首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hydro-acoustic surveys have been used to provide annual estimates of May recruitment and November spawner biomass of the South African sardine Sardinops sagax and anchovy Engraulis encrasicolus resources since 1984. These time-series of abundance estimates form the backbone of the assessment of these resources, and consequently the management of the South African sardine and anchovy is critically dependent on them. Upgrades to survey equipment over time have resulted in recent surveys providing more accurate estimates of abundance, yet in order to maintain comparability across the full time-series, estimates of biomass mimicking the old equipment were used for a number of years. In this paper we develop a method to revise the earlier part of the time-series to correct for receiver saturation in the older generation SIMRAD EK400 and EKS-38 echo sounders and to account for attenuation in dense sardine schools. This is applied to provide a revised time-series of biomass estimates for the South African sardine and anchovy resources with associated variance–covariance matrices. Furthermore, the time-series presented here are based on updated acoustic target strength estimates, making this the most reliable time-series currently available for both resources.  相似文献   

2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
1 IntroductionMesozooplankton (0.2 ~20 mm) are hetero-trophic animals that inhabit almost every type of ma-rine environment (Goswami and Padmavati, 1996;Uye et al., 1996). They are major secondary pro-ducers, grazing on phytoplankton and providing foodfor…  相似文献   

17.
18.
19.
The overall goal of this study was to strengthen understanding of the hydrographic structure in shallow estuaries as influenced by seasonal and depth-dependent variability, and by variability from extreme meteorological events. The mesohaline Neuse Estuary, North Carolina, U.S.A., which was the focus, receives surface inputs from upriver and tributary freshwater sources and bottom inputs from downriver high-salinity sound water sources, resulting in varying degrees of stratification. To assess depth-dependent, estuary-wide changes in salinity, a multiple time series was created using data from four discrete depths (surface and 1, 2, and 3 m±0.25 m). The database was developed from weekly to biweekly sampling of the entire water column, and included side-channel as well as mid-channel data. We characterized seasonal differences in halocline depth affecting the hydrographic structure of the mesohaline estuary and site-specific variation in nutrient concentrations, based on a comprehensive eight-year physical/chemical database. The first two years of the record showed an expected seasonal signal and included events that impacted the surface layer from freshwater inputs. Remaining years had greater variability over seasons and depths, with freshening events that affected all depths. Halocline depth was compared at specific locations, and a “snapshot” view was provided of the relative depth of these water masses within the estuary by season. We also examined flow patterns at the same cross-estuary sites over a three-year period, using a boat-mounted acoustic Doppler current profiler (ADCP) with bottom-tracking capability. Composite visualizations constructed with single-transect ADCP data revealed a classical estuarine circulation pattern of outflow at the surface/southern shore and inflow at the bottom/northern shore. Although this pattern deviated under extreme climatological events and was sometimes variable, the estuary generally exhibited a high probability of direction of flow. Wind fields, hurricanes, and small-scale, high-precipitation events represented significant forcing variables.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号