首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到8条相似文献,搜索用时 15 毫秒
1.
Although kilometer-scale neutrino detectors such as IceCube are discovery instruments, their conceptual design is very much anchored to the observational fact that Nature produces protons and photons with energies in excess of 1020 eV and 1013 eV, respectively. The puzzle of where and how Nature accelerates the highest energy cosmic particles is unresolved almost a century after their discovery. From energetics considerations we anticipate on the order of 10–100 neutrino events per kilometer squared per year pointing back at the source(s) of both galactic and extragalactic cosmic rays. In this context, we discuss the results of the AMANDA and IceCube neutrino telescopes which will deliver a kilometer-square-year of data over the next 3 years.  相似文献   

2.
3.
A Monte Carlo study to reconstruct energy and mass of cosmic rays with energies above 300 TeV using ground based measurements of the electromagnetic part of showers initiated in the atmosphere is presented. The shower properties determined with two detector arrays measuring the air Cherenkov light and the particle densities as realized at the HEGRA experiment are processed to determine the energy of the primary particle without the need of any hypothesis concerning its mass. The mass of the primary particle is reconstructed coarsely from the same observables in parallel to the energy determination.  相似文献   

4.
The nearby radio galaxy Centaurus A is poorly studied at high frequencies with conventional radio telescopes because of its very large angular size, but is one of a very few extragalactic objects to be detected and resolved by the Wilkinson Microwave Anisotropy Probe ( WMAP ). We have used the five-year WMAP data for Cen A to constrain the high-frequency radio spectra of the 10° giant lobes and to search for spectral changes as a function of position along the lobes. We show that the high-frequency radio spectra of the northern and southern giant lobes are significantly different: the spectrum of the southern lobe steepens monotonically (and is steeper further from the active nucleus) whereas the spectrum of the northern lobe remains consistent with a power law. The inferred differences in the northern and southern giant lobes may be the result of real differences in their high-energy particle acceleration histories, perhaps due to the influence of the northern middle lobe, an intermediate-scale feature which has no detectable southern counterpart. In light of these results, we discuss the prospects for Fermi Gamma-ray Space Telescope detections of inverse-Compton emission from the giant lobes and the lobes' possible role in the production of the ultra-high-energy cosmic rays (UHECR) detected by the Pierre Auger Observatory. We show that the possibility of a Fermi detection depends sensitively on the physical conditions in the giant lobes, with the northern lobe more likely to be detected, and that any emission observed by Fermi is likely to be dominated by photons at the soft end of the Fermi energy band. On the other hand, we argue that the estimated conditions in the giant lobes imply that UHECRs can be accelerated there, with a potentially detectable γ-ray signature at TeV energies.  相似文献   

5.
6.
The generation of hydrodynamic radiation in interactions of pulsed proton and laser beams with matter is explored. The beams were directed into a water target and the resulting acoustic signals were recorded with pressure sensitive sensors. Measurements were performed with varying pulse energies, sensor positions, beam diameters and temperatures. The obtained data are matched by simulation results based on the thermo-acoustic model with uncertainties at a level of 10%. The results imply that the primary mechanism for sound generation by the energy deposition of particles propagating in water is the local heating of the medium. The heating results in a fast expansion or contraction and a pressure pulse of bipolar shape is emitted into the surrounding medium. An interesting, widely discussed application of this effect could be the detection of ultra-high energetic cosmic neutrinos in future large-scale acoustic neutrino detectors. For this application a validation of the sound generation mechanism to high accuracy, as achieved with the experiments discussed in this article, is of high importance.  相似文献   

7.
We present predictions for the counts of extragalactic sources, the contributions to fluctuations and their angular power spectrum in each channel foreseen for the Planck Surveyor (formerly COBRAS/SAMBA ) mission. The contribution to fluctuations owing to clustering of both radio and far-IR sources is found to be generally small in comparison with the Poisson term; however the relative importance of the clustering contribution increases and may eventually become dominant if sources are identified and subtracted down to faint flux limits. The central Planck frequency bands are expected to be 'clean': at high galactic latitude (| b | > 20°), where the reduced galactic noise does not prevent the detection of the extragalactic signal, only a tiny fraction of pixels is found to be contaminated by discrete extragalactic sources. Moreover, the 'flat' angular power spectrum of fluctuations resulting from extragalactic sources substantially differs from that of primordial fluctuations; therefore, the removal of contaminating signals is eased even at frequencies where point sources give a sizeable contribution to the foreground noise.  相似文献   

8.
We discuss the properties of gamma-ray radiation accompanying the acceleration of cosmic rays via the converter mechanism. The mechanism exploits multiple photon-induced conversions of high-energy particles from charged into neutral state (namely, protons to neutrons and electrons to photons) and back. Because a particle in the neutral state can freely cross the magnetic field lines, this allows to avoid both particle losses downstream and reduction in the energy gain factor, which normally takes place due to highly collimated distribution of accelerated particles. The converter mechanism efficiently operates in relativistic outflows under the conditions typical for Active Galactic Nuclei, Gamma-Ray Bursts, and microquasars, where it outperforms the standard diffusive shock acceleration. The accompanying radiation has a number of distinctive features, such as an increase of the maximum energy of synchrotron photons and peculiar radiation beam-pattern, whose opening angle is much wider at larger photon energies. This provides an opportunity to observe off-axis relativistic jets in GeV–TeV energy range. One of the implications is the possibility to explain high-latitude unidentified EGRET sources as off-axis but otherwise typical relativistic-jet sources, such as blazars.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号