首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Boron isotopic fractionation during adsorption onto Ca-flocculated Aldrich humic acid (HA) has been investigated experimentally as a function of solution pH at 25°C and I = 0.15 M. Boron aqueous concentration and isotopic composition were determined by Cs2BO2+ Positive Thermal Ionization Mass Spectrometry analysis, while the structure of B surface complexes on HA was characterized using 11B Magic Angle Spinning Nuclear Magnetic Resonance (MAS NMR). Significant B sorption on HA was observed at 6 < pH < 12 with a maximum value of Kd, the partition coefficient between adsorbed and aqueous boron, equal to 40 at pH = 9.5-10. Combined 11B MAS NMR analysis and FITEQL modeling of B sorption on HA showed that this element forms tetrahedrally coordinated five- or six-membered ring chelates, most likely 1,2-diol and 1,3-diol complexes at alkaline pH (8 < pH < 11) and dicarboxylic complexes at near neutral conditions (6 < pH < 9). Results of this study demonstrate for the first time that boron sorption on HA induces a strong pH-dependent isotope fractionation—with 11B depleted at the surface of HA—that reaches a maximum at 5 < pH < 9 (α = 0.975, Δ = −25‰) and decreases sharply at pH >9. The measured isotope fractionation cannot be modeled assuming that the isotopic composition of the sorbed borate species is identical to that of B(OH)4- species in the parent solution. It is shown that the extent of isotopic fractionation depends not only on B aqueous speciation but also on the distribution and structure of the borate surface complexes formed. In agreement with energetic constrains, calculation of the isotope fractionation factors between aqueous boric acid and boron surface complexes suggests that the formation of the strained six-membered ring 1,3-diol complex yields a much higher fractionation (αBLP1−III = 0.954-0.960, Δ = −41/-47‰) than that of the very stable five-membered ring 1,2-diol (αBLP2−III = 0.983, Δ = −18‰). The results of this study open new perspectives to understand and model boron biogeochemical cycle. It is predicted that boron sorption onto organic matter can have important consequences for the boron isotopic composition of surface water reservoirs (seawater, groundwater, soil waters) in which either abundant organic surfaces or significant boron concentrations are available. In addition, the large isotope fractionation between aqueous boric acid and surface boron-organic complexes found in the present work makes boron a promising tracer of biologic activity.  相似文献   

2.
The isotopic composition of dissolved Cu and solid Cu-rich minerals [δ65Cu (‰) = (65Cu/63Cusample/65Cu/63Custd) - 1)*1000] were monitored in batch oxidative dissolution experiments with and without Thiobacillus ferrooxidans. Aqueous copper in leach fluids released during abiotic oxidation of both chalcocite and chalcopyrite was isotopically heavier (δ65Cu = 5.34‰ and δ65Cu = 1.90‰, respectively, [±0.16 at 2σ]) than the initial starting material (δ65Cu = 2.60 ± 0.16‰ and δ65Cu = 0.58 ± 0.16‰, respectively). Isotopic mass balance between the starting material, aqueous copper, and secondary minerals precipitated in these experiments explains the heavier isotopic values of aqueous copper. In contrast, aqueous copper from leached chalcocite and chalcopyrite inoculated with Thiobacillus ferrooxidans was isotopically similar to the starting material. The lack of fractionation of the aqueous copper in the biotic experiments can best be explained by assuming a sink for isotopically heavy copper present in the bacteria cells with δ65Cu = 5.59 ± 0.16‰. Consistent with this inference, amorphous Cu-Fe oxide minerals are observed surrounding cell membranes of Thiobacillus grown in the presence of dissolved Cu and Fe.Extrapolating these experiments to natural supergene environments implies that release of isotopically heavy aqueous Cu from oxidative leach caps, especially under abiotic conditions, should result in precipitates in underlying enrichment blankets that are isotopically heavy. Where iron-oxidizing cells are involved, isotopically heavy oxidized Cu entrained in cellular material may become associated with leach caps, causing the released aqueous Cu to be less isotopically enriched in the heavy isotope than predicted for the abiotic system. Rayleigh fractionation trends with fractionation factors calculated from our experiments for both biotic and abiotic conditions are consistent with large numbers of individual abiotic or biotic leaching events, explaining the supergene chalcocites in the Morenci and Silver Bell porphyry copper deposits.  相似文献   

3.
The variation of adsorption constants and isotope fractionation with pH and temperature during the adsorption of B from seawater onto marine clay have been examined. The controls over adsorption are similar to those exhibited by pure clay minerals (Bassett, 1976; Keren and Mezuman, 1981). The isotope fractionations are the result of equilibrium processes, not kinetic effects. Variations in the measured fractionation factor with pH arise from the differences between the isotope fractionation associated with adsorption of B(OH)3 and B(OH)4 and the pH dependence of B speciation. The implications of these results for the distribution of B isotopes in seawater and sediment porewaters are briefly discussed.  相似文献   

4.
Vacuum evaporation experiments with Type B CAI-like starting compositions were carried out at temperatures of 1600, 1700, 1800, and 1900 °C to determine the evaporation kinetics and evaporation coefficients of silicon and magnesium as a function of temperature as well as the kinetic isotope fractionation factor for magnesium. The vacuum evaporation kinetics of silicon and magnesium are well characterized by a relation of the form J = JoeE/RT with Jo = 4.17 × 107 mol cm−2 s−1, E = 576 ± 36 kJ mol−1 for magnesium, Jo = 3.81 × 106 mol cm−2 s−1, E = 551 ± 63 kJ mol−1 for silicon. These rates only apply to evaporation into vacuum whereas the actual Type B CAIs were almost certainly surrounded by a finite pressure of a hydrogen-dominated gas. A more general formulation for the evaporation kinetics of silicon and magnesium from a Type B CAI-like liquid that applies equally to vacuum and conditions of finite hydrogen pressure involves combining our determinations of the evaporation coefficients for these elements as a function of temperature (γ = γ0eE/RT with γ0 = 25.3, E = 92 ± 37 kJ mol−1 for γSi; γ0 = 143, E = 121 ± 53 kJ mol−1 for γMg) with a thermodynamic model for the saturation vapor pressures of Mg and SiO over the condensed phase. High-precision determinations of the magnesium isotopic composition of the evaporation residues from samples of different size and different evaporation temperature were made using a multicollector inductively coupled plasma mass spectrometer. The kinetic isotopic fractionation factors derived from this data set show that there is a distinct temperature effect, such that the isotopic fractionation for a given amount of magnesium evaporated is smaller at lower temperature. We did not find any significant change in the isotope fractionation factor related to sample size, which we interpret to mean that recondensation and finite chemical diffusion in the melt did not affect the isotopic fractionations. Extrapolating the magnesium kinetic isotope fractionations factors from the temperature range of our experiments to temperatures corresponding to partially molten Type B CAI compositions (1250-1400 °C) results in a value of αMg ≈ 0.991, which is significantly different from the commonly used value of .  相似文献   

5.
Ammonium fixed in micas of metamorphic rocks is a sensitive indicator both of organic-inorganic interactions during diagenesis as well as of the devolatilization history and fluid/rock interaction during metamorphism. In this study, a collection of geochemically well-characterized biotite separates from a series of graphite-bearing Paleozoic greenschist- to upper amphibolite-facies metapelites, western Maine, USA, were analyzed for ammonium nitrogen () contents and isotopic composition (δ15NNH4) using the HF-digestion distillation technique followed by the EA-IRMS technique. Biotite separates, sampled from 9 individual metamorphic zones, contain 3000 to 100 ppm with a wide range in δ15N from +1.6‰ to +9.1‰. Average contents in biotite show a distinct decrease from about 2750 ppm for the lowest metamorphic grade (∼500 °C) down to 218 ppm for the highest metamorphic grade (∼685 °C). Decreasing abundances in are inversely correlated in a linear fashion with increasing K+ in biotite as a function of metamorphic grade and are interpreted as a devolatilization effect. Despite expected increasing δ15NNH4 values in biotite with nitrogen loss, a significant decrease from the Garnet Zones to the Staurolite Zones was found, followed by an increase to the Sillimanite Zones. This pattern for δ15NNH4 values in biotite inversely correlates with Mg/(Mg + Fe) ratios in biotite and is discussed in the framework of isotopic fractionation due to different exchange processes between or , reflecting devolatilization history and redox conditions during metamorphism.  相似文献   

6.
Melt composition control of Zr/Hf fractionation in magmatic processes   总被引:9,自引:0,他引:9  
Zircon (ZrSiO4) and hafnon (HfSiO4) solubilities in water-saturated granitic melts have been determined as a function of melt composition at 800° and 1035°C at 200 MPa. The solubilities of zircon and hafnon in metaluminous or peraluminous melts are orders of magnitude lower than in strongly peralkaline melt. Moreover, the molar ratio of zircon and hafnon solubility is a function of melt composition. Although the solubilities are nearly identical in peralkaline melts, zircon on a molar basis is up to five times more soluble than hafnon in peraluminous melts. Accordingly, calculated partition coefficients of Zr and Hf between zircon and melt are nearly equal for the peralkaline melts, whereas for metaluminous and peraluminous melts DHf/DZr for zircon is 0.5 to 0.2. Consequently, zircon fractionation will strongly decrease Zr/Hf in some granites, whereas it has little effect on the Zr/Hf ratio in alkaline melts or similar depolymerized melt compositions.The ratio of the molar solubilities of zircon and hafnon for a given melt composition, temperature, and pressure is proportional to the Hf/Zr activity coefficient ratio in the melt. The data imply that this ratio is nearly constant and probably close to unity for a wide range of peralkaline and similar depolymerized melts. However, it changes by a factor of two to five over a relatively small interval of melt compositions when a nearly fully polymerized melt structure is approached. For most ferromagnesian minerals in equilibrium with a depolymerized melt, DHf > DZr. Typical values of DHf/DZr range from 1.5 to 2.5 for clinopyroxene, amphibole, and titanite. Because of the change in the Hf/Zr activity ratio in the melt, the relative fractionation of Zr and Hf by these minerals will disappear or even be reversed when the melt composition approaches that of a metaluminous or peraluminous granite. It is thus not surprising that fractional crystallization of such granitic magmas leads to a decrease in Zr/Hf, whereas fractional crystallization of depolymerized melts tends to increase Zr/Hf. There is no need to invoke fluid metasomatism to explain these effects. Results demonstrate that for ions with identical charge and nearly identical radius, crystal chemistry does not alone determine relative compatibilities. Rather, the effect of changing activity coefficients in the melt may be comparable to or even larger than elastic strain effects in the crystal lattice.  相似文献   

7.
Oxygen isotopic fractionation in the system quartz-albite-anorthite-water   总被引:1,自引:0,他引:1  
Oxygen isotopic fractionations have been determined between quartz and water, albite and water, and anorthite and water at temperatures from 300 to 825°C, and pressures from 1.5. to 25 kbar. The equilibrium quartz-feldspar fractionation curves can be approximated by the following equations: 1000ln αQ?PI = (0.46 + 0.55β)106T?2 + (0.02 + 0.85β) between 500 and 800°C 1000ln αQ?PI = (0.79 + 0.90β)106T?2 — (0.43 ? 0.30β) between 400 and 500°C where β is the mole-fraction of anorthite in plagioclase.Application of these isotopic thermometer calibrations to literature data on quartz and feldspar gives temperatures for some metamorphic rocks which are concordant with quartz-magnetite temperatures. Plutonic igneous rocks typically have quartz-feldspar fractionations which are substantially larger than the equilibrium values at solidus temperatures, indicating substantial retrograde exchange effects.  相似文献   

8.
9.
熔体结构对岩浆的物理和热力学性质起着重要的制约作用。本文以镜泊湖全新世火山为例,讨论了熔体结构和某些火山喷发机制的关系。熔体结构的NBO/T值(每个四次配位阳离子所含有的非桥氧数)是基于岩浆的主要元素和挥发分含量的计算获得的。研究结果表明,NBO/T值越高的岩浆,喷发时溢流出的熔岩比例越高,熔岩流流动的距离越长,越有利于熔岩隧道的形成,H2O^ 和F也更富集。  相似文献   

10.
Germanium-silicon fractionation in the weathering environment   总被引:1,自引:0,他引:1  
We present a detailed study of germanium behavior in the soil weathering environment as an important step toward using the Ge/Si system as a tracer of silicate weathering processes in both modern and ancient environments. Intensely weathered soils developed on Hawaiian basalts have bulk soil Ge/Si ratios 2 to 10 times higher than fresh basalt (e.g., 10 to 25 μmol/mol vs. 2.5 μmol/mol). Soil Ge concentrations increase with Si, and decrease with Fe, suggesting that Ge sequestration is related to accumulation of secondary soil silicates, rather than retention in soil Fe oxy-hydroxides. Sequential extractions of these soils suggest that Ge/Si fractionation takes place by Ge sequestration during the initial precipitation of secondary soil aluminosilicates (principally allophane). Further Si loss and changes in mineralogy as these soils age result in little additional Ge/Si fractionation. Ge/Si ratios in granitic soils and saprolites are strongly influenced by relative weathering rates of primary minerals. Kaolinite has a Ge/Si ratio (5.9 μmol/mol) higher than the plagioclase from which it forms (3.1 μmol/mol), whereas accumulation of primary quartz (Ge/Si 0.5 μmol/mol) prevents granitic soils from attaining high Ge/Si ratios. Laboratory synthesis of allophane confirms that Ge is preferentially partitioned into the solid phase upon precipitation of secondary aluminosilicates from solution.  相似文献   

11.
The stable boron isotope ratio (11B/10B) in marine carbonates is used as a paleo-pH recorder and is one of the most promising paleo-carbonate chemistry proxies. Understanding the thermodynamic basis of the proxy is of fundamental importance, including knowledge on the equilibrium fractionation factor between dissolved boric acid, B(OH)3, and borate ion, B(OH)4 (, hereafter α(B3-B4)). However, this factor has hitherto not been determined experimentally and a theoretically calculated value (Kakihana and Kotaka, 1977, hereafter KK77) has therefore been widely used. I examine the calculations underlying this value. Using the same spectroscopic data and methods as KK77, I calculate the same α(B3−B4) = 1.0193 at 300 K. Unfortunately, it turns out that in general the result is sensitive to the experimentally determined vibrational frequencies and the theoretical methods used to calculate the molecular forces. Using analytical techniques and ab initio molecular orbital theory, the outcome for α(B3-B4) varies between ∼1.020 and ∼1.050 at 300 K. However, several arguments suggest that α(B3-B4) ? 1.030. Measured isotopic shifts in various 10B-, 2D-, and 18O-labeled isotopomers do not provide a constraint on stable boron isotope fractionation. I conclude that in order to anchor the fundamentals of the boron pH proxy, experimental work is required. The critics of the boron pH proxy should note, however, that uncertainties in α(B3-B4) do not bias pH reconstructions provided that organism-specific calibrations are used.  相似文献   

12.
The determined results of the sulfur contents and isotopic composition of coal samples from major coal mines in 15 provinces and regions of China show that the coal mined in the north of China is characterized by higher ^34S and lower sulfur content, but that in the south of China has lower ^34S and higher sulfur content.During the coal-burning process in both indrstrial and daily use of coal as fuel the released sulfur dioxide is always enriched in lighter sulfur isotope relative to the corresponding coal;the particles are always enriched in heavier sulfur isotope.The discussion on the environmental geochemical significance of the above-mentioned results also has been made.  相似文献   

13.
作为热液体系中成矿的一个重要前提,水-岩反应一直以来都是矿床学的重要研究内容,亦是国际地学界的前沿问题。该过程伴随着同位素的交换,使流体和岩石的同位素组成发生变化。硼和锂同位素作为非传统的稳定同位素示踪工具,常用于限定流体和岩石的热液反应过程。本文对水-岩反应过程中影响硼和锂同位素分馏的因素作了较全面概述,包括温度、pH值、溶解过程、表面交换反应以及次生矿物的沉淀过程,并取得了一些主要认识:(1)一般地,低温或者高pH值时流体更快速富集11B并且在反应结束时有更高的δ11B值;低温(150℃)时锂进入次生矿物中,高温(200℃)时锂从岩石中萃取出来。(2)初始物质的溶解过程与表面交换反应对锂同位的分馏几乎没有影响。(3)一般而言,次生矿物的形成使7Li优先丢失进入溶液而富集重同位素。最后简单陈述了水-岩反应过程中硼和锂同位素组成的质量平衡模拟计算以及反映流体和岩石的同位素组成的变化。  相似文献   

14.
Stability of the isotopic composition of carbon in endogenic terrestrial substances, as well as in meteorites, consistently lower in C13 than the biogenic marine carbonates, suggests both presence and stability of a certain zone under the crust of the earth in which the C systems are maintained at certain equilibria, at different levels, typical of certain geological processes operative therein. Isotopic exchanges and recurrent fractionations of the C isotopes, in the course of the migrations of carbon, are indicated by the available evidence, the net result of which is an impoverishment of C13 in living substance and in its derivatives (oils, coals, etc.), and its enrichment in the biogenic residual carbonates. – IGR Staff.  相似文献   

15.
Hydrogen fractionation laws between selected hydrous minerals (brucite, kaolinite, lizardite, and gibbsite) and perfect water gas have been computed from first-principles quantum-mechanical calculations. The β-factor of each phase was calculated using the harmonic phonon dispersion curves obtained within density functional theory. All the fractionation laws show the same shape, with a minimum between 200 °C (brucite) and 500 °C (gibbsite). At low temperatures, the mineral/liquid water fractionation laws have been obtained using the experimental gas/liquid water fractionation laws. The resulting fractionation laws systematically overestimate measurements by 15‰ at low temperatures to 8‰ at ≈400 °C. Based on this general agreement, all calculated laws were empirically corrected with reference to brucite/water data. These considerations suggest that the experimental or natural calibrations by Xu and Zheng (1999) and Horita et al. (2002) (brucite/water), Gilg and Sheppard (1996) (kaolinite/water), Wenner and Taylor (1973) (lizardite/water), and in some extents Vitali et al. (2001) (gibbsite/water) are representative of equilibrium fractionations. Besides, internal isotopic fractionation of hydrogen between inner-surface and inner hydroxyl groups has been computed for kaolinite and lizardite. The obtained fractionation is large, of opposite sign for the two systems (respectively, −23‰ and +63‰ at 25 °C) and is linear in T-2. Internal fractionation of hydrogen in TO phyllosilicates might thus be used in geothermometry.  相似文献   

16.
The equilibrium distribution of oxygen isotopes between calcium carbonate and water was determined at 500°C at pressures from 1 to 20 kbar and at 700°C at pressures of 0.5 and 1 kbar. At both temperatures, the pressure-dependence of the fractionation factor was below the limit of detection. The experimental results are consistent with theoretical estimates of the volume change due to isotope substitution. Application of the theory to silicate systems leads to the conclusion that pressure effects on oxygen isotopic fractionation between silicates are < 0.2% at pressures of tens of kilobars. Thus the observed large variations of O18/O16 ratio in kimberlitic eclogites cannot be attributed to the effect of pressure  相似文献   

17.
The Pliocene–Pleistocene northern Taiwan volcanic zone (NTVZ) is located within a trench-arc–back-arc basin and oblique arc–continent collision zone. Consequently the origin and tectonic setting of the andesitic rocks within the NTVZ and their relation to other circum-Pacific volcanic island-arc systems is uncertain. Rocks collected from the Tatun volcanic group (TTVG) include basaltic to andesitic rocks. The basalt is compositionally similar to within-plate continental tholeiites whereas the basaltic andesite and andesite are calc-alkaline; however, all rocks show a distinct depletion of Nb-Ta in their normalized incompatible element diagrams. The Sr-Nd isotope compositions of the TTVG rocks are very similar and have a relatively restricted range (i.e. ISr = 0.70417–0.70488; εNd(T) = +2.2 to +3.1), suggesting that they are derived directly or indirectly from the same mantle source. The basalts are likely derived by mixing between melts from the asthenosphere and a subduction-modified subcontinental lithospheric mantle (SCLM) source, whereas the basaltic andesites may be derived by partial melting of pyroxenitic lenses within the SCLM and mixing with asthenospheric melts. MELTS modelling using a starting composition equal to the most primitive basaltic andesite, shallow-pressure (i.e. ≤1 kbar), oxidizing conditions (i.e. FMQ +1), and near water saturation will produce compositions similar to the andesites observed in this study. Petrological modelling and the Sr-Nd isotope results indicate that the volcanic rocks from TTVG, including the spatially and temporally associated Kuanyinshan volcanic rocks, are derived from the same mantle source and that the andesites are the product of fractional crystallization of a parental magma similar in composition to the basaltic andesites. Furthermore, our results indicate that, in some cases, calc-alkaline andesites may be generated by crystal fractionation of mafic magmas derived in an extensional back-arc setting rather than a subduction zone setting.  相似文献   

18.
Chlorine in submarine volcanic glasses from the eastern manus basin   总被引:4,自引:0,他引:4  
Submarine volcanic glasses from the eastern Manus Basin of Papua New Guinea, ranging from basalt to rhyodacite, clarify the geochemical behavior of Cl in arc-type magmas. For the Manus samples, Cl is well correlated with non-volatile highly incompatible trace elements, suggesting it was not highly volatile and discounting significant seawater contamination. The Cl partition coefficient is close to but slightly lower than that of Nb and K2O, a behavior similar to that in mid-ocean ridge basalts (MORB) and ocean island basalts (OIB). The similar incompatibilities of Cl and Nb imply that the Cl/Nb values of the eastern Manus Basin glasses reflect their magma source. For glasses from other west Pacific back-arc basins, Cl/Nb, Ba/Nb, and U/Nb increase towards the subduction trench, indicating increased contribution of a component enriched in Cl, Ba, and U, likely from subduction-released slab fluids. It is estimate that ∼80% of the Cl in the Manus arc-type glasses was added directly from subducted slab-derived fluids. We have also modeled Cl behavior during magma evolution in general. Our results show that the behavior of Cl in magma is strongly influenced by pressure, initial H2O content, and the degree of magmatic fractionation. At early stages of magmatic evolution, for magmas with initial H2O content of <4.0 wt%, Cl is highly incompatible under all pressures. By contrast, for more evolved magmas at moderately high pressure and high H2O contents, considerable amounts of Cl can be extracted from the magma once H2O saturation is reached. Accordingly, Cl is usually highly incompatible in MORB and OIB because of their low H2O contents and relatively low degrees of fractional crystallization. The behavior of Cl in arc magmas is more complicated, ranging from highly incompatible to compatible depending on H2O content and depth of magma chambers. The behavior of Cl in the eastern Manus Basin magmas is consistent with low H2O contents (1.1-1.7 wt%) and evolution at low pressures (<0.1 GPa). Modeling results also indicate that Cl will behave differently in intrusive rocks compared to volcanic rocks because of the different pressures involved. This may have a strong influence on the mechanisms of ore genesis in these two tectonic settings.  相似文献   

19.
We report hydrogen isotopic fractionations between water and fatty acids of the sulfate-reducing bacterium Desulfobacterium autotrophicum. Pure cultures were grown in waters with deuterium (D) contents that were systematically varied near the level of natural abundance (−37‰ ? δD ? 993‰). H2 of constant hydrogen isotope (D/H) ratio was supplied to the cultures. The D/H ratios of water, H2, and specific fatty acids were measured by isotope-ratio mass spectrometry. The results demonstrate that D. autotrophicum catalyzes hydrogen isotopic exchange between water and H2, and this reaction is conclusively shown to approach isotopic equilibrium. In addition, variation in the D/H ratio of growth water accounts for all variation in the hydrogen isotopic composition of fatty acids. The D/H ratios of fatty acids from cultures grown on H2/CO2 are compared with those from a separate set of cultures grown on D-enriched formate, an alternative electron donor. This comparison rules out H2 as a significant source of fatty acid hydrogen. Grown on either H2/CO2 or formate, D. autotrophicum produces fatty acids in which all hydrogen originates from water. For specific fatty acids, biosynthetic fractionation factors are mostly in the range 0.60 ? αFA-water ? 0.70; the 18:0 fatty acid exhibits a lower fractionation factor of 0.52. The data show that αFA-water generally increases with length of the carbon chain from C14 to C17 among both saturated and unsaturated fatty acids. These results indicate a net fractionation associated with fatty acid biosynthesis in D. autotrophicum that is slightly smaller than in another H2-consuming bacterium (Sporomusa sp.), but much greater than in most photoautotrophs.  相似文献   

20.
We measured both mass-dependent isotope fractionation of δ88Sr (88Sr/86Sr) and radiogenic isotopic variation of Sr (87Sr/86Sr) for the Neoproterozoic Doushantuo Formation that deposited as a cap carbonate immediately above the Marinoan-related Nantuo Tillite. The δ88Sr and 87Sr/86Sr compositions showed three remarkable characteristics: (1) high radiogenic 87Sr/86Sr values and gradual decrease in the 87Sr/86Sr ratios, (2) anomalously low δ88Sr values at the lower part cap carbonate, and (3) a clear correlation between 87Sr/86Sr and δ88Sr values. These isotopic signatures can be explained by assuming an extreme greenhouse condition after the Marinoan glaciation. Surface seawater, mixed with a large amount of freshwater from continental crusts with high 87Sr/86Sr and lighter δ88Sr ratios, was formed during the extreme global warming after the glacial event. High atmospheric CO2 content caused sudden precipitation of cap carbonate from the surface seawater with high 87Sr/86Sr and lighter δ88Sr ratios. Subsequently, the mixing of the underlying seawater, with unradiogenic Sr isotope compositions and normal δ88Sr ratios, probably caused gradual decrease of the 87Sr/86Sr ratios of the seawater and deposition of carbonate with normal δ88Sr ratios. The combination of 87Sr/86Sr and δ88Sr isotope systematics gives us new insights on the surface evolution after the Snowball Earth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号