic for the region as a whole. These fundamental features of the local silicic volcanism largely reflect source composition and effects. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

8.
The summit region of Ben Nevis, Britain's highest mountain, consists of late Silurian to Early Devonian age volcanic rocks originally interpreted as a thick sequence (> 600 m) of andesite lavas and agglomerates that were down‐faulted during caldera subsidence. New digital field mapping of the Ben Nevis area, including both the steep north and south faces of the mountain, has revealed that the volcanic rocks consist largely of volcaniclastic debris flows, and extensive block and ash flow deposits with minor air‐fall tuff units. There is no evidence of any andesite lava flows or a volcanic vent. The volcanic detritus was derived from a volcanic centre situated to the NW of Ben Nevis, perhaps several tens of kilometres away. The rocks forming the summit region of the mountain have been re‐interpreted as a large roof pendant or keel of the former late Silurian to Early Devonian volcanic land surface that once covered much of the SW Highlands of Scotland.  相似文献   

9.
 Isotopic and trace element data from mantle and granulite xenoliths are used to estimate the relative contributions of mantle and crustal components to a large ignimbrite, referred to as the upper ignimbrite, that is representative of the voluminous mid-Cenozoic rhyolites of northwestern Mexico. The study also uses data from the volcanic rocks to identify deep crustal xenoliths that are samples of new crust created by the Tertiary magmatism. The isotopic composition of the mantle component is defined by mantle-derived pyroxenites that are interpreted to have precipitated from mid-Cenozoic basaltic magmas. This component has ɛNd≈+1.5, 87Sr/86Sr≈0.7043 and 206Pb/204Pb≈18.6. Within the upper ignimbrite and associated andesitic and dacitic lavas, initial 87Sr/86Sr is positively correlated with SiO2, reaching 0.7164 in the ignimbrite. Initial 206Pb/204Pb ratios also show a positive correlation with silica, whereas ɛNd values have a crude negative correlation, reaching values as low as −2. Of the four isotopically distinct crustal components identified from studies of granulite xenoliths, only the sedimentary protolith of the paragneiss xenoliths can be responsible for the high initial 87Sr/86Sr of the upper ignimbrite. The Nd, Sr, and Pb isotopic compositions of the upper ignimbrite can be modeled with relatively modest assimilation (≤20%) of the sedimentary component ± Proterozoic granulite. Gabbroic composition granulite xenoliths have distinctive Nd, Sr, and Pb isotope ratios that cluster closely within the range of compositions found in the andesitic and dacitic lavas. These mafic granulites are cumulates, and their protoliths are interpreted to have precipitated from the intermediate to silicic magmas at 32–31 Ma. These mafic cumulate rocks are probably representative of much of the deep crust that formed during mid-Cenozoic magmatism in Mexico. Worldwide xenolith studies suggest that the relatively great depth (≤20 km) at which assimilation-fractional crystallization took place in the intermediate to silicic magma systems of the La Olivina region is the rule rather than the exception. Oligocene ignimbrites of the southwestern United States (SWUS) have substantially lower ɛNd values (e.g. <−6) than the upper ignimbrite and other rhyolites from Mexico. This difference appears to reflect a greater crustal contribution to ignimbrites of the SWUS, perhaps due to a higher temperature of the lower crust prior to the emplacement of the Oligocene basaltic magmas. Received: 16 December 1994 / Accepted: 13 September 1995  相似文献   

10.
西乌旗地区处于大兴安岭南部,广泛分布中生代火山岩。中生代火山岩中性岩组SHRIMP锆石U-Pb年龄为163Ma±2Ma,为岩浆上侵结晶的年龄;研究区南区下营子地区查干诺尔组流纹岩SHRIMP锆石U-Pb年龄为144.2Ma±1.4Ma,表明西乌旗地区晚中生代火山岩形成时代为晚侏罗世—早白垩世。在TAS图中,中性岩样品数据点落入粗面岩区,属碱性岩系列,REE分馏明显,LILE富集,Nb、Ta等元素亏损,Eu异常不明显,具有正高εNd(t)值,推断粗面岩是由地幔的碱性、过碱性岩浆经过分离结晶过程形成的;流纹岩属高钾钙碱性岩系列,REE分馏明显,部分LILE富集,Ba、Sr和HFSE强烈亏损,推测该岩石由相对较浅的中下地壳物质部分熔融形成并具有A2型花岗岩的特征。综合研究并结合前人的资料,认为从晚侏罗世(163Ma)开始,西乌旗所在大兴安岭地区已经处于伸展构造环境。  相似文献   

11.
分布在尼勒克县喀什河北部一带的阿克塔什组火山岩归属博罗霍洛山地层小区.通过对该组火山岩的岩石学、岩石化学和元素地球化学研究,确认该火山岩为中性-酸性熔岩及同质凝灰岩,属钙碱性系列,且高钾富铝.其岩石化学及地球化学显示岛弧火山岩特征.综合分析,本区在中泥盆世处于汇聚板块一侧的岛弧及弧后盆地.阿克塔什组火山岩的构造环境信息为本区构造演化提供了重要佐证.  相似文献   

12.
There is a broad consensus that the extensive late Mesozoic igneous rocks in NE China were generated in an extensional setting. However, the timing and mechanism of the lithospheric extension remain controversial. To address this, we carried out an integrated study involving LA–ICP–MS zircon U–Pb dating and geochemical analyses (major elements, trace elements, and Hf isotopes) for the Early Cretaceous adakitic lavas and A-type rhyolites of the Songliao Basin. The adakitic lavas are andesites and dacites. The U–Pb dating of zircons from the adakitic lavas and A-type rhyolites yielded ages between 115 and 102 Ma. Geochemically, the adakitic lavas are characterized by high Sr contents (515–1610 ppm) and low Y (0.98–17.58 ppm) and heavy rare earth element (HREE) contents, and they therefore have high Sr/Y (51–112) ratios. They also exhibit high Mg# values (36–57) and high contents of MgO (0.56–3.53 wt%), Cr (15.7–87.3 ppm), and Ni (6.7–44.7 ppm) that are comparable with those of high-Mg adakitic rocks. The A-type rhyolites show an affinity with aluminous A-type magmatic rocks, and they are metaluminous to peraluminous (A/CNK = 0.98–1.35), enriched in alkalis, Ga, Zr, Nb, and Y, depleted in Sr and P, and exhibit fractionated REE patterns with negative Eu anomalies (Eu/Eu* = 0.05–0.77). All the primary zircons from the adakitic lavas and A-type rhyolites have positive εHf(t) values of +3.6 to +12.1 and juvenile two-stage model (TDM2) ages of 934–392 Ma. The adakitic lavas probably resulted from the partial melting of a delaminated region of the lower continental crust, with the magmas subsequently interacting with mantle materials upon ascent, while the A-type rhyolites were probably generated by the partial melting of a dehydrated charnockitic middle–lower crust. The data suggest that the adakitic lavas and the A-type rhyolites formed in an extensional environment related to the rollback of the subducting Paleo-Pacific Plate. The upwelling of asthenospheric mantle and local delamination of the lithosphere, which were induced by rollback of the subducting Paleo-Pacific Plate, extended from the Great Xing'an Range southeastward through the Songliao Basin to eastern Heilongjiang and Jilin provinces, giving rise to the southeastward migration of lithospheric extension and extension-related volcanism after ca. 140 Ma.  相似文献   

13.
Located in the Cordillera Oriental of the Dominican Republic, the Early Cretaceous Los Ranchos Fm (LRF) comprises a > 3-km thick sequence of volcanic and volcaniclastic rocks with variable geochemical characteristics, which is intruded by tonalite batholiths, minor gabbro/diorite plutons and mafic dykes. From top to bottom, three main stratigraphic units have been mapped: upper basaltic, intermediate rhyodacitic and lower basaltic. Combined detailed mapping, stratigraphy, geochemistry, Rb–Sr/Sm–Nd isotopic studies and U–Pb/Ar–Ar geochronology show that the mafic rocks of the LRF include boninites and LREE-depleted island arc tholeiites (IAT) in the lower unit, both which appear genetically related, whereas normal IAT occur in the upper unit. The source for these rocks is thought to reflect variably depleted mantle, overprinted by a subduction zone component. Contemporaneous Aptian U–Pb zircon ages were obtained for a rhyodacite from the intermediate unit (116.0 ± 0.8 Ma) and a tonalite of the Zambrana batholith (115.5 ± 0.3 Ma) that intrudes the LRF. The similarity of trace element signatures in both units argues for genetic link between the felsic volcanics of the LRF and the tonalite plutonism. Low-K rhyolites and tonalite batholiths are interpreted as products of secondary melting at the base of thickened early arc crust. 40Ar/39Ar plateau ages of hornblende in most tonalites are Albian (109–106 Ma) and interpreted as final cooling ages, prior to unroofing and growth of unconformable overlying reef limestones of the Hatillo Fm (112–100 Ma). The LREE-depleted IAT and boninites of lower basaltic unit are interpreted to have formed during subduction zone initiation in the Caribbean Island arc, and the normal IAT of the upper unit are thought to represent the subsequent establishment of the volcanic front.  相似文献   

14.
A major question concerning the Bushveld Complex is the relationship between the layered mafic rocks and the overlying Rooiberg Group felsites and related granophyres. Here, we assemble bulk-rock analyses to gain insight into this question and investigate the petrogenesis of the felsic rocks. The data indicate that the Rooiberg Group consists of distinctive magnesian and ferroan lavas. The former dominates the basalts to rhyolites of the basal Dullstroom Formation, while nearly all the dacites to rhyolites of the overlying Damwal, Kwaggasnek, and Schrikkloof Formations are ferroan. The ferroan rocks also include the Stavoren Granophyre, which exists regionally as a several-hundred-meter-thick concordant sheet between the Bushveld Complex and Rooiberg lavas. The compositions of the magnesian lavas are similar to calc-alkaline granitoids found in convergent margins, suggesting that the lavas could have originated in a mantle affected by previous Archean subduction events that are recorded by xenoliths and inclusions in diamonds from most Kaapvaal kimberlites. In contrast, the compositions of the ferroan lavas indicate formation by fractional crystallization of basaltic liquids and are essentially identical to ferroan rhyolites associated with mafic rocks from other settings. The hypothesis that these rocks are fractional crystallization products of Bushveld mafic liquids is consistent with published radiogenic and stable isotope data and known age relations. Based on compositional characteristics and geologic relations, the Stavoren Granophyre is the most likely candidate for the residual liquid that escaped from the top of the Bushveld Complex. Whether the bulk of the Bushveld Province ferroan rhyolites formed in the chamber of the extant layered mafic sequence or in a deeper, hidden crustal magma reservoir remains unclear.  相似文献   

15.
Well Drilling shows that the volcanic rocks from the Carboniferous Batamayineishan Formation in the Eastern Junggar basin are mainly composed of volcaniclastic rocks (av. 52%) and volcanic lavas (32%), with a small amount of volcanic pyroclastic lavas (av. 11%). The volcanic lavas are basalt‐basaltic andesite‐andesite‐dacite assemblage. The LA‐ICP‐MS zircon U‐Pb dating of the andesite and the dacite yielded 325~321 Ma and 310 Ma ages, respectively, which is of high agreement with the published age (300 Ma) of basalts from this Formation, it is implied that an important volcanic activity occurred in Junggar basin in the late Carboniferous. The lavas have low TiO2 and high Na2O, indicating a calc‐alkaline series. Geochemical data show that they are characterized by LREE‐enriched patterns with slightly negative Eu anomalies. The rocks have high large ion lithophile element (LILE), and low high field strength element (HFSE) concentrations, with strong negative Nb, Ta and Ti anomalies. From basic through intermediate to felsic, the depletions in Sr, Ti and P of the studied volcanic rocks increase gradually. These geochemical characteristics indicate that the volcanic rocks are magmatic evolution products attributed to partial melting of mantle‐derived spinelle lherzolite related to oceanic subduction in an island‐arc setting. In combination with the LA‐ICP‐MS zircon U‐Pb dating, it is inferred that subduction of the Junggar Ocean in eastern Junggar basin lasted to the Late Carboniferous. Consequently, the final closure of the Junggar Ocean occurred most likely after 310 Ma.  相似文献   

16.
中国东北二连盆地周缘分布有三组时代不同的晚中生代火山岩,其中早、中期为两套地球化学性质不同的流纹岩,晚期为玄武质火山岩。本文通过测定火山岩基质Ar-Ar同位素年龄,表明早期查干诺尔组流纹岩形成于142Ma,晚期不拉根哈达组基性火山岩形成于129Ma,可见二连盆地北缘晚中生代火山岩时代均为早白垩世。通过对主、微量元素地球化学特征和Sr-Nd-Pb同位素组成研究,以及与邻区同期满克头鄂博组英安岩和流纹岩、玛尼吐组英安岩、霍林河地区查干诺尔组英安岩、流纹岩对比,认为早期查干诺尔组流纹岩来源于新成下地壳,岩浆演化过程经历了强烈分异作用;中期流纹岩源区为中上地壳或下地壳岩浆经历了上地壳强烈同化混染作用;晚期不拉根哈达组基性火山岩则源于受俯冲洋壳流体交代的富集岩石圈地幔。结合早白垩世区域岩石圈减薄背景,本文认为研究区早白垩世火山岩形成于陆内伸展构造环境。  相似文献   

17.
The Xiong’er Group is an important geologic unit in the southern margin of the North China Craton. It is dominated by the volcanic rocks, dated at 1763 ± 15 Ma, that have SiO2 contents ranging from 52.10 wt% to 73.51 wt%. These volcanic rocks are sub-alkaline and can be classified into three subgroups: basaltic andesites, andesites and rhyolites. They unexceptionally show enrichment of light rare earth elements (LREE) and share similar trace element patterns. Depletions in Nb, Ta, Sr, P and Ti relative to the adjacent elements are evident for all the samples. The volcanic rocks are evolved with low MgO contents (0.29–5.88 wt%) and accordingly low Mg# values of 11–53. The Nd isotopes are enriched and show a weak variation with ?Nd(t) = −7.12 to −9.63. Zircon Hf isotopes are also enriched with ?Hf(t) = −12.02 ± 0.45. The volcanic rocks of the Xiong’er Group are interpreted to represent fractional crystallization of a common mantle source. The volcanic rocks might have been generated by high-degree partial melting of a lithospheric mantle that was originally modified by the oceanic subduction in the Late Archean. This brings a correlation with the subduction-modified lithospheric mantle in an extensional setting during breakup of the Columbia supercontinent in the late Paleoproterozoic, rather than in an arc setting. The elevated SiO2 contents and evolved radiogenic isotope features indicate the possible incorporation into their source of lower crustal materials that have similar Nd isotopic characteristics to the subcontinental lithospheric mantle. The existence of extensive Xiong’er volcanic rocks (60,000 km2) indicates an early large-scale subduction-related metasomatism in the area and probably suggest a flat subduction model for the plate-margin magmatism in the Late Archean.  相似文献   

18.
阿尔泰南缘分布着大量的晚古生代康布铁堡组火山岩系,是许多铁矿、铜矿以及铅锌矿的赋矿围岩。阿尔泰南缘麦兹和克朗火山-沉积盆地内的钾-钠质流纹岩的年龄分别为396.7±1.4Ma和394.0±6.0Ma,结合近期研究成果,进一步表明阿尔泰南缘火山岩主要形成于晚古生代早期,锆石U-Pb年龄峰期在400Ma左右。钾-钠质流纹岩具有高硅(SiO2的含量范围为73%~82%)、高碱(总碱含量介于4%~7%)和过铝质(高A/CNK值>1)的特征,并见有白云母和黑云母的矿物组合,属于高硅高碱过铝质的钙碱性火山岩。此外,它们的Sr和Nd同位素分别为87Sr/86Sr=0.7074~0.7144,143Nd/144Nd=0.512072~0.512252,具有上地壳来源的特征,说明其岩石成因与初生地壳的部分熔融作用有着密切关系。结合区域地质背景分析,它们都产在与俯冲消减作用有关的陆缘岛弧的地质环境中。因此,我们推断本区钾-钠质流纹岩的原始岩浆为高硅高碱的花岗质岩浆,是由进入陆壳的高侵位玄武岩浆的底侵作用导致其上部地壳近固相线的低程度部分熔融的产物。  相似文献   

19.
The Maymecha-Kotuy area, comprising ~70,000 km2 of the northern part of the Siberian flood-basalt province, is of unusual interest because it appears to be the only such province in the world where high-Ti, alkaline-ultramafic rocks with associated carbonatites predominate over basaltic extrusive and intrusive rocks. New field and geochemical studies of the igneous rocks of this area were initiated with the goals of (1) correlating them with the magmatic formations of the well-studied Noril'sk area and (2) reconstructing the entire magmatic evolution of Siberian flood-basalt volcanism.

This report presents the first complete stratigraphic section for the volcanic sequence of the Maymecha River Basin (the most extensive in the Maymecha-Kotuy area), based on flow-by-flow mapping and sample collection. The geochemical and lithologic characteristics of the volcanic and intrusive rocks are thoroughly documented and show an unusually broad range in composition–e.g., SiO2 and MgO contents range from 40 to 70 and from <1 to 38 wt%, respectively. New geochemical data, considered together with earlier paleomagnetic data, indicate that as much as 3000 m of the Maymecha-Kotuy sequence consists of lavas younger than those preserved near Noril'sk. Thus, the combined thickness of the lavas and tuffs that constitute the Siberian flood-basalt province is estimated as ~6500 m. As at Noril'sk, the volcanic sequence lies with unconformity on sedimentary rocks of the Tungusskaya Series. At Maymecha, the sequence begins with a major, basaltic-tuff unit and an overlying suite of low-Ti, tholeiitic basalts, but the magmatism then became more diverse, with several alternations of low-Ti and high-Ti lavas, and evolved to eruption of high-Ti trachybasalts, melanephelinites, trachyandesites, trachytes, trachydacites, and trachyrhyodacites. The uppermost ~1400 m of the sequence consists of high-Ti, limburgitic and picritic lavas, as well as Mg-rich (23 to 38 wt%), high-Ti, meymechitic lavas, apparently unique in the world. Graphic evidence of the volcanic nature of the meymechites is presented here for the first time.

The numerous dikes and several sills of the Maymecha River Basin are subdivided into seven types, which can be geochemically related to the volcanic sequence and in some cases can be reliably correlated with magmatic rocks of the Noril'sk area. Preliminary indications are that the complex body commonly referred to as the Guli intrusion is, in fact, an intrusive-volcanic complex occupying ~2000 km2, in which a large, laccolithic intrusive mass of dunitic to peridotitic rocks was breached by a central volcanic edifice from which flowed ankaratrite and picritic ankaratrite lavas. Cutting the ankaratrites and picritic ankaratrites of the complex, but intimately related to it, is a variety of intrusive, alkaline rock types and two carbonatite bodies that may be related to a central feeder zone.

We recognize four magma types as products of Siberian flood-basalt volcanism and refer to them herein as low-Ti-I, low-Ti-2, moderate-Ti, and high-Ti. In contrast to the Noril'sk area, where high-Ti magmas constitute <1 vol% of the igneous rocks, their proportion is ~50 vol% in the Maymecha River Basin. These high-Ti rocks can be subdivided into trachybasaltic, melanephelinitic, and meymechitic rock series; clearly related to these series, judging from trace-element characteristics, are associated trachyandesitic, trachytic, and felsic lavas. In general, the trachyandesitic, trachytic, and felsic lavas appear to be related to the trachybasaltic series through fractionation, but some of the felsic tuffs display characteristics that suggest their relation to the melanephelinitie series. Previous investigators have concluded that meymechitic magma formed by low degrees of mantle-peridotite melting (<7%) at pressures corresponding to depths of 250 to 300 km. The distinctions between the trachybasaltic, melanephelinitic, and meymechitic rock series must relate to different sources and conditions of melting. It is remarkable that no geochemical signature of crustal contamination can be recognized for any of the high-Ti rocks, including the felsic lavas and tuffs. We conclude that the alternation of low-Ti and high-Ti magma types observed in the lower half of the volcanic sequence in the Maymecha River Basin resulted from repetitive expulsion from discrete mantle sources through independent plumbing systems.  相似文献   

20.
西乌旗地区处于大兴安岭南部,广泛分布中生代火山岩。中生代火山岩中性岩组SHRIMP锆石U-Pb年龄为163Ma±2Ma,为岩浆上侵结晶的年龄;研究区南区下营子地区查干诺尔组流纹岩SHRIMP锆石U-Pb年龄为144.2Ma±1.4Ma,表明西乌旗地区晚中生代火山岩形成时代为晚侏罗世—早白垩世。在TAS图中,中性岩样品数据点落入粗面岩区,属碱性岩系列,REE分馏明显,LILE富集,Nb、Ta等元素亏损,Eu异常不明显,具有正高εNd(t)值,推断粗面岩是由地幔的碱性、过碱性岩浆经过分离结晶过程形成的;流纹岩属高钾钙碱性岩系列,REE分馏明显,部分LILE富集,Ba、Sr和HFSE强烈亏损,推测该岩石由相对较浅的中下地壳物质部分熔融形成并具有A2型花岗岩的特征。综合研究并结合前人的资料,认为从晚侏罗世(163Ma)开始,西乌旗所在大兴安岭地区已经处于伸展构造环境。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号