首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Holocene pollen and diatom analyses and complementary data from δ18O and δ13C, malacology and sedimentology have provided a detailed record of vegetation history and palaeoenvironmental change at arroyo Las Brusquitas, on the southeastern coast of the pampas of Argentina especially in relation to past sea levels. Holocene palaeosalinity trends were estimated by Detrended Correspondence Analysis and by salinity indexes based on pollen and diatom data. As a consequence of sea‐level rise from the postglacial an extensive wave‐cut platform formed over which Holocene infilling sequences were deposited unconformably. In these sequences, variation in pollen and diatom assemblages occurred in agreement with changes in mollusc diversity and abundance, isotope values, and sediment deposits. Between ca. 6700 and 6190 14C yr BP (6279–6998 cal. yr BP) saline conditions predominated in an environment highly influenced by tides and salt water during the Holocene sea‐level highstand. Between ca. 6200 and 3900 14C yr BP (4235–4608 cal. yr BP) shallow brackish water bodies formed surrounded by saltmarsh vegetation that became more widespread from 5180 14C yr BP (5830–6173 cal. yr BP) to 3900 14C yr BP in relation to a sea‐level stabilisation period within the regression phase. Less saline conditions marked by frequent variations in salinity predominated between ca. 3900 and 2040 yr 14C BP (1830–2160 cal. yr BP). The intertidal saltmarsh environment changed into a brackish marsh dominated by freshwater conditions and sporadic tidal influence. Halophytic vegetation increased towards ca. 200014C yr BP indicating that saline conditions may be due to either desiccation or an unusually high tide range with rare frequency. After ca. 2000 14C yr BP the sedimentary sequences were buried by aeolian sand dunes. Changes in Holocene vegetation and environments in Las Brusquitas area are in agreement with data obtained from various southeastern coastal sites of the Pampa grasslands. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

2.
It is demonstrated that detailed examination of the photo- and thermoluminescence (PL, TL) of Holocene intertidal sediments can reveal important information regarding their depositional history in the context of sea level tendency and storm surge activity. The technique is particularly applicable to thick deposits of relatively uniform composition, and is demonstrated with a 1·7-m core of marine to brackish water silty clay taken from Cowpen Marsh in the Tees estuary, north-east England. This sedimentary unit is intercalated with an upper and a lower terrestrial peat bed, which have been radiocarbon dated to 5250 ± 45 and 7065 ± 45 14C years BP respectively. An investigation of the mineral composition and diatom assemblage of the silty clay facies reveals a marked hiatus in deposition towards the top of the minerogenic unit. Analysis of the luminescence profiles of the sediment illustrates that, below this hiatus, sedimentation was slow and continuous, with approximately 1·0 m of sediment being deposited in 1800 ± 400 years, whilst above, sedimentation was rapid, with 0·7 m of sediment being deposited in 0 ± 200 years. It is shown that variations in the luminescence of the sediments can be interpreted in terms of the onset of a positive sea level tendency period coupled with the occurrence of a low-frequency extreme water level event.  相似文献   

3.
The correlation of borehole logs, together with evidence from temporary exposures, shows the relationship between glacial deposits and the overlying Flandrian strata. The courses of buried channels in-filled with Flandrian strata have been plotted. Radiocarbon assays and pollen and diatom analyses have mainly been confined to samples taken from near the main lithological boundaries, but some radiocarbon assays have been undertaken on in situ tree stumps and on bone. New thick buried channel sequences are described, and an outline chronology from c. 6420 years BP is proposed for the Flandrian coastal sequence of the North Wirral. The data can be applied to the interpretation of sea-level change and coastal archaeology.  相似文献   

4.
Marine erosion at Clettnadal, West Burra island off the west coast of Shetland, caused the drainage of a small water body at Clettnadal, exposing deposits of Late Devensian and Holocene age. Pollen, diatom and invertebrate analyses have provided variable records of environmental change during stratigraphical event GI‐1. Event GS‐1 is revealed by the non‐pollen evidence, especially by Coleoptera, by sediment stratigraphy, and by radiocarbon dating. In contrast, the pollen evidence indicates that an arctic tundra flora, in which dwarf shrubs were prominent, persisted throughout the Late‐glacial. The Holocene brought colonisation by tree birch, but by ca. 9000 14C yr BP the taxon had almost disappeared. This contrasts strongly with other Holocene pollen records for Shetland where both Betula and Corylus avellana‐type survived longer—at some sites, for example, until ca. 2900 yr BP. The extreme westerly and exposed coastal situation of Clettnadal appears to be responsible both for a muted Late‐glacial response in the pollen record of terrestrial vegetation and for the early replacement of woodland by a maritime grassland. The results provoke questions concerning biological stability at times of marked climatic change. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

5.
We report radiocarbon dates that constrain the timing of the deposition of the late-glacial Puerto Bandera moraine system alongside the western reaches of Lago Argentino adjacent to the Southern Patagonian Icefield. Close maximum-limiting radiocarbon ages (n = 11) for glacier advance into the outer moraines, with a mean value of 11,100 ± 60 14C yrs BP (12,990 ± 80 cal yrs BP), were obtained from wood in deformation (soft) till exposed beneath flow and lodgment till in Bahía del Quemado on the northeast side of Brazo Norte (North Branch) of western Lago Argentino. Other exposures of this basal deformation till in Bahía del Quemado reveal incorporated clasts of peat, along with larger inclusions of deformed glaciofluvial and lacustrine deposits. Radiocarbon dates of wood included in these reworked peat clasts range from 11,450 ± 45 14C yrs BP to 13,450 ± 150 14C yrs BP (13,315 ± 60 to 16,440 ± 340 cal yrs BP). The implication is that, during this interval, glacier fronts were situated inboard of the Puerto Bandera moraines, with the peat clasts and larger proglacial deposits being eroded and then included in the basal till during the Puerto Bandera advance.Minimum-limiting radiocarbon ages for ice retreat come from basal peat in cores sampled in spillways and depressions generated during abandonment of the Puerto Bandera moraines. Glacier recession and subsequent plant colonization were initiated close behind different frontal sectors of these moraines prior to: 10,750 ± 75 14C yrs BP (12,660 ± 70 cal yrs BP) east of Brazo Rico, 10,550 ± 55 14C yrs BP (12,490 ± 80 cal yrs BP) in Peninsula Avellaneda, and 10,400 ± 50 14C yrs BP (12,280 ± 110 cal yrs BP) in Bahía Catalana. In addition, a radiocarbon date indicates that by 10,350 ± 45 14C yrs BP (12,220 ± 110 cal yrs BP), the Brazo Norte lobe (or former Upsala Glacier) had receded well up the northern branch of Lago Argentino, to a position behind the Herminita moraines. Furthermore, glacier termini had receded to just outboard of the outer Holocene moraines at Lago Frías and Lago Pearson (Anita) prior to 10,400 ± 40 14C yrs BP (12,270 ± 100 cal yrs BP) and 9040 ± 45 14C yrs BP (10,210 ± 50 cal yrs BP), respectively. The most extensive recession registered during the early Holocene was in Agassiz Este Valley, where the Upsala Glacier had pulled back behind the outer Holocene moraine, reaching close to the present-day glacier terminus before 8290 ± 40 14C yrs BP (9300 ± 80 cal yrs BP).The radiocarbon-dated fluctuations of the Lago Argentino glacier in late-glacial time, given here, are in accord with changes in ocean mixed layer properties, predominately temperature, derived from the isotopic record given here of ODP Core 1233, taken a short distance off shore of the Chilean Lake District. It also matches recently published chronologies of late-glacial moraines in the Southern Alps of New Zealand on the opposite side of the Pacific Ocean from Lago Argentino. Finally, the timing of the late-glacial reversal of the Lago Argentino glacier fits the most recent chronology for the culmination of the Antarctic Cold Reversal (ACR) in the deuterium record of the EPICA Dome C ice core from high on the East Antarctic Plateau. Therefore, we conclude that the climate signature of the ACR was widespread in both the ocean and the atmosphere over at least the southern quarter of the globe.  相似文献   

6.
Sedimentological, geochemical and micropalaeontological data from sediment cores in the northwestern Adriatic Sea were obtained to reconstruct the stratigraphic framework and palaeogeographic setting during the last post‐glacial sea‐level rise (14000–6000 yr BP). Four lithostratigraphic units were identified: (a) distal plain deposits (>14000 yr BP), submerged during the first phases of marine ingression; (b) coastal lagoon system; (c) barrier‐lagoon system, which is dated back to between 10019 ± 61 and 10228 ± 174 cal. yr BP from 14C dating on peat and shell remains; (d) marine prodelta deposits (<5500 yr BP). Geochemical data allow the identification of three distinct sediment sources: River Po, River Adige and Eastern Alpine rivers characterised by decreasing Ni/Mg ratios (50–70, 8–15 and 5–10, respectively) and Ba/Al ratios of 45–55, 55–65 and 35–45, respectively. The three sources display different relative abundances in time. During the Lateglacial, the Po is the main sediment source for the southern cores, whereas the Eastern Alps and the River Adige are the main sediment sources for the northern cores. This suggests a northern position of the Po River bed compared to previous studies. Coastal drowning led to a homogenization of the provenance signal within the sediments. Only after the marine transgression does a River Po signal appear in the northern cores. At the same time, in the southern cores the signal of Eastern Alpine rivers becomes stronger. Transgressive barrier‐lagoon and recent sediments do not display a predominant signal for provenance indicators. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

7.
Reliable dating of glaciomarine sediments deposited on the Antarctic shelf since the Last Glacial Maximum (LGM) is challenging because of the rarity of calcareous (micro‐) fossils and the recycling of fossil organic matter. Consequently, radiocarbon (14C) ages of the acid‐insoluble organic fraction (AIO) of the sediments bear uncertainties that are difficult to quantify. Here we present the results of three different methods to date a sedimentary unit consisting of diatomaceous ooze and diatomaceous mud that was deposited following the last deglaciation at five core sites on the inner shelf in the western Amundsen Sea (West Antarctica). In three cores conventional 14C dating of the AIO in bulk samples yielded age reversals down‐core, but at all sites the AIO 14C ages obtained from diatomaceous ooze within the diatom‐rich unit yielded similar uncorrected 14C ages between 13 517 ± 56 and 11 543 ± 47 years before present (a BP). Correction of these ages by subtracting the core‐top ages, which probably reflect present‐day deposition (as indicated by 210Pb dating of the sediment surface at one core site), yielded ages between ca. 10 500 and 8400 cal. a BP. Correction of the AIO ages of the diatomaceous ooze by only subtracting the marine reservoir effect (MRE) of 1300 a indicated deposition of the diatom‐rich sediments between 14 100 and 11 900 cal. a BP. Most of these ages are consistent with age constraints between 13.0 and 8.0 ka for the diatom‐rich unit, which we obtained by correlating the relative palaeomagnetic intensity (RPI) records of three of the sediment cores with global and regional reference curves. As a third dating technique we applied conventional radiocarbon dating of the AIO included in acid‐cleaned diatom hard parts extracted from the diatomaceous ooze. This method yielded uncorrected 14C ages of only 5111 ± 38 and 5106 ± 38 a BP, respectively. We reject these young ages, because they are likely to be overprinted by the adsorption of modern atmospheric carbon dioxide onto the surfaces of the diatom hard parts prior to sample graphitisation and combustion for 14C dating. The deposition of the diatom‐rich unit in the western Amundsen Sea suggests deglaciation of the inner shelf before ca. 13 ka BP. The deposition of diatomaceous oozes elsewhere on the Antarctic shelf around the same time, however, seems to be coincidental rather than directly related. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
赵烨 《地学前缘》2002,9(1):137-142
在考察南极菲尔德斯半岛自然地理特征的基础上 ,分析了半岛东侧阿德雷岛西部海拔18 0 0m的海岸阶地上苔藓泥炭层 (0~ 44cm)之沉积特征 ,分别测量了 5 5~ 8cm ,18~ 2 0cm ,36~38cm三个层段泥炭样品的14 C年龄为 :现代、(6 71± 2 0 )aBP、(32 6 5± 12 0 )aBP ,据此推算该苔藓泥炭底层形成的时间大约在 430 0aBP。分析了半岛西北部地质湾海滩沉积层中同种浅海底栖褐藻 (Ha lymeniasp )的14 C年龄 ,即 15~ 17cm和 92~ 95cm层中褐藻的14 C年龄分别为 (885± 70 )aBP、(144 0±75 )aBP ,现代褐藻14 C年龄为 (6 95± 70 )aBP。用不同时段褐藻14 C年龄内差法消除南极海源有机碳的14 C年龄老化问题 ;还分析了地质湾海拔 6 84m海岸阶地古湖相硅藻沉积层的14 C年龄为 (2 430±75 )aBP。从而建立了全新世晚期南极菲尔德斯半岛的海平面变化序列 :在 430 0~ 2 430aBP期间 ,区域海平面快速下降 ,其平均下降速率为 - 0 6 0cm·a-1;在 2 430~ 80 0aBP期间 ,区域海平面继续下降 ,其平均下降速率为 - 0 31cm·a-1;在 80 0~ 2 30aBP期间区域海平面开始缓慢上升 ,其平均上升速率为 0 14cm·a-1;近 2 30a来海平面上升进一步趋缓 ,其平均上升速率为 0 0 7cm·a-1。  相似文献   

9.
Sean Ulm 《Geoarchaeology》2002,17(4):319-348
As a component of archaeological investigations on the central Queensland coast, a series of five marine shell specimens live‐collected between A.D. 1904 and A.D. 1929 and 11 shell/charcoal paired samples from archaeological contexts were radiocarbon dated to determine local ΔR values. The object of the study was to assess the potential influence of localized variation in marine reservoir effect in accurately determining the age of marine and estuarine shell from archaeological deposits in the area. Results indicate that the routinely applied ΔR value of −5 ± 35 for northeast Australia is erroneously calculated. The determined values suggest a minor revision to Reimer and Reimer's (2000) recommended value for northeast Australia from ΔR = +11 ± 5 to +12 ± 7, and specifically for central Queensland to ΔR = +10 ± 7, for near‐shore open marine environments. In contrast, data obtained from estuarine shell/charcoal pairs demonstrate a general lack of consistency, suggesting estuary‐specific patterns of variation in terrestrial carbon input and exchange with the open ocean. Preliminary data indicate that in some estuaries, at some time periods, a ΔR value of more than −155 ± 55 may be appropriate. In estuarine contexts in central Queensland, a localized estuary‐specific correction factor is recommended to account for geographical and temporal variation in 14C activity. © 2002 Wiley Periodicals, Inc.  相似文献   

10.
Two buried paleocatenas were studied to determine some features and techniques by which buried soils could be recognized, and to define their pedological characteristics, their lateral variation, and their contemporary environment. At Woodhall Spa, Lincolnshire, a ferric podzol to sandy gley sequence was developed in sands under marine clay and fen peat. The peat was radiocarbon dated at about 4100 yr BP. The buried soil was evident from its obvious catenary character and the soil characteristics and contemporary environment were determined using sand mineralogy, micromorphology, and pollen analysis. At West Runton, Norfolk, an apparently similar ferric podzol sequence occurred in Beestonian sands and gravels under a layer of Cromerian organic muds. However, only the uppermost profile contained definite evidence of soil formation. Other lower profiles contained pseudosoil features produced by sedimentation or diagenetic subsurface iron mobilization. It is suggested that the occurrence of a paleocatena is the most important criterion for the identification of a buried soil. Sedimentation and diagenesis cannot reproduce this lateral variation.  相似文献   

11.
Kenai, located on the west coast of the Kenai Peninsula, Alaska, subsided during the great earthquake of AD 1964. Regional land subsidence is recorded within the estuarine stratigraphy as peat overlain by tidal silt and clay. Reconstructions using quantitative diatom transfer functions estimate co‐seismic subsidence (relative sea‐level rise) between 0.28±0.28 m and 0.70±0.28 m followed by rapid post‐seismic recovery. Stratigraphy records an earlier co‐seismic event as a second peat‐silt couplet, dated to ~1500–1400 cal. yr BP with 1.14±0.28 m subsidence. Two decimetre‐scale relative sea‐level rises are more likely the result of glacio‐isostatic responses to late Holocene and Little Ice Age glacier expansions rather than to co‐seismic subsidence during great earthquakes. Comparison with other sites around Cook Inlet, at Girdwood and Ocean View, helps in constructing regional patterns of land‐level change associated with three great earthquakes, AD 1964, ~950–850 cal. yr BP and ~1500–1400 cal. yr BP. Each earthquake has a different spatial pattern of co‐seismic subsidence which indicates that assessment of seismic hazard in southern Alaska requires an understanding of multiple great earthquakes, not only the most recent. All three earthquakes show a pre‐seismic phase of gradual land subsidence that marked the end of relative land uplift caused by inter‐seismic strain accumulation. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

12.
Extensive terrace and flood plain deposits occur along the Lower Macleay River. A sequence of terraces from oldest to youngest was named: Madron, Corangula, Mungay, Mooneba, Belgrave and Macleay deposits (contemporary). Basal sediments in the Mooneba terrace were dated by radiocarbon analysis at 3,280 ± 55 years; basal sediments of the Mungay terrace were dated at 6,425 ± 105 years. The Madron and Corangula terraces are considered very much older than the Mungay. The flood plain consists of two early cycles of aggradation buried under 23m of estuarine sediment, which in turn is overlain by up to 6m of alluvium. The estuarine sediments were dated at 8,530 ± 200 years at elevation —4m relative to mean sea level. The base of the overlying Smithtown alluvium was dated at 3,295 ± 95 years. A general chronology is presented for the Lower Macleay valley, and a sequence of terrace soils is discussed.  相似文献   

13.
Evidence for relative sea‐level changes during the middle and late Holocene is examined from two locations on the Atlantic coast of Harris, Outer Hebrides, Scotland, using morphological mapping and survey, stratigraphical, grain size and diatom analysis, and radiocarbon dating. The earliest event identified is a marine flood, which occurred after 7982–8348 cal. a (7370 ± 80 14C a) BP, when the sea crossed a threshold lying at ?0.08 m Ordnance Datum Newlyn (OD) (?2.17 m mean high water springs (MHWS)) before withdrawing. This could have been due to a storm or to the Holocene Storegga Slide tsunami. By 6407–6122 cal. a (5500 ± 60 14C a) BP, relative sea levels had begun to fall from a sandflat surface with an indicated MHWS level of between 0.08 and ?1.96 m (?2.01 to ?4.05 m). This fall reached between ?0.30 and ?2.35 m (?2.39 to ?4.44 m) after 5841–5050 cal. a (4760 ± 130 14C a) BP, but was succeeded by a relative sea‐level rise which reached between 0.54 and ?1.57 m (?1.55 to ?3.66 m) by 5450–4861 cal. a (4500 ± 100 14C a) BP. This rise continued, possibly with an interruption, until a second sandflat surface was reached between 2.34 and ?0.26 m (0.25 to ?2.35 m) between 2952–3375 cal. a (3000 ± 80 14C a) and 1948–2325 cal. a (2130 ± 70 14C a) BP, before present levels were reached. The regressive episode from the earliest sandflat is correlated with the abandonment of the Main Postglacial Shoreline. It is maintained that the fluctuations in relative sea level recorded can be correlated with similar events elsewhere on the periphery of the glacio‐isostatic centre and may therefore reflect secular changes in nearshore sea surface levels. Despite published evidence from trim lines of differential ice sheet loading across the area, no evidence of variations in uplift between the locations concerned could be found. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
《Quaternary Science Reviews》2005,24(12-13):1479-1498
Multiple peat-silt couplets preserved in tidal marsh sediment sequences suggest that numerous great plate boundary earthquakes caused the coast around Cook Inlet, Alaska, to subside over the past 3500 years. Field and laboratory analyses of the two youngest couplets record the well-documented earthquake of AD 1964 and the penultimate one, approximately 850 cal yr BP. Diatom assemblages from a range of modern day estuarine environments from tidal flat through salt marsh to acidic bog produce quantitative diatom transfer function models for elevation reconstructions based on fossil samples. Only nine out of 124 fossil assemblages analysed, including previously published data for the AD 1964 earthquake, have a poor modern analogue. Calibration of fossil samples indicate co-seismic subsidence of 1.50±0.32 m for AD 1964, similar to measurements taken after the earthquake, and 1.45±0.34 m for the ∼850 cal yr BP earthquake. Elevation standard errors for individual fossil samples range from ∼0.08 m in peat layers to ∼0.35 m in silt units. Lack of a chronology within fossil silt units prevents identification of changes in the rate of recovery and land uplift between the post-seismic and inter-seismic periods. However, preservation of multiple peat-silt couplets indicates no net emergence over multiple earthquake cycles. Glacio-isostatic movements from Little Ice Age glacier advance and retreat explains a ∼0.15 m relative sea-level oscillation recorded within the peat layer subsequently submerged as a result of the AD 1964 earthquake. Before both this and the ∼850 cal yr BP earthquake, diatom assemblages suggest pre-seismic relative sea-level rise of ∼0.12±0.13 m, representing possible precursors to great earthquakes.  相似文献   

15.
For the first time, evidence of a submerged pine forest from the early Holocene can be documented in a central European lake. Subaquatic tree stumps were discovered in Lake Giesenschlagsee at a depth of between 2 and 5 m using scuba divers, side‐scan sonar and a remotely operated vehicle. Several erect stumps, anchored to the ground by roots, represent an in situ record of this former forest. Botanical determination revealed the stumps to be Scots pine (Pinus sylvestris) with an individual tree age of about 80 years. The trees could not be dated by means of dendrochronology, as they are older than the regional reference chronology for pine. Radiocarbon ages from the wood range from 10 880±210 to 10 370±130 cal. a BP, which is equivalent to the mid‐Preboreal to early Boreal biozones. The trees are rooted in sedge peat, which can be dated to this period as well, using pollen stratigraphical analysis. Tilting of the peat bed by 4 m indicates subsidence of the ground due to local dead ice melting, causing the trees to become submerged and preserved for millennia. Together with recently detected Lateglacial in situ tree occurrences in nearby lakes, the submerged pine forest at Giesenschlagsee represents a new and highly promising type of geo‐bio‐archive for the wider region. Comparable in situ pine remnants occur at some terrestrial (buried setting) and marine (submerged setting) sites in northern central Europe and beyond, but they partly differ in age. In general, the in situ pine finds document shifts of the zonal boreal forest ecosystem during the late Quaternary.  相似文献   

16.
In this study, we present new information on the glacial history of the Greenland Ice Sheet (GrIS) and a local ice cap in Qaanaaq, northwest Greenland. We use geomorphological mapping, 10Be exposure dating of boulders, analysis of lake cores, and 14C dating of reworked marine molluscs and subfossil plants to constrain the glacial history. Our 14C ages of reworked marine molluscs reveal that the ice extent in the area was at or behind its present‐day position from 42.2 ± 0.4 to 30.6 ± 0.3k cal a BP after which the GrIS expanded to its maximum position during the Last Glacial Maximum. We find evidence of early ice retreat in the deep fjord (Inglefield Bredning) at 11.9 ± 0.6 ka whereas the Taserssuit Valley was deglaciated ~4 ka later at 7.8 ± 0.1k cal a BP. A proglacial lake record suggests that the local ice cap survived the Holocene Thermal Maximum but moss kill‐dates reveal that it was smaller than present for a period of time before 3.3 ± 0.1k until 0.9 ± 0.1k cal a BP, following which the ice in the area expanded towards its Little Ice Age extent. Copyright © 2019 John Wiley & Sons, Ltd.  相似文献   

17.
Fossil beetles and pollen were examined from an intermorainal bog at Puerto Edén, Isla Wellington, Chile (latitude 49°08'S, longitude 74°25'W). Wood from near the base of the section has an age of 12 960 ± 150 yr BP. Occurrence of flightless beetle species in the basal peat sample is evidence that some members of the biota survived the last glacial maximum in refugia. The assumption that the Chilean Channels were entirely ice-covered is incorrect. Plants and insects that invaded the deglaciated terrain were those of an Empetrum heathland in which patches of Nothofagus forest were restricted to sheltered locations. The climate supporting the heathland is inferred to have been windier and probably drier than that of the present day. From 13 000 yr BP to 9500 yr BP Nothofagus forest expanded, possibly in response to less windiness and more available moisture. Neither the fossil beetle nor pollen data support a return to significantly colder conditions between 11 000 and 10 000 yr BP at the time of the Younger Dryas Stade. From 9500 to 5500 yr BP the climate was as wet as that of the present day, based on an increased representation of the pollen of moorland plants and of aquatic beetle species. From 5500 to 3000 yr BP the climate was drier, as indicated by the expansion of Empetrum heath and the reduction in mesic habitats. From 3000 yr BP to the present-day mesic habitats dominated as the climate returned to a wetter mode. The alternatively wetter and drier episodes are attributed to latitudinal shifts in the position of storm tracks in the belt of Southern Westerlies.  相似文献   

18.
Peat and organic rich sediments at coastal sites in extreme northwest Ireland have accumulated in a wide variety of environments, often strongly influenced by late Holocene changes in relative sea level and by geomorphic processes. A deep peat sequence on the coast of Aranmore Island accumulated initially in a lake and subsequently in a freshwater marsh environment. The long pollen record serves as a template for regional events. It extends over much of the Holocene and shows relatively high levels of Pinus pollen up to just before the disappearance of this taxon at c . 3600 BP. Coastal peat occurrences elsewhere are much thinner and have accumulated over shorter periods; they contain further evidence to show that coastal areas were well-wooded compared with today, and that Pinus was an important woodland component prior to c . 4000 BP. At sites in Gweebarra Bay intertidal peats record the closure of small estuaries by geomorphological events during the past 5000 years. Coastal sites at Ballyness, Clonmass, and Trawenagh display regressive stratigraphies ˜ minerogenic marine sediments are overlain by silty peats capped by highly organic freshwater peats. Basal radiocarbon dates range from 4500 to 3300 BP. The silty peats are interpreted as having formed in salt-marsh environments and contain distinctive pollen spectra, marked by high levels of Pinus and Compositae Liguliflorae pollen. The data suggest that relative sea level attained levels close to that of today by the mid-Holocene in this region. The pattern of relative sea-level change agrees well with that predicted by geophysical modelling.  相似文献   

19.
Pebbly clays and diamictons containing marine shell fragments and peat lenses exposed beneath subglacially deposited Late Devensian till at the Burn of Benholm provide new insights into the glacial history of Quaternary sequences in eastern Scotland. The peat yielded pollen of interstadial affinity (including Bruckenthalia spiculifolia) and non‐finite radiocarbon dates. Comparisons with other pre‐Late Devensian pollen records in northern Scotland suggest that the peat lenses are remnants of an Early Devensian interstadial deposit, of Oxygen Isotope Substage 5c or 5a age. Reworked faunal assemblages in the shelly sediments include Quaternary marine molluscs of low boreal aspect, as well as Mesozoic and Palaeozoic microfossils. Amino acid ratios from fragments of Arctica islandica suggest that the shells are of Oxygen Isotope Stage 9 age or older. The fabric and composition of the shelly sediments are consistent with their emplacement as deformation till during the onshore movement of glacially transported rafts of marine sediment. Folded and sheared contacts between the shelly deposits, peat lenses and the overlying Late Devensian till indicate that the fossiliferous sediments were glacitectonised during the main Late Devensian glaciation, when ice moved from Strathmore and overrode the site from the southwest. British Geological Survey. © NERC 2000.  相似文献   

20.
In this paper we present geological evidence from the Larsemann Hills (Lambert Glacier – Amery Ice Shelf region, East Antarctica) of marine sediments at an altitude of c. 8 m a.s.l., as revealed by diatom, pigment and geochemical proxies in a lake sediment core. The sediments yielded radiocarbon dates between c. 26 650 and 28 750 14C yr BP (31 366–33 228 cal yr BP). This information can be used to constrain relative sea level adjacent to the Lambert Glacier at the end of Marine Isotope Stage 3. These data are compared with the age and altitude of Marine Isotope Stage 3 marine deposits elsewhere in East Antarctica and discussed with reference to late Quaternary ice sheet history and eustatic sea-level change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号