共查询到20条相似文献,搜索用时 14 毫秒
1.
Much research focuses on how the terrestrial biosphere influences climate through changes in surface albedo (reflectivity), stomatal conductance and leaf area index (LAI). By using a fully-coupled GCM (HadCM3LC), our research objective was to induce an increase in the growth of global vegetation to isolate the effect of increased LAI on atmospheric exchange of heat and moisture. Our Control simulation had a mean global net primary production (NPP) of 56.3 GtCyr?1 which is half that of our scenario value of 115.1 GtCyr?1. LAI and latent energy (Q E) were simulated to increase globally, except in areas around Antarctica. A highly productive biosphere promotes mid-latitude mean surface cooling of ~2.5°C in the summer, and surface warming of ~1.0°C in the winter. The former response is primarily the result of reduced Bowen ratio (i.e. increased production of Q E) in combination with small increases in planetary albedo. Response in winter temperature is likely due to decreased planetary albedo that in turn permits a greater amount of solar radiation to reach the Earth’s surface. Energy balance calculations show that between 75° and 90°N latitude, an additional 2.4 Wm?2 of surface heat must be advected into the region to maintain energy balance, and ultimately causes high northern latitudes to warm by up to 3°C. We postulate that large increases in Q E promoted by increased growth of terrestrial vegetation could contribute to greater surface-to-atmosphere exchange and convection. Our high growth simulation shows that convective rainfall substantially increases across three latitudinal bands relative to Control; in the tropics, across the monsoonal belt, and in mid-latitude temperate regions. Our theoretical research has implications for applied climatology; in the modeling of past “hot-house” climates, in explaining the greening of northern latitudes in modern-day times, and for predicting future changes in surface temperature with continued increases in atmospheric CO2. 相似文献
2.
3.
4.
五个全球大气海洋环流模式模拟二氧化碳增加对气候变化的影响 总被引:15,自引:0,他引:15
本文总结五个应用较广的全球大气与海洋环流模式(GFDL,GISS,NCAR,OSU与UKMO),模拟由于人类活动造成大气中二氧化碳浓度增加对气候变化的影响模拟表明,由于大气中二氧化碳浓度增加,将导致全球地面气温增暖大约4℃,其中高纬与极区冬季增暖更明显。高纬与极区海冰和积雪融化增加。全球降水率与土壤湿度在部分地区明显增加,部分地区明显减少,引人注意的是中纬度地区土壤湿度可能变干燥。 本文还给出发达国家与发展中国家在能源战略的各种考虑下各自相应对大气中二氧化碳浓度的影响,以及展望未来由于人类活动的结果,将对全球大气与海洋温度的变暖和土壤湿度变化的影响。 相似文献
5.
Aerosol optical properties are simulated using the Spectral Radiation Transport Model for Aerosol Species(SPRINTARS)coupled with the Non-hydrostatic ICosahedral Atmospheric Model(NICAM). The 3-year global mean all-sky aerosol optical thickness(AOT) at 550 nm, the ngstr m Exponent(AE) based on AOTs at 440 and 870 nm, and the single scattering albedo(SSA) at 550 nm are estimated at 0.123, 0.657 and 0.944, respectively. For each aerosol species, the mean AOT is within the range of the Aero Com models. Both the modeled all-sky and clear-sky results are compared with observations from the Moderate Resolution Imaging Spectroradiometer(MODIS) and the Aerosol Robotic Network(AERONET). The simulated spatiotemporal distributions of all-sky AOTs can generally reproduce the MODIS retrievals, and the correlation and model skill can be slightly improved using the clear-sky results over most land regions. The differences between clear-sky and all-sky AOTs are larger over polluted regions. Compared with observations from AERONET, the modeled and observed all-sky AOTs and AEs are generally in reasonable agreement, whereas the SSA variation is not well captured. Although the spatiotemporal distributions of all-sky and clear-sky results are similar, the clear-sky results are generally better correlated with the observations. The clear-sky AOT and SSA are generally lower than the all-sky results, especially in those regions where the aerosol chemical composition is contributed to mostly by sulfate aerosol. The modeled clear-sky AE is larger than the all-sky AE over those regions dominated by hydrophilic aerosol, while the opposite is found over regions dominated by hydrophobic aerosol. 相似文献
6.
7.
8.
M. Satoh K. Oouchi T. Nasuno H. Taniguchi Y. Yamada H. Tomita C. Kodama J. Kinter D. Achuthavarier J. Manganello B. Cash T. Jung T. Palmer N. Wedi 《Climate Dynamics》2012,39(9-10):2185-2206
Project Athena is an international collaboration testing the efficacy of high-resolution global climate models. We compare results from 7-km mesh experiments of the Nonhydrostatic Icosahedral Atmospheric Model (NICAM) and 10-km mesh experiments of the Integrated Forecast System (IFS), focusing on the Intra-Seasonal Oscillation (ISO) and its relationship with tropical cyclones (TC) among the boreal summer period (21 May–31 Aug) of 8?years (2001–2002, 2004–2009). In the first month of simulation, both models capture the intra-seasonal oscillatory behavior of the Indian monsoon similar to the observed boreal summer ISO in approximately half of the 8-year samples. The IFS simulates the NW–SE-oriented rainband and the westerly location better, while NICAM marginally reproduces mesoscale organized convective systems and better simulates the northward migration of the westerly peak and precipitation, particularly in 2006. The reproducibility of the evolution of MJO depends on the given year; IFS simulates the MJO signal well for 2002, while NICAM simulates it well for 2006. An empirical orthogonal function analysis shows that both models statistically reproduce MJO signals similar to observations, with slightly better phase speed reproduced by NICAM. Stronger TCs are simulated in NICAM than in IFS, and NICAM shows a wind-pressure relation for TCs closer to observations. TC cyclogenesis is active during MJO phases 3 and 4 in NICAM as in observations. The results show the potential of high-resolution global atmospheric models in reproducing some aspects of the relationship between MJO and TCs and the statistical behavior of TCs. 相似文献
9.
An evaluation of oceanic containment strategies for anthropogenic carbon dioxide is presented. Energy conservation is also addressed through an input hydrocarbon-fuel consumption function. The effectiveness of the proposed countermeasures is determined from atmospheric CO2 concentration predictions. A previous box model with a diffusive deep ocean is adapted and applied to the concept of fractional CO2 injection in 500 m deep waters. Next, the contributions of oceanic calcium carbonate sediment dissolution, and of deep seawater renewal, are included. Numerical results show that for CO2 direct removal measures to be effective, large fractions of anthropogenic carbon dioxide have to be processed. This point favors fuel pre-processing concepts. The global model also indicates that energy conservation, i.e. a hydrocarbon-fuel consumption slowdown, remains the most effective way to mitigate the greenhouse effect, because it offers mankind a substantial time delay to implement new energy production alternatives. 相似文献
10.
L. Rivier Ph. Peylin Ph. Ciais M. Gloor C. Rödenbeck C. Geels U. Karstens Ph. Bousquet J. Brandt M. Heimann 《Climatic change》2010,103(1-2):93-115
Approximately half of human-induced carbon dioxide (CO2) emissions are taken up by the land and ocean, and the rest stays in the atmosphere, increasing the global concentration and acting as a major greenhouse-gas (GHG) climate-forcing element. Although GHG mitigation is now in the political arena, the exact spatial distribution of the land sink is not well known. In this paper, an estimation of mean European net ecosystem exchange (NEE) carbon fluxes for the period 1998–2001 is performed with three mesoscale and two global transport models, based on the integration of atmospheric CO2 measurements into the same Bayesian synthesis inverse approach. A special focus is given to sub-continental regions of Europe making use of newly available CO2 concentration measurements in this region. Inverse flux estimates from the five transport models are compared with independent flux estimates from four ecosystem models. All inversions detect a strong annual carbon sink in the southwestern part of Europe and a source in the northeastern part. Such a dipole, although robust with respect to the network of stations used, remains uncertain and still to be confirmed with independent estimates. Comparison of the seasonal variations of the inversion-based net land biosphere fluxes (NEP) with the NEP predicted by the ecosystem models indicates a shift of the maximum uptake period, from June in the ecosystem models to July in the inversions. This study thus improves on the understanding of the carbon cycle at sub-continental scales over Europe, demonstrating that the methodology for understanding regional carbon cycle is advancing, which increases its relevance in terms of issues related to regional mitigation policies. 相似文献
11.
Using a climate model with a sophisticated land surface scheme, simulations were conducted to explore the impact of increases in leaf-level carbon dioxide (CO2) on evaporation, temperature and other land surface quantities. Fifty-one realizations were run, for each of four Januarys and four Julys for CO2 concentrations at leaf-level of 280, 375, 500, 650, 840 and 1,000 ppmv. Atmospheric CO2 concentration was held constant at 375 ppmv in all experiments. Statistically significant decreases in evaporation and increases in temperature occur in specific regions as leaf-level CO2 is increased from 280 to 375 ppmv. These same areas expand geographically, and the magnitude of the changes increase as leaf-level CO2 is increased further suggesting that changes are caused by the increase in leaf-level CO2 and are not internal model variability. As leaf-level CO2 is increased further, larger areas of the continental surface are affected by increasing amounts and a statistically significant change in precipitation is seen. The increase in leaf-level CO2 from 280 ppmv to 375 ppmv causes statistically significant changes in the evaporation over 12% of continental surfaces in July. This increases to 25% at 500 ppmv, 35% at 650 ppmv, 41% at 840 ppmv and 47% at 1,000 ppmv. This affects temperature and rainfall by similar amounts, generally in coincident regions. An analysis of these results over key regions shows that the probability density functions of the latent heat flux and temperature are affected non-uniformly. There is a shift in the latent heat flux probability density function to lower values, mainly through the reduction in the upper tail of the distribution. The temperature probability density function shifts to higher values, mainly through an increase in the upper tail of the distribution indicating that the impact is focussed on extremes. Given that there are a suite of well evaluated land surface models that include the biogeochemical effects of increasing CO2 we suggest that the inclusion of such a model should be a recommended component of climate models used in future assessment reports by the Intergovernmental Panel on Climate Change. 相似文献
12.
M. Ramonet J. C. Le Roulley P. Bousquet P. Monfray 《Journal of Atmospheric Chemistry》1996,23(2):107-136
The aim of the 222Rn measurements during the airborne campaign TROPOZ II, was first to help in the interpretation of the photochemical studies, and secondly to furnish a data set of 222Rn in the troposphere, for validation of atmospheric transport models. In this paper we present the 222Rn measurements, and their simulation with a 3-D atmospheric transport model based on observed winds. The 222Rn was measured using the active daughters deposit technique with isokinetic aerosol sampling. We have obtained 44 measurements distributed between 65° North and 55° South, from 1 to 11 km height. In 25% of cases, we found relatively high concentrations (> 300 mBq·scm) of 222Rn in the high troposphere (>8 km). The results of 3D simulations and the calculations of back-trajectories allow us to find the origins of the high 222Rn concentrations. The transport model reproduced most of the observed synoptic variations, but it overestimates the concentrations which implies a vertical transport of excessive velocity. 相似文献
13.
Changes in Earth's temperature have significant impacts on the global carbon cycle that vary at different time scales, yet to quantify such impacts with a simple scheme is traditionally deemed difficult. Here, we show that, by incorporating a temperature sensitivity parameter(1.64 ppm yr~(-1) ?C~(-1)) into a simple linear carbon-cycle model, we can accurately characterize the dynamic responses of atmospheric carbon dioxide(CO_2) concentration to anthropogenic carbon emissions and global temperature changes between 1850 and 2010(r~2 0.96 and the root-mean-square error 1 ppm for the period from 1960onward). Analytical analysis also indicates that the multiplication of the parameter with the response time of the atmospheric carbon reservoir(~12 year) approximates the long-term temperature sensitivity of global atmospheric CO_2concentration(~15 ppm?C~(-1)), generally consistent with previous estimates based on reconstructed CO_2 and climate records over the Little Ice Age. Our results suggest that recent increases in global surface temperatures, which accelerate the release of carbon from the surface reservoirs into the atmosphere, have partially offset surface carbon uptakes enhanced by the elevated atmospheric CO_2 concentration and slowed the net rate of atmospheric CO_2 sequestration by global land and oceans by ~30%since the 1960 s. The linear modeling framework outlined in this paper thus provides a useful tool to diagnose the observed atmospheric CO_2 dynamics and monitor their future changes. 相似文献
14.
Empirical investigations have indicated that projections of future atmospheric carbon dioxide concentrations of a quality
quite adequate for practical questions regarding the environmental threat of anthropogenic carbon dioxide emissions and its
relationship to energy use policy could be made with the simple assumption that a constant fraction of these emissions would
be retained by the atmosphere. By analysis of the structural behavior of equations describing the transfer of carbon and carbon
dioxide between their several reservoirs we have been able to demonstrate that this characteristic can be explained to result
from approximately linear behavior and exponentially growing carbon dioxide release rates, combined with fitting of carbon
cycle model parameters to the last twenty years of observed atmospheric carbon dioxide growth.
These conclusions are independent of the details of carbon cycle model structure for projections up to 100 years into the
future as long as the growth in atmospheric carbon dioxide release rates is sufficiently high, of the order of 1.5% per annum
or more, as referenced to p re-industrial (steady state) conditions. At low rates of growth, when the longer response times
of the carbon cycling system become important, for most energy use projections the resultant CO2 induced climate changes are small and the uncertainties in predicted atmospheric carbon dioxide level are thus not important.
A possible exception to this condition occurs for scenarios of future fossil fuel use rates designed to avoid atmospheric
CO2 levels exceeding a chosen threshold. In this instance details of carbon cycle model structure could significantly affect
conclusions that might be drawn concerning future energy use policies; however, it is possible that such a result stems from
inappropriate specification of a criterion for an environmental threat, rather than from inherent inadequacy of current carbon
cycle models.
Recent carbon cycle model developments postulate transfer processes of carbon into the deep ocean, large carbon storage reservoir
at rates much higher than in the models we have analysed. If the existence of such mechanisms is confirmed, and they are found
to be sufficiently rapid and large, some of our conclusions regarding the use of the constant fractional retention assumption
may have to be modified.
Currently at the Gas Research Institute, 8600 West Bryn, Mawr Ave., Chicago, IL 60631, U.S.A. 相似文献
15.
16.
Dandi A. Ramu Pillai Prasanth A. Chowdary Jasti S. Desamsetti Srinivas Srinivas G. Koteswara Rao K. Nageswararao M. M. 《Climate Dynamics》2021,56(1):439-456
Climate Dynamics - The present study explored the performance of the current coupled models obtained from the Asia Pacific Economic Cooperation (APEC) Climate Centre (APCC) in representing the... 相似文献
17.
Earth System Models (ESMs) are fundamental tools for understanding climate-carbon feedback. An ESM version of the Flexible Global Ocean-Atmosphere-Land System model (FGOALS) was recently developed within the IPCC AR5 Coupled Model Intercomparison Project Phase 5 (CMIP5) modeling framework, and we describe the development of this model through the coupling of a dynamic global vegetation and terrestrial carbon model with FGOALS-s2. The performance of the coupled model is evaluated as follows. The simulated global total terrestrial gross primary production (GPP) is 124.4 PgC yr-I and net pri- mary production (NPP) is 50.9 PgC yr-1. The entire terrestrial carbon pools contain about 2009.9 PgC, comprising 628.2 PgC and 1381.6 PgC in vegetation and soil pools, respectively. Spatially, in the tropics, the seasonal cycle of NPP and net ecosystem production (NEP) exhibits a dipole mode across the equator due to migration of the monsoon rainbelt, while the seasonal cycle is not so significant in Leaf Area Index (LAI). In the subtropics, especially in the East Asian monsoon region, the seasonal cycle is obvious due to changes in temperature and precipitation from boreal winter to summer. Vegetation productivity in the northern mid-high latitudes is too low, possibly due to low soil moisture there. On the interannual timescale, the terrestrial ecosystem shows a strong response to ENSO. The model- simulated Nifio3.4 index and total terrestrial NEP are both characterized by a broad spectral peak in the range of 2-7 years. Further analysis indicates their correlation coefficient reaches -0.7 when NEP lags the Nifio3.4 index for about 1-2 months. 相似文献
18.
Evaluation of the atmospheric transport model NIRE-CTM-96 by using measured radon-222 concentrations 总被引:1,自引:0,他引:1
SHOICHI TAGUCHI TAKAO IIDA JUN MORIIZUMI 《Tellus. Series B, Chemical and physical meteorology》2002,54(3):250-268
An atmospheric transport model, NIRE-CTM-96, was evaluated by using measured radon-222 concentrations. The model has 2.5×2.5 degree horizontal resolution and 15 vertical levels. Assimilated global meteorological data for 1990–1996 from the European Centre for Medium Range Weather Forecasts were used to drive the model. We used an emanation rate of radon-222 of 1 atom cm−2 s−1 over mostly ice-free land. Simulated concentrations were compared with measured concentrations for 22 sites worldwide including 10 stations in China. Simulated annual mean concentrations for Freiburg, Germany, and Socorro, New Mexico, and for four stations in northern China were consistent with the measured concentrations. Simulated daily concentrations for Ogasawara-Hahajima, Japan, correlated well with the measured concentrations. Simulated upper tropospheric concentrations for Moffet Field, California, demonstrated the cross-Pacific transport from central Eurasia and India-Indochina area. Simulated concentrations for two stations in southern China were almost half of the measured concentrations. Mixing layer depth in the model was consistent with other estimates which indicates higher emanation rate there. Simulated concentrations for the South Indian Ocean and the Antarctic during summer were significantly lower than the measured concentrations; this difference was accounted for when emanation from the ocean at a rate of 0.01 atom cm−2 s−1 was included in the model. The model failed to simulate amplitudes of high-concentration events at Mauna Loa. These high-concentration events were possibly a result of filament-like horizontal structure or laminated vertical structure. The vertical as well as horizontal resolution of the model were supposed to be insufficient to reproduce these fine structures. 相似文献
19.
DAVID W. KICKLIGHTER MICHELE BRUNO SILKE DÖNGES GERD ESSER MARTIN HEIMANN JOHN HELFRICH FRANK IFT FORTUNAT JOOS JÖRG KADUK GUNDOLF H. KOHLMAIER A. DAVID McGUIRE JERRY M. MELILLO ROBERT MEYER BERRIEN MOORE III REAS NADLER I. COLIN PRENTICE WALTER SAUF ANNETTE L. SCHLOSS STEPHEN SITCH UWE WITTENBERG GUDRUN WÜRTH 《Tellus. Series B, Chemical and physical meteorology》1999,51(2):343-366
20.
The interannual variability of the global carbon cycle 总被引:2,自引:0,他引:2