首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract— The Noblesville meteorite is a genomict, regolith breccia (H6 clasts in H4 matrix). Mössbauer analysis confirms that Noblesville is unusually fresh, not surprising in view of its recovery immediately after its fall. It resembles “normal” H4–6 chondrites in its chemical composition and induced thermoluminescence (TL) levels. Thus, at least in its contents of volatile trace elements, Noblesville differs from other H chondrite, class A regolith breccias. Noblesville's small pre-atmospheric mass and fall near Solar maximum and/or its peculiar orbit (with perihelion <0.8 AU as shown by natural TL intensity) may partly explain its levels of cosmogenic radionuclides. Its cosmic ray exposure age of ~ 44 Ma, is long, is equalled or exceeded by <3% of all H chondrites, and also differs from the 33 ± 3 Ma mean exposure age peak of other H chondrite regolith breccias. One whole-rock aliquot has a high, but not unmatched, 129Xe/132Xe of 1.88. While Noblesville is now among the chondritic regolithic breccias richest in solar gases, elemental ratios indicate some loss, especially of He, perhaps b; impacts in the regolith that heated individual grains. While general shock-loading levels in Noblesville did not exceed 4 GPa, individual clasts record shock levels of 5–10 GPa, doubtless acquired prior to lithification of the whole-rock meteoroid.  相似文献   

2.
Abstract— ‐We demonstrate the presence of solar flare as well as neutron capture effects in the isotopic composition of rare gases in the Fermo regolith breccia acquired on its parent body based on the measurements of tracks, rare gases and radionuclides. The track density along a 3.2 cm long core decreases by a factor of about 6 and by more than a factor of 13 within the meteorite, indicating small (2–9 cm) and asymmetrical ablation. Rare gases show a large trapped component; the isotopic ratios, particularly 20Ne/22Ne ? 11 and 20Ne/36Ar = 10 are indicative of a solar component. The galactic cosmic‐ray exposure age is determined to be 8.8 Ma. Activities of a dozen radionuclides ranging in half‐life from 16 day 48V to 0.73 Ma 26Al are consistent with their expected production rates. Track, rare gas and radionuclide data show that the meteoroid was a small body (≤ 120 kg) and had a simple, one‐stage exposure history to cosmic rays in the interplanetary space. However, 82Kr and 128Xe show an excess due to neutron irradiation on the parent body of the meteorite. The presence of solar gases and the neutron capture effects indicate several stages of irradiation on the parent asteroid. The chemical composition of Fermo confirms that it belongs to the H group of ordinary chondrites with lithic clasts having varying compositions. δ15N is found to be 8.3 ± 1.2%0, close to the typical values observed in H chondrites.  相似文献   

3.
Abstract— A new, large, ordinary chondrite has been recovered from near the strewn field of Gibeon iron meteorites in Namibia, and is designated Korra Korrabes, after the farm property on which the specimens were found in 1996–2000. A total of ~140 kg of related specimens were recovered, including a large stone of 22 kg, and hundreds of smaller objects between 2 g and several kilograms. Cut surfaces indicate that Korra Korrabes is a breccia, containing 10–20% of light grey‐brown clasts up to 3 cm across in a uniform, darker grey‐brown host that contains abundant round chondrules, and irregular grains of Fe‐Ni metal and troilite up to 1 cm across. The vast majority of the stone is unshocked, although some clasts show mild shock features (stage S2), and one chondrule fragment is moderately shocked (stage S3). Weathering grade varies between W1 and W2. Microprobe analyses indicate variable compositions of olivine (Fa13.8–27.2, n = 152, percent mean deviation = 7.82%) and low‐Ca pyroxene (multiply twinned clinobronzite, Fs8.4–27.8, n = 68). There is excellent preservation of magmatic textures and mineralogy within many chondrules, including normally zoned olivine (Fa13.8–18.9) and low‐Ca pyroxene (Fs0.2–20.9) phenocrysts, and abundant glass, some of whose compositions are unusually alkaline (Na2O + K2O = 13.6–16.3 wt%) and Ca‐deficient (CaO = 0‐0.75 wt%), seemingly out of magmatic equilibrium with associated clinoenstatite or high‐Al calcic clinopyroxene crystals. Textural and mineralogical features indicate that Korra Korrabes is an H3 chondrite breccia, which represents the largest and least equilibrated stony meteorite yet recovered from Namibia; it is now one of the four largest unequilibrated ordinary chondrites worldwide.  相似文献   

4.
A carbonaceous chondrite was recovered immediately after the fall near the village of Diepenveen in the Netherlands on October 27, 1873, but came to light only in 2012. Analysis of sodium and poly‐aromatic hydrocarbon content suggests little contamination from handling. Diepenveen is a regolith breccia with an overall petrology consistent with a CM classification. Unlike most other CM chondrites, the bulk oxygen isotopes are extremely 16O rich, apparently dominated by the signature of anhydrous minerals, distributed on a steep slope pointing to the domain of intrinsic CM water. A small subset plots closer to the normal CM regime, on a parallel line 2 ‰ lower in δ17O. Different lithologies in Diepenveen experienced varying levels of aqueous alteration processing, being less aqueously altered at places rather than more heated. The presence of an agglutinate grain and the properties of methanol‐soluble organic compounds point to active impact processing of some of the clasts. Diepenveen belongs to a CM clan with ~5 Ma CRE age, longer than most other CM chondrites, and has a relatively young K‐Ar resetting age of ~1.5 Ga. As a CM chondrite, Diepenveen may be representative of samples soon to be returned from the surface of asteroid (162173) Ryugu by the Hayabusa2 spacecraft.  相似文献   

5.
Abstract— A stony meteorite fell at Itawa Bhopji, Rajasthan, India on 2000 May 30. This is the fifth recorded fall in a small area of Rajasthan during the past decade. The meteorite is an ordinary chondrite with light clasts in a dark matrix, consisting of a mixture of equilibrated (mainly type 5) and unequilibrated components. Olivine is Fa24–26 and pyroxene Fs20–22 but, within the unequilibrated components, olivine (Fa5–29) and low calcium pyroxene (Fs5–37) are highly variable. Based on petrographic studies and chemical analyses, it is classified as L(3–5) regolith breccia. Studies of various cosmogenic records, including several gamma‐emitting radionuclides varying in half‐life from 5.6 day 52Mn to 0.73 Ma 26Al, tracks and rare gases have been carried out. The exposure age of the meteorite is estimated from cosmogenic components of rare gases to be 19.6 Ma. The track density varies by a factor of ?3 (from 4 to 12 times 106/cm2) within the meteorite, indicating a preatmospheric body of ?9 cm radius (corresponding to a meteoroid mass of ?11 kg) and small ablation (1.5 to 3.6 cm). Trapped components in various rare gases are high and the solar component is present in the dark portion of the meteorite. Large excess of neutron‐produced 82Kr and 128Xe in both the light and the dark lithology but very low 60Co, indicating low neutron fluxes received by the meteoroid in the interplanetary space, are clear signatures of an additional irradiation on the parent body.  相似文献   

6.
Abstract– A petrographic and geochemical study was undertaken to characterize Jiddat al Harasis (JaH) 556, a howardite find from the Sultanate of Oman. JaH 556 is a polymict impact melt breccia containing highly shocked clasts, including mosaicized olivine and recrystallized plagioclase, set in a finely recrystallized vesicular matrix (grain diameter <5–10 μm). Plagioclase (An76–92) and clinopyroxene (En48–62Wo7–15) are associated with orthopyroxene and olivine clasts like in a howardite. JaH 556 oxygen isotope data indicate that it has an anomalous bulk‐rock composition as howardite, resulting from a mixture between HED material and at least one second reservoir characterized by a higher Δ17O. The bulk meteorite has a composition consistent with howardites, but it is enriched in siderophile elements (Ni = 3940 and Co = 159 ppm) arguing for a chondritic material as second reservoir. This is independently confirmed by the occurrence of chondrule relics composed of olivine (Fo56–80), orthopyroxene (En79Wo2), and plagioclase (An61–66). Based on oxygen isotopic signature, siderophile composition, and chondrule core Mg number (Fo80 and En79Wo2), it is proposed that JaH 556 is a howardite containing approximately 20% H chondrite material. This percentage is high compared with that observed petrographically, likely because chondritic material dissolved in the impact melt. This conclusion is supported by the observed reaction of orthopyroxene to olivine, which is consistent with a re‐equilibration in a Si‐undersaturated melt. JaH 556’s unique composition enlarges the spectrum of howardite‐analogs to be expected on the surface of 4 Vesta. Our data demonstrate that oxygen isotopic anomalies can be produced by a mixture of indigenous and impactor materials and must be interpreted with extreme caution within the HED group.  相似文献   

7.
We analyzed He and Ne in chromite grains from the regolith breccia Ghubara (L5), to compare it with He and Ne in sediment‐dispersed extraterrestrial chromite (SEC) grains from mid‐Ordovician sediments. These SEC grains arrived on Earth as micrometeorites in the aftermath of the L chondrite parent body (LCPB) breakup event, 470 Ma ago. A significant fraction of them show prolonged exposure to galactic cosmic rays for up to several 10 Ma. The majority of the cosmogenic noble gases in these grains were probably acquired in the regolith of the LCPB (Meier et al. 2010 ). Ghubara, an L chondritic regolith breccia with an Ar‐Ar shock age of 470 Ma, is a sample of that regolith. We find cosmic‐ray exposure ages of up to several 10 Ma in some Ghubara chromite grains, confirming for the first time that individual chromite grains with such high exposure ages indeed existed in the LCPB regolith, and that the >10 Ma cosmic‐ray exposure ages found in recent micrometeorites are thus not necessarily indicative of an origin in the Kuiper Belt. Some Ghubara chromite grains show much lower concentrations of cosmogenic He and Ne, indicating that the 4π (last‐stage) exposure age of the Ghubara meteoroid lasted only 4–6 Ma. This exposure age is considerably shorter than the 15–20 Ma suggested before from bulk analyses, indicating that bulk samples have seen regolith pre‐exposure as well. The shorter last‐stage exposure age probably links Ghubara to a small peak of 40Ar‐poor L5 chondrites of the same exposure age. Furthermore, and quite unexpectedly, we find a Ne component similar to presolar Ne‐HL in the chromite grains, perhaps indicating that some presolar Ne can be preserved even in meteorites of petrologic type 5.  相似文献   

8.
Abstract— Bencubbin is an unclassified meteorite breccia which consists mainly of host silicate (~40 vol.%) and host metal (~60%) components. Rare (< 1%) ordinary chondrite clasts and a dark xenolith (formerly called a carbonaceous chondrite clast) are also found. A petrologic study of the host silicates shows that they have textures, modes, mineralogy and bulk compositions that are essentially the same as that of barred olivine (BO) chondrules, and they are considered to be BO chondritic material. Bulk compositions of individual host silicate clasts are identical and differ only in their textures which are a continuum from coarsely barred, to finely barred, to feathery microcrystalline; these result from differing cooling rates. The host silicates differ from average BO chondrules only in being angular clasts rather than fluid droplet-shaped objects, and in being larger in size (up to 1 cm) than most chondrules; but large angular to droplet-shaped chondrules occur in many chondrites. Bencubbin host metallic FeNi clasts have a positive Ni-Co trend, which coincides with that of a calculated equilibrium nebular condensation path. This appears to indicate a chondritic, rather than impact, origin for this component as well. The rare ordinary chondrite clast and dark xenolith also contain FeNi metal with compositions similar to that of the host metal. Two scenarios are offered for the origin of the Bencubbin breccia. One is that the Bencubbin components are chondritic and were produced in the solar nebula. Later brecciation, reaggregation and minor melting of the chondritic material resulted in it becoming a monomict chondritic breccia. The alternative scenario is that the Bencubbin components formed as a result of major impact melting on a chondritic parent body; the silicate fragments were formed from an impact-induced lava flow and are analogous to the spinifex-textured rocks characteristic of terrestrial komatiites. Both scenarios have difficulties, but the petrologic, chemical and isotopic data are more consistent with Bencubbin being a brecciated chondrite. Bencubbin has a number of important chemical and isotopic characteristics in common with the major components in the CR (Renazzo-type) chondrites and the unique ALH85085 chondrite, which suggests that their major components may be related. These include: (1) Mafic silicates that are similarly Mg-rich and formed in similar reducing environments. (2) Similarly low volatiles; TiO2, Al2O3 and Cr2O3 contents are also similar. (3) Similar metallic FeNi compositions that sharply differ from those in other chondrites. (4) Remarkable enrichments in 15N. (5) Similar oxygen isotopic compositions that lie on the same mixing line. Thus, the major components of the Bencubbin breccia are highly similar to those of the ALH85085 and CR chondrites and they may have all formed in the same isotopic reservoir, under similar conditions, in the CR region of the solar nebula.  相似文献   

9.
NWA 10214 is an LL3‐6 breccia containing ~8 vol% clasts including LL5, LL6, and shocked‐darkened LL fragments as well as matrix‐rich Clast 6 (a new kind of chondrite). This clast is a dark‐colored, subrounded, 6.1 × 7.0 mm inclusion, consisting of 60 vol% fine‐grained matrix, 32 vol% coarse silicate grains, and 8 vol% coarse opaque grains. The large chondrules and chondrule fragments are mainly Type IB; one small chondrule is Type IIA. Also present are one 450 × 600 μm spinel‐pyroxene‐olivine CAI and one 85 × 110 μm AOI. Clast 6 possesses a unique set of properties. (1) It resembles carbonaceous chondrites in having relatively abundant matrix, CAIs, and AOIs; the clast's matrix composition is close to that in CV3 Vigarano. (2) It resembles type‐3 OC in its olivine and low‐Ca pyroxene compositional distributions, and in the Fe/Mn ratio of ferroan olivine grains. Its mean chondrule size is within 1σ of that of H chondrites. The O‐isotopic compositions of the chondrules are in the ordinary‐ and R‐chondrite ranges. (3) It resembles type‐3 enstatite chondrites in the minor element concentrations in low‐Ca pyroxene grains and in having a high low‐Ca pyroxene/olivine ratio in chondrules. Clast 6 is a new variety of type‐3 OC, somewhat more reduced than H chondrites or chondritic clasts in the Netschaevo IIE iron; the clast formed in a nebular region where aerodynamic radial drift processes deposited a high abundance of matrix material and CAIs. A chunk of this chondrite was ejected from its parent asteroid and later impacted the LL body at low relative velocity.  相似文献   

10.
Abstract— The low modal abundances of relict chondrules (1.8 vol%) and of coarse (i.e., ≥200 μm‐size) isolated mafic silicate grains (1.8 vol%) in Spade relative to mean H6 chondrites (11.4 and 9.8 vol%, respectively) show Spade to be a rock that has experienced a significant degree of melting. Various petrographic features (e.g., chromite‐plagioclase assemblages, chromite veinlets, silicate darkening) indicate that melting was caused by shock. Plagioclase was melted during the shock event and flowed so that it partially to completely surrounded nearby mafic silicate grains. During crystallization, plagioclase developed igneous zoning. Low‐Ca pyroxene that crystallized from the melt (or equilibrated with the melt at high temperatures) acquired relatively high amounts of CaO. Metallic Fe‐Ni cooled rapidly below the Fe‐Ni solvus and transformed into martensite. Subsequent reheating of the rock caused transformation of martensite into abundant duplex plessite. Ambiguities exist in the shock stage assignment of Spade. The extensive silicate darkening, the occurrence of chromite‐plagioclase assemblages, and the impact‐melted characteristics of Spade are consistent with shock stage S6. Low shock (stage S2) is indicated by the undulose extinction and lack of planar fractures in olivine. This suggests that Spade reached a maximum prior shock level equivalent to stage S6 and then experienced post‐shock annealing (probably to stage S1). These events were followed by a less intense impact that produced the undulose extinction in the olivine, characteristic of shock stage S2. Annealing could have occurred if Spade were emplaced near impact melts beneath the crater floor or deposited in close proximity to hot debris within an ejecta blanket. Spade firmly establishes the case for post‐shock annealing. This may have been a common process on OC asteroids.  相似文献   

11.
Abstract— We measured cosmic‐ray products—noble gases, radionuclides, thermoluminescence, and nuclear tracks—and trace element contents and mineralogy of samples of three orthogonal and mutually intersecting cores (41–46 cm long) of a 101.6 kg Ghubara individual (1958,805) at The Natural History Museum, London. The xenoliths, like the host, have high concentrations of trapped solar gases and are heavily shocked. While contents of noble gases and degree of shock‐loading in this individual and three others differ somewhat, the data indicate that Ghubara is a two‐generation regolith breccia. Contents of cosmogenic 26Al and 10Be and low track densities indicate that the Ghubara individuals were located more than 15 cm below the surface of an 85 cm meteoroid. Because of its large size, Ghubara's cosmic‐ray exposure age is poorly defined to be 15–20 Ma from cosmogenic nuclides. Ghubara's terrestrial age, based on 14C data, is 2–3 ka. Not only is Ghubara the first known case of a two‐generation regolith breccia on the macroscale, it also has a complicated thermal and irradiation history.  相似文献   

12.
Abstract— Dhofar 287 (Dho 287), a recently found lunar meteorite, consists in large part (95%) of low‐Ti mare basalt (Dho 287A) and a minor, attached portion (?5%) of regolith breccia (Dho 287B). The present study is directed mainly at the breccia portion of this meteorite. This breccia consists of a variety of lithic clasts and mineral fragments set in a fine‐grained matrix and minor impact melt. The majority of clasts and minerals appear to have been mainly derived from the low‐Ti basalt suite, similar to that of Dho 287A. Very low‐Ti (VLT) basalts are a minor lithology of the breccia. These are significantly lower in Mg# and slightly higher in Ti compared to Luna 24 and Apollo 17 VLT basalts. Picritic glasses constitute another minor component of the breccia and are compositionally similar to Apollo 15 green glasses. Dho 287B also contains abundant fragments of Mg‐rich pyroxene and anorthite‐rich plagioclase grains that are absent in the lithic clasts. Such fragments appear to have been derived from a coarse‐grained, Mg#‐rich, Na‐poor lithology. A KREEP component is apparent in chemistry, but no highlands lithologies were identified. The Dho 287 basaltic lithologies cannot be explained by near‐surface fractionation of a single parental magma. Instead, magma compositions are represented by a picritic glass; a low‐Ti, Na‐poor glass; and a low‐Ti, Na‐enriched source (similar to the Dho 287A parental melt). Compositional differences among parent melts could reflect inhomogeneity of the lunar mantle. Alternatively, the low‐Ti, Na‐poor, and Dho 287A parent melts could be of hybrid compositions, resulting from assimilation of KREEP by picritic magma. Thus, the Dho 287B breccia contains lithologies from multiple magmatic eruptions, which differed in composition, formational conditions, and cooling histories. Based on this study, the Dho 287 is inferred to have been ejected from a region located distal to highlands terrains, possibly from the western limb of the lunar nearside, dominated by mare basalts and KREEP‐rich lithologies.  相似文献   

13.
Abstract— Six ordinary chondrite breccias from the Museo Nacional de Ciencias Naturales, Madrid (Spain), are described and classified as follows: the solar gas-rich regolith breccia Oviedo (H5); the pre-metamorphic fragmental breccias Cabezo de Mayo (type 6, L-LL), and Sevilla (LL4); the fragmental breccias Cañellas (H4) and Gerona (H5); and the impact melt breccia, Madrid (L6). We confirm that chondrites with typical light-dark structures and petrographic properties typical of regolith breccias may (Oviedo) or may not (Cañellas) be solar gas-rich. Cabezo de Mayo and Sevilla show convincing evidence that they were assembled prior to peak metamorphism and were equilibrated during subsequent reheating. These meteorites contain small melt rock clasts that were incorporated into the host chondrite while still molten and/or plastic and cooled rapidly and, yet, are totally equilibrated with their hosts. Compositions of olivine and low-Ca pyroxene in host chondrite and breccia clasts in Cabezo de Mayo are transitional between groups L and LL. It is suggested, based on mineralogic and oxygen isotopic compositions of host and clasts, that the rock formed on the L parent body by mixing, prior to peak metamorphism. This was followed by partial equilibration of two different materials: the indigenous L chondrite host and exotic LL melt rock clasts.  相似文献   

14.
Miller Range 07273 is a chondritic melt breccia that contains clasts of equilibrated ordinary chondrite set in a fine‐grained (<5 μm), largely crystalline, igneous matrix. Data indicate that MIL was derived from the H chondrite parent asteroid, although it has an oxygen isotope composition that approaches but falls outside of the established H group. MIL also is distinctive in having low porosity, cone‐like shapes for coarse metal grains, unusual internal textures and compositions for coarse metal, a matrix composed chiefly of clinoenstatite and omphacitic pigeonite, and troilite veining most common in coarse olivine and orthopyroxene. These features can be explained by a model involving impact into a porous target that produced brief but intense heating at high pressure, a sudden pressure drop, and a slower drop in temperature. Olivine and orthopyroxene in chondrule clasts were the least melted and the most deformed, whereas matrix and troilite melted completely and crystallized to nearly strain‐free minerals. Coarse metal was largely but incompletely liquefied, and matrix silicates formed by the breakdown during melting of albitic feldspar and some olivine to form pyroxene at high pressure (>3 GPa, possibly to ~15–19 GPa) and temperature (>1350 °C, possibly to ≥2000 °C). The higher pressures and temperatures would have involved back‐reaction of high‐pressure polymorphs to pyroxene and olivine upon cooling. Silicates outside of melt matrix have compositions that were relatively unchanged owing to brief heating duration.  相似文献   

15.
Abstract— We describe a previously unreported meteorite found in Axtell, Texas, in 1943. Based on the mineralogical composition and texture of its matrix and the sizes and abundance of chondrules, we classify it as a CV3 carbonaceous chondrite. The dominant opaque phase in the chondrules is magnetite, and that in refractory inclusions is Ni-rich NiFe metal (awaruite). Axtell, therefore, belongs to the oxidized subgroup of CV3 chondrites, although unlike Allende it escaped strong sulfidation. The meteorite bears a strong textural resemblance to Allende, and its chondrule population and matrix appear to be quite similar to those of Allende, but its refractory inclusions, thermoluminescence properties, and cosmogenic 60Co abundances are not. Our data are consistent with a terrestrial age for Axtell of ~100 years and a metamorphic grade slightly lower than that of Allende.  相似文献   

16.
Abstract We report a new chondrite that fell in Hashima City in central Japan sometime during the period 1868–1912. The chondrite weighs 1110.64 g and exhibits distinct chondritic structure. Chondrules occupy 24 vol% of the stone and consist of olivine (average Fa17,8), low-Ca pyroxene (average Fs15,8 Wo0.9), devitrified glass and lesser amounts of oligoclase (ca. Ab80Or4), kamacite, taenite, troilite and chromian spinel. Matrix occupying 76 vol% of the stone consists of olivine, low-Ca pyroxene, kamacite, taenite, troilite, cryptocrystalline minerals and lesser amounts of chromian spinel and chlorapatite. Matrix minerals have the same compositions as those in chondrules. Mineral chemistry, bulk chemistry and magnetic properties indicate that Hashima is an H-group chondrite. Well-defined chondrules, scarcely recrystallized oligoclase and relatively small variations of olivine and low-Ca pyroxene compositions indicate that Hashima is of petrologic type 4.  相似文献   

17.
Abstract— Lunar meteorite Dar al Gani 262 (DG 262)—found in the Libyan part of the Sahara—is a mature, anorthositic regolith breccia with highland affinities. The origin from the Moon is undoubtedly indicated by its bulk chemical composition; radionuclide concentrations; noble gas, N, and O isotopic compositions; and petrographic features. Dar al Gani 262 is a typical anorthositic highland breccia similar in mineralogy and chemical composition to Queen Alexandra Range (QUE) 93069. About 52 vol% of the studied thin sections of Dar al Gani 262 consist of fine-grained(100 μm) constituents, and 48 vol% is mineral and lithic clasts and impact-melt veins. The most abundant clast types are feldspathic fine-grained to microporphyritic crystalline melt breccias (50.2 vol%; includes recrystallized melt breccias), whereas mafic crystalline melt breccias are extremely rare (1.4 vol%). Granulitic lithologies are 12.8 vol%, intragranularly recrystallized anorthosites and cataclastic anorthosites are 8.8 and 8.2 vol%, respectively, and (devitrified) glasses are 2.7 vol%. Impact-melt veins (5.5 vol% of the whole thin sections) cutting across the entire thin section were probably formed subsequent to the lithification process of the bulk rock at pressures below 20 GPa, because the bulk rock never experienced a higher peak shock pressure. Mafic crystalline melt breccias are very rare in Dar al Gani 262 and are similar in abundance to those in QUE 93069. The extremely low abundance of mafic components and the bulk composition may constrain possible areas of the Moon from which the breccia was derived. The source area of Dar al Gani 262 must be a highland terrain lacking significant mafic impact melts or mare components. On the basis of radionuclide activities, an irradiation position of DG 262 on the Moon at a depth of 55–85 g/cm3and a maximum transit time to Earth <0.15 Ma is suggested. Dar al Gani 262 contains high concentrations of solar-wind-implanted noble gases. The isotopic abundance ratio 40Ar/36Ar < 3 is characteristic of lunar soils. The terrestrial weathering of DG 262 is reflected by the occurrence of fractures filled with calcite and by high concentrations of Ca, Ba, Cs, Br, and As. There is also a large amount of terrestrial C and some N in the sample, which was released at low temperatures during stepped heating. High concentrations of Ni, Co, and Ir indicate a significant meteoritic component in the lunar surface regolith from which DG 262 was derived.  相似文献   

18.
Abstract— Lunar meteorite QUE 93069 found in Antarctica is a mature, anorthitic regolith breccia with highland affinities that was ejected from the Moon <0.3 Ma ago. The frequency distribution of mineral and lithic clasts gives information about the nature of the regolith and subregolith basement near the ejection site as well as about the abundances of rock types shocked to different degrees prior to the breccia formation. Thin section QUE 93069,37 consists of 67.5 vol% fine-grained (<~130 μm) constituents and 32.5 vol% mineral and lithic clasts and an impact melt vein. The most abundant types of these clasts are intragranularly recrystallized anorthosites and plagioclases (together 26.3 vol%) and feldspathic fine-grained to microporphyritic crystalline melt breccias (21.9 vol%). Mafic crystalline melt breccias are extremely rare (1.3 vol%). Granulitic lithologies are 10.4 vol%, recrystallized feldspathic melt breccias are 15.0 vol%, and glasses are 3.5 vol%. The impact melt vein cutting across the entire thin section was probably formed subsequent to the lithification process of the bulk rock at pressures below 20 GPa, because the bulk rock never experienced a higher peak shock pressure. Lunar meteorite QUE 93069 has a higher abundance of clear glass, occurring within melt spherules, glassy fragments, and an impact melt vein than lunar meteorites ALHA81005, Y-791197, Y-82192/3, Y-86032, or MAC 88104/5. The high abundance of melt spherules indicates that this lunar meteorite contains the highest content of typical regolith components. Mafic crystalline melt breccias are much rarer in QUE 93069 than in all other lunar highland regolith breccias. The extremely low abundance of mafic components may constrain possible areas of the Moon, from which the breccia was derived. The source area of QUE 93069 must be a highland terrain lacking significant mafic impact melts or mare components.  相似文献   

19.
Abstract— Northwest Africa (NWA) 428 is an L chondrite that was successively thermally metamorphosed to petrologic type‐6, shocked to stage S4–S5, brecciated, and annealed to approximately petrologic type‐4. Its thermal and shock history resembles that of the previously studied LL6 chondrite, Miller Range (MIL) 99301, which formed on a different asteroid. The petrologic type‐6 classification of NWA 428 is based on its highly recrystallized texture, coarse metal (150 ± 150 μm), troilite (100 ± 170 μm), and plagioclase (20–60 μm) grains, and relatively homogeneous olivine (Fa24.4 ± 0.6), low‐Ca pyroxene (Fs20.5 ± 0.4), and plagioclase (Ab84.2 ± 0.4) compositions. The petrographic criteria that indicate shock stage S4–S5 include the presence of chromite veinlets, chromite‐plagioclase assemblages, numerous occurrences of metallic Cu, irregular troilite grains within metallic Fe‐Ni, polycrystalline troilite, duplex plessite, metal and troilite veins, large troilite nodules, and low‐Ca clinopyroxene with polysynthetic twins. If the rock had been shocked before thermal metamorphism, low‐Ca clinopyroxene produced by the shock event would have transformed into orthopyroxene. Post‐shock brecciation is indicated by the presence of recrystallized clasts and highly shocked clasts that form sharp boundaries with the host. Post‐shock annealing is indicated by the sharp optical extinction of the olivine grains; during annealing, the damaged olivine crystal lattices healed. If temperatures exceeded those approximating petrologic type‐4 (?600–700°C) during annealing, the low‐Ca clinopyroxene would have transformed into orthopyroxene. The other shock indicators, likewise, survived the mild annealing. An impact event is the most plausible source of post‐metamorphic, post‐shock annealing because any 26Al that may have been present when the asteroid accreted would have decayed away by the time NWA 428 was annealed. The similar inferred histories of NWA 428 (L6) and MIL 99301 (LL6) indicate that impact heating affected more than 1 ordinary chondrite parent body.  相似文献   

20.
Martian regolith breccia NWA 7533 (and the seven paired samples) is unique among Martian meteorites in showing accessory pyrite (up to 1% by weight). Pyrite is a late mineral, crystallized after the final assembly of the breccia. It is present in all of the lithologies, i.e., the fine‐grained matrix (ICM), clast‐laden impact melt rocks (CLIMR), melt spherules, microbasalts, lithic clasts, and mineral clasts, all lacking magmatic sulfides due to degassing. Pyrite crystals show combinations of cubes, truncated cubes, and octahedra. Polycrystalline clusters can reach 200 μm in maximum dimensions. Regardless of their shape, pyrite crystals display evidence of very weak shock metamorphism such as planar features, fracture networks, and disruption into subgrains. The late fracture systems acted as preferential pathways for partial replacement of pyrite by iron oxyhydroxides interpreted as resulting from hot desert terrestrial alteration. The distribution and shape of pyrite crystals argue for growth at moderate to low growth rate from just‐saturated near neutral (6 < pH<10), H2S‐HS‐rich fluids at minimum log fO2 of >FMQ + 2 log units. It is inferred from the maximum Ni contents (4.5 wt%) that pyrite started crystallizing at 400–500 °C, during or shortly after a short‐duration, relatively low temperature, thermal event that lithified and sintered the regolith breccias, 1.4 Ga ago as deduced from disturbance in several isotope systematics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号