首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Ballantrae ophiolite in southern Scotland includes a NEE–SWW-trending serpentinite mélange that contains blocks of mafic blueschist and high-pressure, granulite facies, metapyroxenite (Sm–Nd metamorphic age: 576 ± 32 and 505 ± 11 Ma). Tectonic blocks of mafic schist are less than 3 × 3 m in size, and have greenschist, blueschist or epidote amphibolite facies assemblages corresponding to the high-pressure intermediate-type metamorphic facies series.Adjacent rocks of the serpentinite mélange are hydrothermally-altered MORB-like ophiolitic basalt (prehnite–pumpellyite facies), dolerite (actinolite–oligoclase sub-facies) and gabbro (amphibolite facies), all with assemblages that are diagnostic of the low-pressure metamorphic facies series.The difference in metamorphic facies series and parageneses of minerals between the high-pressure mafic blocks and the adjacent, low-pressure ophiolitic meta-basic rocks suggests that the former were exhumed from > 25 km depth within a cold subducted slab, and were juxtaposed with the latter, the bottom of a MORB-like ophiolite in the hanging wall of a trench. An ENE–WSW-trending, 501 ± 12 Ma volcanic arc belt extends for 3 km south of the serpentinite mélange. We suggest that ridge subduction associated with a slab window created arc-related gabbro (483 ± 4 Ma) at Byne Hill and within-plate gabbro (487 ± 8 Ma) at Millenderdale. Final continental collision created the duplex structure of the Ballantrae complex that includes the HP blocks and serpentinite mélange. These relations define diapiric exhumation in the Caledonian orogen of SW Scotland.  相似文献   

2.
To investigate the strength of frictional sliding and stability of mafic lower crust, we conducted experiments on oven-dried gabbro gouge of 1 mm thick sandwiched between country rock pieces (with gouge inclined 35° to the sample axis) at slip rates of 1.22 × 10− 3 mm/s and 1.22 × 10− 4 mm/s and elevated temperatures up to 615 °C. Special attention has been paid to whether transition from velocity weakening to velocity strengthening occurs due to the elevation of temperature.Two series of experiments were conducted with normal stresses of 200 MPa and 300 MPa, respectively. For both normal stresses, the friction strengths are comparable at least up to 510 °C, with no significant weakening effect of increasing temperature. Comparison of our results with Byerlee's rule on a strike slip fault with a specific temperature profile in the Zhangbei region of North China shows that the strength given by experiments are around that given by Byerlee's rule and a little greater in the high temperature range.At 200 MPa normal stress, the steady-state rate dependence a − b shows only positive values, probably still in the “run-in” process where velocity strengthening is a common feature. With a normal stress of 300 MPa, the values of steady-state rate dependence decreases systematically with increasing temperature, and stick-slip occurred at 615 °C. Considering the limited displacement, limited normal stress applied and the effect of normal stress for the temperatures above 420 °C, it is inferred here that velocity weakening may be the typical behaviour at higher normal stress for temperature above 420 °C and at least up to 615 °C, which covers most of the temperature range in the lower crust of geologically stable continental interior. For a dry mafic lower crust in cool continental interiors where frictional sliding prevails over plastic flow, unstable slip nucleation may occur to generate earthquakes.  相似文献   

3.
A complete understanding of the processes of crustal growth and recycling in the earth remains elusive, in part because data on rock composition at depth is scarce. Seismic velocities can provide additional information about lithospheric composition and structure, however, the relationship between velocity and rock type is not unique. The diverse xenolith suite from the Potrillo volcanic field in the southern Rio Grande rift, together with velocity models derived from reflection and refraction data in the area, offers an opportunity to place constraints on the composition of the crust and upper mantle from the surface to depths of  60 km. In this work, we calculate seismic velocities of crustal and mantle xenoliths using modal mineralogy, mineral compositions, pressure and temperature estimates, and elasticity data. The pressure, temperature, and velocity estimates from xenoliths are then combined with sonic logs and stratigraphy estimated from drill cores and surface geology to produce a geologic and velocity profile through the crust and upper mantle. Lower crustal xenoliths include garnet ± sillimanite granulite, two-pyroxene granulite, charnokite, and anorthosite. Metagabbro and amphibolite account for only a small fraction of the lower crustal xenoliths, suggesting that a basaltic underplate at the crust–mantle boundary is not present beneath the southern Rio Grande rift. Abundant mid-crustal felsic to mafic igneous xenoliths, however, suggest that plutonic rocks are common in the middle crust and were intraplated rather than underplated during the Cenozoic. Calculated velocities for garnet granulite are between  6.9 and 8.0 km/s, depending on garnet content. Granulites are strongly foliated and lineated and should be seismically anisotropic. These results suggest that velocities > 7.0 km/s and a layered structure, which are often attributed to underplated mafic rocks, can also be characteristic of alternating garnet-rich and garnet-poor metasedimentary rocks. Because the lower crust appears to be composed largely of metasedimentary granulite, which requires deep burial of upper crustal materials, we suggest the initial construction of the continental crust beneath the Potrillo volcanic field occurred by thickening of supracrustal material in the absence of large scale magmatic accretion. Mantle xenoliths include spinel lherzolite and harzburgite, dunite, and clinopyroxenite. Calculated P-wave velocities for peridotites range from 7.75 km/s to 7.89 km/s, with an average of 7.82 km/s. This velocity is in good agreement with refraction and reflection studies that report Pn velocities of 7.6–7.8 km/s throughout most of the Rio Grande rift. These calculations suggest that the low Pn velocities compared to average uppermost mantle are the result of relatively high temperatures and low pressures due to thin crust, as well as a fertile, Fe-rich, bulk upper mantle composition. Partial melt or metasomatic hydration of the mantle lithosphere are not needed to produce the observed Pn velocities.  相似文献   

4.
The Oroscocha Quaternary volcano, in the Inner Arc Domain of the Andean Cordillera (southern Peru), emitted peraluminous rhyolites and trachydacites that entrained decimetric to millimetric lamprophyric blobs. These latter show kersantite modal compositions (equal proportion of groundmass plagioclase and K-feldspar) and potassic bulk-rock compositions (1<K2O/Na2O<2; 6.7–7.2 wt.% CaO). Kersantite blobs have shapes and microstructures consistent with an origin from a mixing process between mafic potassic melts and rhyolitic melts. Both melts did exchange their phenocrysts during the mixing process. In addition to index minerals of lamprophyres (Ba–Ti–phlogopite, F-rich apatite, andesine and Ca-rich sanidine), the groundmass of kersantite blobs displays essenite-rich diopside (up to 22 mol%), Ti-poor magnetite microlites, Ti-poor hematite microlites and a series of Ca–Ti–Zr- and REE-rich accessory minerals that have never been reported from lamprophyres. Titanite [up to 5.3 wt.% ZrO2 and 5.2 wt.% (Y2O3 + REE2O3)] and Zr- and Ca-rich perrierite (up to 7.2 wt.% ZrO2 and 10.8 wt.% CaO) predate LREE- and iron-rich zirconolite and Fe-, Ti-, Hf-, Nb- and Ce-rich baddeleyite (up to 5.3 wt.% Fe2O3, 3.2 wt.% TiO2, 1.5 wt.% HfO2, 1.2 wt.% Nb2O5, 0.25 wt.% CeO2) in the crystallization order of the groundmass. Isomorphic substitutions suggest iron to occur as Fe3+ in all the accessory phases. This feature, the essenitic substitution in the clinopyroxene and the occurrence of hematite microlites, all indicate a drastic increase of the oxygen fugacity (from FMQ − 1 to FMQ + 5 log units) well above the HM synthetic buffer within a narrow temperature range (1100–1000 °C). Such a late-magmatic oxidation is ascribed to assimilation of water from the felsic melts during magma mixing, followed by rapid degassing and water dissociation during eruption of host felsic lavas. Thus, magma mixing involving felsic melt end-members provides a mechanism for mafic potassic melts to be oxidized beyond the HM synthetic buffer curve.  相似文献   

5.
The Cuiabá Gold Deposit is located in the northern part of the Quadrilátero Ferrífero, Minas Gerais State, Brazil. The region constitutes an Archean granite–greenstone terrane composed of a basement complex (ca. 3.2 Ga), the Rio das Velhas Supergroup greenstone sequence, and related granitoids (3.0–2.7 Ga), which are overlain by the Proterozoic supracrustal sequences of the Minas (< 2.6–2.1  Ga) and Espinhaço (1.7 Ga) supergroups.The stratigraphy of the Cuiabá area is part of the Nova Lima Group, which forms the lower part of the Rio das Velhas Supergroup. The lithological succession of the mine area comprises, from bottom to top, lower mafic metavolcanics intercalated with carbonaceous metasedimentary rocks, the gold-bearing Cuiabá-Banded Iron Formation (BIF), upper mafic metavolcanics and volcanoclastics and metasedimentary rocks. The metamorphism reached the greenschist facies. Tectonic structures of the deposit area are genetically related to deformation phases D1, D2, D3, which took place under crustal compression representing one progressive deformational event (En).The bulk of the economic-grade gold mineralization is related to six main ore shoots, contained within the Cuiabá BIF horizon, which range in thickness between 1 and 6 m. The BIF-hosted gold orebodies (> 4 ppm Au) represent sulfide-rich segments of the Cuiabá BIF, which grade laterally into non-economic mineralized or barren iron formation. Transitions from sulfide-rich to sulfide-poor BIF are indicated by decreasing gold grades from over 60 ppm to values below the fire assay detection limit in sulfide-poor portions. The deposit is “gold-only”, and shows a characteristic association of Au with Ag, As, Sb and low base-metal contents. The gold is fine grained (up to 60 μm), and is generally associated with sulfide layers, occurring as inclusions, in fractures or along grain boundaries of pyrite, the predominant sulfide mineral (> 90 vol.%). Gold is characterized by an average fineness of 0.840 and a large range of fineness (0.759 to 0.941).The country rocks to the mineralized BIF show strong sericite, carbonate and chlorite alteration, typical of greenschist facies metamorphic conditions. Textures observed on microscopic to mine scales indicate that the mineralized Cuiabá BIF is the result of sulfidation involving pervasive replacement of Fe-carbonates (siderite–ankerite) by Fe-sulfides. Gold mineralization at Cuiabá shows various features reported for Archean gold–lode deposits including the: (1) association of gold mineralization with Fe-rich host rocks; (2) strong structural control of the gold orebodies, showing remarkable down-plunge continuity (> 3 km) relative to strike length and width (up to 20 m); (3) epigenetic nature of the mineralization, with sulfidation as the major wall–rock alteration and directly associated with gold deposition; (4) geochemical signature, with mineralization showing consistent metal associations (Au–Ag–As–Sb and low base metal), which is compatible with metamorphic fluids.  相似文献   

6.
The island of Ishigaki Jima, located in the western part of the southern Ryukyu Arc, Japan, is underlain by a basement comprising the Tumuru and Fu-saki formations. The former is a pelitic glaucophane schist with a metamorphic age of 220–190 Ma, and the latter is a weakly metamorphosed accretionary complex, composed mainly of chert, mudstone and sandstone with minor amounts of limestone and mafic rocks. The Fu-saki Formation was weakly metamorphosed at ∼140 Ma. Latest Carboniferous–Early Jurassic microfossils have been obtained from the limestones, cherts and siliceous mudstones of this formation, but no fossils have been collected from the phyllitic mudstones. The radiolarian fauna of the phyllitic mudstones described herein indicates a late Pliensbachian–early Toarcian (Early Jurassic) age. This result, when combined with existing data, enables the reconstruction of an oceanic plate stratigraphy, showing a succession of (in ascending order) Upper Carboniferous–Triassic cherts, Sinemurian–lower Pliensbachian siliceous mudstones and upper Pliensbachian–lower Toarcian phyllitic mudstones and sandstones. The radiolarians from the phyllitic mudstones are important in constraining the timing of the accretion of the Fu-saki Formation to the base of the Tumuru Formation.  相似文献   

7.
Southern India occupies a central position in the Late Neoproterozoic–Cambrian Gondwana supercontinent assembly. The Proterozoic mosaic of southern India comprises a collage of crustal blocks dissected by Late Neoproterozoic–Cambrian crust-scale shear/suture zones. Among these, the Palghat–Cauvery Suture Zone (PCSZ) has been identified as the trace of the Cambrian suture representing Mozambique Ocean closure during the final phase of amalgamation of the Gondwana supercontinent. Here we propose a model involving Pacific-type orogeny to explain the Neoproterozoic evolution of southern India and its final amalgamation within the Gondwana assembly. Our model envisages an early rifting stage which gave birth to the Mozambique Ocean, followed by the initiation of southward subduction of the oceanic plate beneath a thick tectosphere-bearing Archean Dharwar Craton. Slices of the ocean floor carrying dunite–pyroxenite–gabbro sequence intruded by mafic dykes representing a probable ophiolite suite and invaded by plagiogranite are exposed at Manamedu along the southern part the PCSZ. Evidence for the southward subduction and subsequent northward extrusion are preserved in the PCSZ where the orogenic core carries high-pressure and ultrahigh-temperature metamorphic assemblages with ages corresponding to the Cambrian collisional orogeny. Typical eclogites facies rocks with garnet + omphacite + quartz and diagnostic ultrahigh-temperature assemblages with sapphirine + quartz, spinel + quartz and high alumina orthopyroxene + sillimanite + quartz indicate extreme metamorphism during the subduction–collision process. Eclogites and UHT granulites in the orogenic core define PT maxima of 1000 °C and up to 20 kbar. The close association of eclogites with ultramafic rocks having abyssal signatures together with linear belts of iron formation and metachert in several localities within the PCSZ probably represents subduction–accretion setting. Fragments of the mantle wedge were brought up through extrusion tectonics within the orogenic core, which now occur as suprasubduction zone/arc assemblages including chromitites, highly depleted dunites, and pyroxene bearing ultramafic assemblages around Salem. Extensive CO2 metasomatism of the ultramafic units generated magnesite deposits such as those around Salem. High temperature ocean floor hydrothermal alteration is also indicated by the occurrence of diopsidite dykes with calcite veining. Thermal metamorphism from the top resulted in the dehydration of the passive margin sediments trapped beneath the orogenic core, releasing copious hydrous fluids which moved upward and caused widespread hydration, as commonly preserved in the Barrovian amphibolite facies units in the PCSZ. The crustal flower structure mapped from PCSZ supports the extrusion model, and the large scale north verging thrusts towards the north of the orogenic core may represent a fold-thrust belt. Towards the south of the PCSZ is the Madurai Block where evidence for extensive magmatism occurs, represented by a number of granitic plutons and igneous charnockite massifs of possible tonalite–trondhjemite–granodiorite (TTG) setting, with ages ranging from ca. 750–560 Ma suggesting a long-lived Neoproterozoic magmatic arc within a > 200 km wide belt. All these magmatic units were subsequently metamorphosed, when the Pacific-type orogeny switched over to collision-type in the Cambrian during the final phase of assembly of the Gondwana supercontinent. One of the most notable aspects is the occurrence of arc magmatic rocks together with high P/T rocks, representing the deeply eroded zone of subduction. The juxtaposition of these contrasting rock units may suggest the root of an evolved Andean-type margin, as in many arc environments the roots of the arc comprise ultramafic/mafic cumulates and the felsic rocks represent the core of the arc. The final phase of the orogeny witnessed the closure of an extensive ocean — the Mozambique Ocean — and the collisional assembly of continental fragments within the Gondwana supercontinent amalgam. The tectonic history of southern India represents a progressive sequence from Pacific-type to collision-type orogeny which finally gave rise to a Himalayan-type Cambrian orogen with characteristic magmatic, metasomatic and metamorphic factories operating in subduction–collision setting.  相似文献   

8.
From April to July 2002 we carried out a deployment of 6 ocean bottom seismometers and 4 ocean bottom hydrophones in the North Atlantic south of Iceland. During the deployment period we recorded clear Rayleigh waves from 2 regional and 14 teleseismic earthquakes. This corresponds to a Rayleigh wave detection rate of nearly 92% for events with MW ≥ 6.06.0 and epicentral distance less than 110°, close to detection rate estimates based on noise level variability. We measured Rayleigh wave event-station group dispersion and inter-station phase dispersion for one Mid-Atlantic Ridge event. The group dispersion curve is sensitive to the structure of the North-East Atlantic with an average age of  39 Myr. The phase dispersion curve is sensitive to the structure just south of Iceland (average plate age 33 Myr). Both dispersion curves indicate faster velocities than previously postulated for oceanic plate generated at the Reykjanes Ridge. A grid search approach was used to constrain the range of models fitting the data. The high velocity seismic lid just south of Iceland in the model for the phase dispersion path is slower or thinner than in the group dispersion model, which averages over a larger area and a somewhat older plate age, but the velocities in the low velocity half space are similar. We further consider the residual bathymetry in the experimental area. The residual anomaly decreases by 300–400 m from the Reykjanes Ridge to the  30 Myr old plate south of Iceland. This decrease can be explained by the disappearance of a mantle thermal anomaly associated with the Iceland plume. Both the residual bathymetry and the surface wave data are thus consistent with the notion that the southward spreading of the Icelandic plume is channelised underneath the Reykjanes Ridge and does not spread far outside this channel.Based on the experience from the pilot experiment, we estimate that a minimum recording time of 13–15 months in favourable weather conditions (April–September) is required to record enough data to map the spreading plume with surface waves, and to produce a tomographic image to a depth of 1000 km using body waves. This can be achieved by a continuous deployment of at least  20 months, or by two or three deployments during the spring and summer of consecutive years.  相似文献   

9.
The Apuseni Mountains are located between the Pannonian Basin and the Transylvanian Basin along a direction of SE convergence with the Carpathian belt. A flexural model based on the cylindrical bending of a semi-infinite, isostatically supported, thin elastic plate is here examined with the Apuseni playing the role of flexural bulge, and under the assumption that the plate is deforming under the action of a vertical shear force and a bending moment applied at the end of the plate, beneath the Carpathians. The model yields estimates of the plate thickness ranging between 13 and 14.5 km, depending on the assumed density contrast between crust/sediments and mantle providing buoyancy. The vertical shear force which is necessary to bend the plate is in the range between 60 and 300 × 1011 N m− 1, depending on the assumed density contrast. This force is shown to be modelled by a gravitational ‘slab pull’ force, using model parameters derived from seismic tomography. If the height of the flexural bulge, after correction for erosion, is allowed to increase, the model yields an estimate of the horizontal strain rate at the top of the bulge. For example, 5 mm/yr vertical change of the flexural bulge of a 14 km thick plate results in a horizontal deformation rate of approximately 7 nanostrain/yr at the top of the bulge, a value which is at the threshold of sensitivity of continuous GPS measurements. Different vertical rates will change the horizontal strain rate almost proportionally.  相似文献   

10.
Systematic geochronologic, geochemical, and Nd isotopic analyses were carried out for an early Paleoproterozoic high-K intrusive complex exposed in southwestern Tarim, NW China. The results provide a better understanding of the Paleoproterozoic tectonic evolution of the Tarim Block. Zircon U–Pb age dating indicates two Paleoproterozoic magmatic episodes occurring at ca. 2.41 Ga and ca. 2.34 Ga respectively, which were followed by a ca. 1.9 Ga metamorphic event. The 2.41 Ga granodiorite–adamellite suite shares characteristics of late to post-orogenic metaluminous A-type granites in its high alkalinity (Na2O + K2O = 7.6–9.3%), total REE (410–788 ppm), Zr (370–660 ppm), and Y (21.7–58.4 ppm) contents. εNd(t) values for the suite range from − 3.22 to − 4.71 and accordingly the Nd modal ages (T2DM) vary between 3.05 Ga and 3.17 Ga. Based on geochemical data, the 2.34 Ga suite can be subdivided into two sub-suites, namely A-type and S-type. However, both types have comparable Nd isotope compositions (εNd(t) ≈ − 0.41 to − 2.08) and similar narrow T2DM ranges (2.76–2.91 Ga).Geochemical and Nd isotopic data for the high-K intrusive complex, in conjunction with the regional geological setting, suggest that both the 2.41 Ga suite and the 2.34 Ga A-type sub-suite might have been produced by partial melting of the Archean mafic crust in a continental rift environment. The S-type sub-suite is thought to have formed by partial melting of felsic pelites and/or metagreywackes recycled from Archean crust (TTG?). Gabbro enclaves with positive εNd(t) value (2.15) have been found to be intermingling within the 2.34 Ga suite; ca. 2.34–2.36 Ga gabbroic dykes and adamellites have previously been documented in eastern Tarim. These observations indicate that the high-K intrusions may reflect the emergence of depleted mantle upwelling beneath the Tarim Block at that time. We suggest a three-stages model for the Precambrian crustal evolution in the Tarim Block: (1) the formation of proto-crust (TTG) by ca. 2.5 Ga, (2) episodes of felsic magmatism possibly occurring in continental rift environments at ca. 2.41 Ga and ca. 2.34–2.36 Ga, and (3) ca. 1.9 Ga metamorphism that may represent the solidification of the Precambrian basement of the Tarim Block.  相似文献   

11.
Southern Africa's topography is distinctive. An inland plateau of low relief and high average elevation is separated from a coastal plane of high relief and low average elevation by a steeply dipping escarpment. The origin and evolution of this topography is poorly understood because, unlike high plateaus elsewhere, its development cannot be easily linked to present day compressional plate boundary processes. Understanding the development of this regional landscape since the break-up of Gondwana is a first order step towards resolving regional epeirogenesis. We present data that quantifies the timing and extent of exhumation across the southern Cape escarpment and coastal plane, using apatite fission track analysis (AFTA) of 25 outcrop samples and 31 samples from three deep boreholes (KW1/67, SA1/66, CR1/68). Outcrop fission track (AFT) ages are Cretaceous and are significantly younger than the stratigraphic ages of their host rocks, indicating that the samples have experienced elevated paleotemperatures. Mean track lengths vary from 11.86 to 14.23 μm. The lack of Cenozoic apatite ages suggests that major cooling was over by the end Cretaceous. The results for three boreholes, situated seaward (south) of the escarpment, indicate an episode of increased denudation in the mid-late Cretaceous (100–80 Ma). An earlier episode of increased denudation (140–120 Ma) is identified from a borehole north of the escarpment. Thermal modelling indicates a history involving 2.5–3.5 km of denudation in the mid-late Cretaceous (100–80 Ma) at a rate of 175 to 125 m/Ma. The AFT data suggest that less than 1 km of overburden has been eroded regionally since the late Cretaceous (< 80 Ma) at a rate of 10 to 15 m/Ma, but do not discount the possibility of minor (in relative amplitude) episodes of uplift and river incision through the Cenozoic. The reasons for rapid denudation in these early and mid-Cretaceous episodes are less clear, but may be related to epeirogenic uplift associated with an increase in mantle buoyancy as reflected in two punctuated episodes of alkaline intrusions (e.g. kimberlites) across southern Africa and contemporaneous formation of two large mafic igneous provinces (~ 130 and 90 Ma) flanking its continental margins. Because Cenozoic denudation rates are relatively minimal, epeirogenic uplift of southern Africa and its distinct topography cannot be primarily related to Cenozoic mantle processes, consistent with the lack of any significant igneous activity across this region during that time.  相似文献   

12.
Christoffer Nielsen  H. Thybo   《Tectonophysics》2009,470(3-4):298-318
The Cenozoic Baikal Rift Zone (BRZ) is situated in south-central Siberia in the suture between the Precambrian Siberian Platform and the Amurian plate. This more than 2000-km long rift zone is composed of several individual basement depressions and half-grabens with the deep Lake Baikal at its centre. The BEST (Baikal Explosion Seismic Transect) project acquired a 360-km long, deep seismic, refraction/wide-angle reflection profile in 2002 across southern Lake Baikal. The data from this project is used for identification of large-scale crustal structures and modelling of the seismic velocities of the crust and uppermost mantle. Previous interpretation and velocity modelling of P-wave arrivals in the BEST data has revealed a multi layered crust with smooth variation in Moho depth between the Siberian Platform (41 km) and the Sayan-Baikal fold belt (46 km). The lower crust exhibits normal seismic velocities around the rift structure, except for beneath the rift axis where a distinct 50–80-km wide high-velocity anomaly (7.4–7.6 ± 0.2 km/s) is observed. Reverberant or “ringing” reflections with strong amplitude and low frequency originate from this zone, whereas the lower crust is non-reflective outside the rift zone. Synthetic full-waveform reflectivity modelling of the high-velocity anomaly suggests the presence of a layered sequence with a typical layer thickness of 300–500 m coinciding with the velocity anomaly. The P-wave velocity of the individual layers is modelled to range between 7.4 km/s and 7.9 km/s. We interpret this feature as resulting from mafic to ultra-mafic intrusions in the form of sills. Petrological interpretation of the velocity values suggests that the intrusions are sorted by fractional crystallization into plagioclase-rich low-velocity layers and pyroxene- and olivine-rich high-velocity layers. The mafic intrusions were probably intruded into the ductile lower crust during the main rift phase in the Late Pliocene. As such, the intrusive material has thickened the lower crust during rifting, which may explain the lack of Moho uplift across southern BRZ.  相似文献   

13.
The origin of regional sedimentary basins is being investigated by the ESTRID project (Explosion Seismic Transects around a Rift In Denmark). This project investigates the mechanisms of the formation of wide, regional basins and their interrelation to previous rifting processes in the Danish–Norwegian Basin in the North Sea region. In May 2004 a 143 km long refraction seismic profile was acquired along the strike direction of a suspected major mafic intrusion in the crust in central Denmark. The data confirms the presence of a body with high seismic velocity (> 6.5 km/s) extending from a depth of  10–12 km depth into the lower crust. There is a remarkable Moho relief between 27 and 34 km depth along this new along-strike profile as based on ray-tracing modelling of PmP reflections. The lack of PmP reflections at a zone of very high velocity in the lowest crust (7.3–7.5 km/s) suggests a possible location of a feeder channel to the batholith. The presence of volcanic rocks of Carboniferous–Permian age above the intrusion (mafic batholith) suggests a similar age of the intrusion. An older obliquely crossing profile and two new fan profiles deployed perpendicular to the main ESTRID profile, show that the batholith is about 30–40 km wide. The existence of this large mafic batholith supports the hypothesis that the origin of the Danish–Norwegian Basin is related to cooling and contraction after intrusion of large amounts of mafic melts into the crust during the late Carboniferous and early Permian. The data and interpretations from project ESTRID will form the basis for subsidence modelling. Tentatively, we interpret the formation of the Danish–Norwegian Basin as a thermal subsidence basin, which developed after widespread rifting of the region.  相似文献   

14.
Field observations and interpretations of satellite images reveal that the westernmost segment of the Altyn Tagh Fault (called Karakax Fault Zone) striking WNW located in the northwestern margin of the Tibetan Plateau has distinctive geomorphic and tectonic features indicative of right-lateral strike-slip fault in the Late Quaternary. South-flowing gullies and N–S-trending ridges are systematically deflected and offset by up to ~ 1250 m, and Late Pleistocene–Holocene alluvial fans and small gullies that incise south-sloping fans record dextral offset up to ~ 150 m along the fault zone. Fault scarps developed on alluvial fans vary in height from 1 to 24 m. Riedel composite fabrics of foliated cataclastic rocks including cataclasite and fault gouge developed in the shear zone indicate a principal right-lateral shear sense with a thrust component. Based on offset Late Quaternary alluvial fans, 14C ages and composite fabrics of cataclastic fault rocks, it is inferred that the average right-lateral strike-slip rate along the Karakax Fault Zone is ~ 9 mm/a in the Late Quaternary, with a vertical component of ~ 2 mm/a, and that a M 7.5 morphogenic earthquake occurred along this fault in 1902. We suggest that right-lateral slip in the Late Quaternary along the WNW-trending Karakax Fault Zone is caused by escape tectonics that accommodate north–south shortening of the western Tibetan Plateau due to ongoing northward penetration of the Indian plate into the Eurasian plate.  相似文献   

15.
The Andaman arc in the northeastern Indian Ocean defines nearly 1100 km long active plate margin between the India and Burma plates where an oblique Benioff zone develops down to 200 km depth. Several east-trending seismologic sections taken across the Andaman Benioff Zone (ABZ) are presented here to detail the subduction zone geometry in a 3-D perspective. The slab gravity anomaly, computed from the 3-D ABZ configuration, is a smooth, long-wavelength and symmetric gravity high of 85 mGal amplitude centering to the immediate east of the Nicobar Island, where, a prominent gravity “high” follows the Nicobar Deep. The Slab-Residual Gravity Anomaly (SRGA) and Mantle Bouguer Anomaly (MBA) maps prepared for the Andaman plate margin bring out a double-peaked SRGA “low” in the range of − 150 to − 240 mGal and a wider-cum-larger MBA “low” having the amplitude of − 280 to − 315 mGal demarcating the Andaman arc–trench system. The gravity models provide evidences for structural control in propagating the rupture within the lithosphere. The plate margin configuration below the Andaman arc is sliced by the West Andaman Fault (WAF) as well as by a set of sympathetic faults of various proportions, often cutting across the fore-arc sediment package. Some of these fore-arc thrust faults clearly give rise to considerably high post-seismic activity, but the seismic incidence along the WAF further east is comparatively much less particularly in the north, although, the lack of depth resolution for many of the events prohibits tracing the downward continuity of these faults. Tectonic correlation of the gravity-derived models presented here tends to favour the presence of oceanic crust below the Andaman–Nicobar Outer Arc Ridge.  相似文献   

16.
Mining of Cenozoic alluvial deposits at Copeton and Bingara (Eastern Australia) has produced two million macrodiamonds (0.25 ct median size). Raman spectroscopy is used to identify included minerals within uncut Copeton diamonds, with sealed chamber remnant pressures of 31.7 to 35.6 kbar for coesite, 13.6 and 22.7 kbar for clinopyroxene, and 7.6 kbar for grossular garnet. Assuming elastic behaviour, these values generate inclusion entrapment PT loci which intersect, restricting diamond formation conditions: from 250 °C, 43 kbar to 800 °C, 52 kbar. Larger than error (± 100 °C and ± 4 kbar), this range shows a systematic variation in inclusion composition with diamond zoning and N properties. Published research shows 1) Copeton and Bingara diamonds are unique, and 2) modern alluvium in the Bingara district carries mantle-formed garnet, captured by post-tectonic alkali basalt from an extensive diamondiferous ultrahigh pressure (UHP) terrane that stalled at depth because it is dominated by mafic eclogite. The combined Raman and geological results indicate two sets of subduction UHP diamond formation conditions/protolith are required, firstly cooler oceanic slab and secondly including higher temperature continental crust. The Copeton and Bingara stones are UHP macrodiamonds, and Carboniferous 40Ar/39Ar age dates on clinopyroxene inclusions should be interpreted as ages of crystallisation, representing the termination of subduction. The characteristic features of ruptured inclusions and etched percussion marks on Copeton and Bingara diamond indicate volcanic delivery to the earth's surface. Alluvial deposits elsewhere in Eastern Australia may carry similar diamond along with diamond of different origin.  相似文献   

17.
We present new regional petrologic, geochemical, Sr–Nd isotopic, and U–Pb geochronological data on the Turonian–Campanian mafic igneous rocks of Central Hispaniola that provide important clues on the development of the Caribbean island-arc. Central Hispaniola is made up of three main tectonic blocks—Jicomé, Jarabacoa and Bonao—that include four broad geochemical groups of Late Cretaceous mafic igneous rocks: group I, tholeiitic to calc-alkaline basalts and andesites; group II, low-Ti high-Mg andesites and basalts; group III, tholeiitic basalts and gabbros/dolerites; and group IV, tholeiitic to transitional and alkalic basalts. These igneous rocks show significant differences in time and space, from arc-like to non-arc-like characteristics, suggesting that they were derived from different mantle sources. We interpret these groups as the record of Caribbean arc-rifting and back-arc basin development in the Late Cretaceous. The> 90 Ma group I volcanic rocks and associated cumulate complexes preserved in the Jicomé and Jarabacoa blocks represent the Albian to Cenomanian Caribbean island-arc material. The arc rift stage magmatism in these blocks took place during the deposition of the Restauración Formation from the Turonian–Coniacian transition (~ 90 Ma) to Santonian/Lower Campanian, particularly in its lower part with extrusion at 90–88 Ma of group II low-Ti, high-Mg andesites/basalts. During this time or slightly afterwards adakitic rhyolites erupted in the Jarabacoa block. Group III tholeiitic lavas represent the initiation of Coniacian–Lower Campanian back-arc spreading. In the Bonao block, this stage is represented by back-arc basin-like basalts, gabbros and dolerite/diorite dykes intruded into the Loma Caribe peridotite, as well as the Peralvillo Sur Formation basalts, capped by tuffs, shales and Campanian cherts. This dismembered ophiolitic stratigraphy indicates that the Bonao block is a fragment of an ensimatic back-arc basin. In the Jicomé and Jarabacoa blocks, the mainly Campanian group IV basalts of the Peña Blanca, Siete Cabezas and Pelona–Pico Duarte Formation, represent the subsequent stage of back-arc spreading and off-axis non-arc-like magmatism, caused by migration of the arc toward the northeast. These basalts have geochemical affinities with the mantle domain influenced by the Caribbean plume, suggesting that mantle was flowing toward the NE, beneath the extended Caribbean island-arc, in response to rollback of the subducting proto-Caribbean slab.  相似文献   

18.
SHRIMP U–Pb zircon age, geochemical and Sm–Nd isotopic data are reported for mid-Neoproterozoic volcanic rocks and mafic intrusions in northern Guangxi (Guibei) and western Hunan (Xiangxi) Provinces along the southern margin of the Yangtze Block. The mafic igneous rocks studied are generally synchronous, dated at  765 Ma. The least-contaminated dolerite samples from Xiangxi are characterized by high εNd(T) value of 3.3 to 5.3 and OIB-type geochemical features, indicating that they were derived from an OIB-like mantle source in a continental rift setting. The spilites and gabbros in Guibei show basaltic compositions transitional between the tholeiitic and calc-alkaline series. Despite depletion in Nb and Ta relative to La and Th, they have Zr/Sm = 27–35 and Ti/V = 30–40, affinitive to intraplate basalts. Their εNd(T) values are variable, ranging from − 1.2 to 3.2 for the spilites and from − 1.7 to 2.9 for the gabbros, suggesting that these spilites and gabbros crystallized from crustal-contaminated mafic magmas derived from a metasomatised subcontinental lithospheric mantle source. We conclude that the  765 Ma mafic magmatic rocks in Guibei and Xiangxi were formed in a single continental rift setting as part of the broadly concurrent  780–750 Ma rift magmatism over much of South China, which may be related to the plume activities during the breakup of Rodinia.  相似文献   

19.
A newly recognized remnant of a Paleoproterozoic Large Igneous Province has been identified in the southern Bastar craton and nearby Cuddapah basin from the adjacent Dharwar craton, India. High precision U–Pb dates of 1891.1 ± 0.9 Ma (baddeleyite) and 1883.0 ± 1.4 Ma (baddeleyite and zircon) for two SE-trending mafic dykes from the BD2 dyke swarm, southern Bastar craton, and 1885.4 ± 3.1 Ma (baddeleyite) for a mafic sill from the Cuddapah basin, indicate the existence of 1891–1883 Ma mafic magmatism that spans an area of at least 90,000 km2 in the south Indian shield.This record of 1.9 Ga mafic/ultramafic magmatism associated with concomitant intracontinental rifting and basin development preserved along much of the south-eastern margin of the south Indian shield is a widespread geologic phenomenon on Earth. Similar periods of intraplate mafic/ultramafic magmatism occur along the margin of the Superior craton in North America (1.88 Ga Molson large igneous province) and in southern Africa along the northern margin of the Kaapvaal craton (1.88–1.87 Ga dolerite sills intruding the Waterberg Group). Existing paleomagnetic data for the Molson and Waterberg 1.88 Ga large igneous provinces indicate that the Superior and Kalahari cratons were at similar paleolatitudes at 1.88 Ga but a paleocontinental reconstruction at this time involving these cratons is impeded by the lack of a robust geological pin such as a Limpopo-like 2.0 Ga deformation zone in the Superior Province. The widespread occurrence of 1.88 Ga intraplate and plate margin mafic magmatism and basin development in numerous Archean cratons worldwide likely reflects a period of global-scale mantle upwelling or enhanced mantle plume activity at this time.  相似文献   

20.
New mapping in the northern part of the Paleozoic Acatlán Complex (Patlanoaya area) records several ductile shear zones and brittle faults with normal kinematics (previously thought to be thrusts). These movement zones separate a variety of units that pass structurally upwards from: (i) blueschist-eclogitic metamorphic rocks (Piaxtla Suite) and mylonitic megacrystic granites (Columpio del Diablo granite ≡ Ordovician granites elsewhere in the complex); (ii) a gently E-dipping, listric, normal shear zone with top to the east kinematic indicators that formed under upper greenschist to lower amphibolite conditions; (iii) the Middle–Late Ordovician Las Minas quartzite (upper greenschist facies psammites with minor interbedded pelites intruded by mafic dikes and a leucogranite dike from the Columpio del Diablo granite) unconformably overlain by the Otate meta-arenite (lower greenschist facies psammites and pelites): roughly temporal equivalents are the Middle–Late Ordovician Mal Paso and Ojo de Agua units (interbedded metasandstone and slate, and metapelite and mafic minor intrusions, respectively) — some of these units are intruded by the massive, 461 ± 2 Ma, Palo Liso megacrystic granite: decussate, contact metamorphic muscovite yielded a 40Ar/39Ar plateau age of 440 ± 4 Ma; (iv) a steeply-moderately, E-dipping normal fault; (v) latest Devonian–Middle Permian sedimentary rocks (Patlanoaya Group: here elevated from formation status). The upward decrease in metamorphic grade is paralleled by a decrease in the number of penetrative fabrics, which varies from (i) three in the Piaxtla Suite, through (ii) two in the Las Minas unit (E-trending sheath folds deformed by NE-trending, subhorizontal folds with top to the southeast asymmetry, both associated with a solution cleavage), (iii) one in the Otate, Mal Paso, and Ojo de Agua units (steeply SE-dipping, NE–SW plunging, open-close folds), to (iv) none in the Patlanoaya Group. 40Ar/39Ar analyses of muscovite from the earliest cleavage in the Las Minas unit yielded a plateau age of 347 ± 3 Ma and show low temperature ages of  260 Ma. Post-dating all of these structures and the Patlanoaya Group are NE-plunging, subvertical folds and kink bands. An E–W, vertical normal fault juxtaposes the low-grade rocks against the Anacahuite amphibolite that is cut by megacrystic granite sheets, both of which were deformed by two penetrative fabrics. Amphibole from this unit has yielded a 40Ar/39Ar plateau age of 299 ± 6 Ma, which records cooling through  490 °C and is probably related to a Permo-Carboniferous reheating event during exhumation. The extensional deformation is inferred to have started in the latest Devonian ( 360 Ma) during deposition of the basal Patlanoaya Group, lasting through the rapid exhumation of the Piaxtla Suite at  350–340 Ma synchronous with cleavage development in the Las Minas unit, deposition of the Patlanoaya Group with active fault-related exhumation suggested by Mississippian and Early Permian conglomerates ( 340 and 300 Ma, respectively), and continuing at least into the Middle Permian (≡ 260 Ma muscovite ages). The continuity of Mid-Continent Mississippian fauna from the USA to southern Mexico suggests that this extensional deformation occurred on the western margin of Pangea after closure of the Rheic Ocean.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号