首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phosphomonoesters are an important source of dissolved inorganic orthophosphate (PO4 or Pi), the preferred form of P utilized by microbiota and aquatic plants in marine and freshwater ecosystems. Two enzymes involved in phosphomonoester metabolism and commonly detected in natural waters (alkaline phosphatase and 5′-nucleotidase) have been studied to determine the oxygen isotope signature of Pi-regeneration from phosphomonoesters by enzymatic degradation. Oxygen (O) isotope ratios of water and Pi released from phosphomonoesters during enzyme hydrolysis experiments demonstrate that released Pi incorporates one oxygen atom from water. The isotopic fractionation between this incorporated water O and ambient water O is −30 (±8)‰ for alkaline phosphatase and −10 (±1)‰ for 5′-nucleotidase, with very weak dependence on temperature. The result of these enzyme-specific isotopic fractionations at one of the four O sites in PO4 is that the δ18O value of Pi regenerated by 5′-nucleotidase is 5‰ higher than Pi regenerated by alkaline phosphatase from the same phosphomonoester substrate. The δ18O value of regenerated Pi also reflects inheritance of 75% of O from the phosphomonoester substrate, thus making the δ18O of phosphomonoester-derived Pi a potential tracer of organophosphorous compound sources. Phosphomonoesterase-regenerated Pi has a distinct phosphate oxygen isotope signature that is different and distinguishable from that of biologically recycled and subsequently equilibrated Pi and Pi regenerated from photooxidation of organic matter. The δ18O value of regenerated Pi will correlate positively with the δ18O value of bulk water and the fractionation, α, between regenerated Pi and water, αregen Pi-water, should converge toward equilibrium αPi-water values with increased biological cycling of Pi.  相似文献   

2.
The magnitude of equilibrium iron isotope fractionation between Fe(H2O)63+ and Fe(H2O)62+ is calculated using density functional theory (DFT) and compared to prior theoretical and experimental results. DFT is a quantum chemical approach that permits a priori estimation of all vibrational modes and frequencies of these complexes and the effects of isotopic substitution. This information is used to calculate reduced partition function ratios of the complexes (103 · ln(β)), and hence, the equilibrium isotope fractionation factor (103 · ln(α)). Solvent effects are considered using the polarization continuum model (PCM). DFT calculations predict fractionations of several per mil in 56Fe/54Fe favoring partitioning of heavy isotopes in the ferric complex. Quantitatively, 103 · ln(α) predicted at 22°C, ∼ 3 , agrees with experimental determinations but is roughly half the size predicted by prior theoretical results using the Modified Urey-Bradley Force Field (MUBFF) model. Similar comparisons are seen at other temperatures. MUBFF makes a number of simplifying assumptions about molecular geometry and requires as input IR spectroscopic data. The difference between DFT and MUBFF results is primarily due to the difference between the DFT-predicted frequency for the ν4 mode (O-Fe-O deformation) of Fe(H2O)63+ and spectroscopic determinations of this frequency used as input for MUBFF models (185-190 cm−1 vs. 304 cm−1, respectively). Hence, DFT-PCM estimates of 103 · ln(β) for this complex are ∼ 20% smaller than MUBFF estimates. The DFT derived values can be used to refine predictions of equilibrium fractionation between ferric minerals and dissolved ferric iron, important for the interpretation of Fe isotope variations in ancient sediments. Our findings increase confidence in experimental determinations of the Fe(H2O)63+ − Fe(H2O)62+ fractionation factor and demonstrate the utility of DFT for applications in “heavy” stable isotope geochemistry.  相似文献   

3.
The large range of stable oxygen isotope values of phosphate‐bearing minerals and dissolved phosphate of inorganic or organic origin requires the availability of in‐house produced calibrated silver phosphate of which isotopic ratios must closely bracket those of studied samples. We propose a simple protocol to synthesise Ag3PO4 in a wide range of oxygen isotope compositions based on the equilibrium isotopic fractionation factor and the kinetics and temperature of isotopic exchange in the phosphate–water system. Ag3PO4 crystals were obtained from KH2PO4 that was dissolved in water of known oxygen isotope composition. Isotopic exchange between dissolved phosphate and water took place at a desired and constant temperature into PYREX? tubes that were placed in a high precision oven for defined run‐times. Samples were withdrawn at desired times, quenched in cold water and precipitated as Ag3PO4. We provide a calculation sheet that computes the δ18O of precipitated Ag3PO4 as a function of time, temperature and δ18O of both reactants KH2PO4 and H2O at t = 0. Predicted oxygen isotope compositions of synthesised silver phosphate range from ?7 to +31‰ VSMOW for a temperature range comprised between 110 and 130 °C and a range of water δ18O from ?20 to +15‰ VSMOW.  相似文献   

4.
We have developed a quantitative model of CO2 and H2O isotopic mixing between magmatic and hydrothermal gases for the fumarolic emissions of the La Fossa crater (Vulcano Island, Italy). On the basis of isotope balance equations, the model takes into account the isotope equilibrium between H2O and CO2 and extends the recent model of chemical and energy two-end-member mixing by Nuccio et al. (1999). As a result, the H2O and CO2 content and the δD, δ18O, and δ13C isotope compositions for both magmatic and hydrothermal end-members have been assessed. Low contributions of meteoric steam, added at a shallow depth, have been also recognized and quantified in the fumaroles throughout the period from 1988 to 1998. Nonequilibrium oxygen isotope exchange also seems to be occurring between ascending gases and wall rocks along some fumarolic conduits.The δ13CCO2 of the magmatic gases varies around −3 to 1‰ vs. Peedee belemnite (PDB), following a perfect synchronism with the variations of the CO2 concentration in the magmatic gases. This suggests a process of isotope fractionation because of vapor exsolution caused by magma depressurization. The hydrogen isotopes in the magmatic gases (−1 to −‰ vs. standard mean ocean water [SMOW]), as well as the above δ13CCO2 value, are coherent with a convergent tectonic setting of magma generation, where the local mantle is widely contaminated by fluids released from the subducted slab. Magma contamination in the crust probably amplifies this effect.The computed isotope composition of carbon and hydrogen in the hydrothermal vapors has been used to calculate the δD and δ13C of the entire hydrothermal system, including mixed H2O-CO2 vapor, liquid water, and dissolved carbon. We have computed values of about 10‰ vs. SMOW for water and −2 to −6.5‰ vs. PDB for CO2. On these grounds, we think that Mediterranean marine water (δDH2O ≈ 10‰) feeds the hydrothermal system. It infiltrates at depth throughout the local rocks, reaching oxygen isotope equilibrium at high temperatures. Interaction processes between magmatic gases and the evolving seawater also seem to occur, causing the dissolution of isotopically fractionated aqueous CO2 and providing the source for hydrothermal carbon. These results have important implications concerning fluid circulation beneath Vulcano and address the more convenient routine of geochemical surveillance.  相似文献   

5.
The oxygenation kinetics of nanomolar concentrations of Fe(II) in aqueous solution have been studied in the absence and presence of millimolar concentrations of phosphate over the pH range 6.0-7.8. At each phosphate concentration investigated, the overall oxidation rate constant varied linearly with pH, and increased with increasing phosphate concentration. A model based on equilibrium speciation of Fe(II) was found to satisfactorily explain the results obtained. From this model, the rate constants for oxygenation of the Fe(II)-phosphate species FeH2PO4+, FeHPO4 and FePO4 have been determined for the first time. FePO4 was found to be the most kinetically reactive species at circumneutral pH with an estimated oxygenation rate constant of (2.2 ± 0.2) × 10 M−1 s−1. FeH2PO4+ and FeHPO4 were found to be less reactive with oxygen, with rate constants of (3.2 ± 2) × 10−2 M−1 s−1 and (1.2 ± 0.8) × 10−1 M−1 s−1, respectively.  相似文献   

6.
Iron (III) oxides are ubiquitous in near-surface soils and sediments and interact strongly with dissolved phosphates via sorption, co-precipitation, mineral transformation and redox-cycling reactions. Iron oxide phases are thus, an important reservoir for dissolved phosphate, and phosphate bound to iron oxides may reflect dissolved phosphate sources as well as carry a history of the biogeochemical cycling of phosphorus (P). It has recently been demonstrated that dissolved inorganic phosphate (DIP) in rivers, lakes, estuaries and the open ocean can be used to distinguish different P sources and biological reaction pathways in the ratio of 18O/16O (δ18OP) in PO43−. Here we present results of experimental studies aimed at determining whether non-biological interactions between dissolved inorganic phosphate and solid iron oxides involve fractionation of oxygen isotopes in PO4. Determination of such fractionations is critical to any interpretation of δ18OP values of modern (e.g., hydrothermal iron oxide deposits, marine sediments, soils, groundwater systems) to ancient and extraterrestrial samples (e.g., BIF’s, Martian soils). Batch sorption experiments were performed using varied concentrations of synthetic ferrihydrite and isotopically-labeled dissolved ortho-phosphate at temperatures ranging from 4 to 95 °C. Mineral transformations and morphological changes were determined by X-Ray, Mössbauer spectroscopy and SEM image analyses.Our results show that isotopic fractionation between sorbed and aqueous phosphate occurs during the early phase of sorption with isotopically-light phosphate (P16O4) preferentially incorporated into sorbed/solid phases. This fractionation showed negligible temperature-dependence and gradually decreased as a result of O-isotope exchange between sorbed and aqueous-phase phosphate, to become insignificant at greater than ∼100 h of reaction. In high-temperature experiments, this exchange was very rapid resulting in negligible fractionation between sorbed and aqueous-phase phosphate at much shorter reaction times. Mineral transformation resulted in initial preferential desorption/loss of light phosphate (P16O4) to solution. However, the continual exchange between sorbed and aqueous PO4, concomitant with this mineralogical transformation resulted again in negligible fractionation between aqueous and sorbed PO4 at long reaction times (>2000 h). This finding is consistent with results obtained from natural marine samples. Therefore, 18O values of dissolved phosphate (DIP) in sea water may be preserved during its sorption to iron-oxide minerals such as hydrothermal plume particles, making marine iron oxides a potential new proxy for dissolved phosphate in the oceans.  相似文献   

7.
Aragonite and calcite single crystals can be readily transformed into polycrystalline hydroxyapatite pseudomorphs by hydrothermal treatment in a (NH4)2HPO4 solution. Scanning electron microscopy of the reaction products showed that the transformation of aragonite to apatite is characterised by the formation of a sharp interface between the two phases and by the development of intracrystalline porosity in the hydroxyapatite phase. In addition, electron backscattered diffraction (EBSD) imaging showed that the c-axis of apatite is predominantly oriented perpendicular to the reaction front with no crystallographic relationship to the aragonite lattice. However, the Ca isotopic composition of the parent aragonite, measured by thermal ionization mass spectrometry was inherited by the apatite product.Hydrothermal experiments conducted with use of phosphate solutions prepared with water enriched in 18O (97%) further revealed that the 18O from the solution is incorporated in the product apatite, as measured by micro-Raman spectroscopy. Monitoring the distribution of 18O with Raman spectroscopy was possible because the incorporation of 18O in the PO4 group of apatite generates four new Raman bands at 945.8, 932, 919.7 and 908.8 cm−1, in addition to the ν1(PO4) symmetric stretching band of apatite located at 962 cm−1, which can be assigned to four 18O-bearing PO4 species. The relative intensities of these bands reflect the 18O content in the PO4 group of the apatite product. By using equilibrated and non-equilibrated solutions, with respect to the 18O distribution between aqueous phosphate and water, we could show that the concentration of 18O in the apatite product is linked to the degree of 18O equilibration in the solution. The textural and chemical observations are indicative of a coupled mechanism of aragonite dissolution and apatite precipitation taking place at a moving reaction interface.  相似文献   

8.
The rates of Sb(III) oxidation by O2 and H2O2 were determined in homogeneous aqueous solutions. Above pH 10, the oxidation reaction of Sb(III) with O2 was first order with respect to the Sb(III) concentration and inversely proportional to the H+ concentrations at a constant O2 content of 0.22 × 10−3 M. Pseudo-first-order rate coefficients, kobs, ranged from 3.5 × 10−8 s−1 to 2.5 × 10−6 s−1 at pH values between 10.9 and 12.9. The relationship between kobs and pH was:
  相似文献   

9.
The stable boron isotope ratio (11B/10B) in marine carbonates is used as a paleo-pH recorder and is one of the most promising paleo-carbonate chemistry proxies. Understanding the thermodynamic basis of the proxy is of fundamental importance, including knowledge on the equilibrium fractionation factor between dissolved boric acid, B(OH)3, and borate ion, B(OH)4 (, hereafter α(B3-B4)). However, this factor has hitherto not been determined experimentally and a theoretically calculated value (Kakihana and Kotaka, 1977, hereafter KK77) has therefore been widely used. I examine the calculations underlying this value. Using the same spectroscopic data and methods as KK77, I calculate the same α(B3−B4) = 1.0193 at 300 K. Unfortunately, it turns out that in general the result is sensitive to the experimentally determined vibrational frequencies and the theoretical methods used to calculate the molecular forces. Using analytical techniques and ab initio molecular orbital theory, the outcome for α(B3-B4) varies between ∼1.020 and ∼1.050 at 300 K. However, several arguments suggest that α(B3-B4) ? 1.030. Measured isotopic shifts in various 10B-, 2D-, and 18O-labeled isotopomers do not provide a constraint on stable boron isotope fractionation. I conclude that in order to anchor the fundamentals of the boron pH proxy, experimental work is required. The critics of the boron pH proxy should note, however, that uncertainties in α(B3-B4) do not bias pH reconstructions provided that organism-specific calibrations are used.  相似文献   

10.
The nucleation and growth of CaCO3 phases from aqueous solutions with SO42−:CO32− ratios from 0 to 1.62 and a pH of ∼10.9 were studied experimentally in batch reactors at 25 °C. The mineralogy, morphology and composition of the precipitates were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy and microanalyses. The solids recovered after short reaction times (5 min to 1 h) consisted of a mixture of calcite and vaterite, with a S content that linearly correlates with the SO42−:CO32− ratio in the aqueous solution. The solvent-mediated transformation of vaterite to calcite subsequently occurred. After 24 h of equilibration, calcite was the only phase present in the precipitate for aqueous solutions with SO42−:CO32− ? 1. For SO42−:CO32− > 1, vaterite persisted as a major phase for a longer time (>250 h for SO42−:CO32− = 1.62). To study the role of sulfate in stabilizing vaterite, we performed a molecular simulation of the substitution of sulfate for carbonate groups into the crystal structure of vaterite, aragonite and calcite. The results obtained show that the incorporation of small amounts (<3 mole%) of sulfate is energetically favorable in the vaterite structure, unfavorable in calcite and very unfavorable in aragonite. The computer modeling provided thermodynamic information, which, combined with kinetic arguments, allowed us to put forward a plausible explanation for the observed crystallization behavior.  相似文献   

11.
Pyromorphite Pb5(PO4)3Cl and mimetite Pb5(AsO4)3Cl are isostructural minerals with apatite. Due to their high environmental stability, they have gained considerable attention as metals sequestration agents in water treatment and contaminated soil remediation. Pyromorphite and mimetite can form a continuous solid solution series in near-Earth surface environments. Precipitation of the end members and intermediate members of the series is likely to occur in the areas where the cost-effective in situ immobilization reclamation method, based on phosphate amendments, is applied. In contrast to the widely studied thermodynamic parameters of pyromorphite and mimetite, knowledge of the thermodynamics of their solid solutions is sparse. To supplement the data, a number of compounds from the pyromorphite-mimetite series were synthesized at room temperature using a method to simulate the conditions in the near-Earth surface environments. Afterwards, batch dissolution and dissolution-recrystallization experiments of seven synthesized precipitates were conducted at 25 °C, pH = 2 and in a 0.05 M KNO3 background electrolyte. The experiments were carried out for a period of 6 (dissolution) and 14 (dissolution-recrystallization) months. A plateau in the [Pb] evolution patterns was used to determine equilibrium. All seven dissolutions were congruent, and the ionic activity products (IAP) of the minerals from the pyromorphite-mimetite solid solution series were calculated based on the dissolution reaction: . The IAPs for pyromorphite and mimetite exhibit a significant difference in values over three orders of magnitude between approximately 10−79 for pyromorphite and approximately 10−76 for mimetite. The series appeared to be ideal, and Lippmann and Roozboom diagrams were used for better understanding of its thermodynamics. The results indicated a strong tendency of pyromorphite to partition into the solid phase in the series, which explains some of the naturally observed phenomena. The improvement of the lattice stability of the mimetite due to isostructural phosphate substitutions in anionic sites was observed. The thermodynamic data reported in this study supplement existing databases used in geochemical modeling.  相似文献   

12.
Although, the kinetic reactivity of a mineral surface is determined, in part, by the rates of exchange of surface-bound oxygens and protons with bulk solution, there are no elementary rate data for minerals. However, such kinetic measurements can be made on dissolved polynuclear clusters, and here we report lifetimes for protons bound to three oxygen sites on the AlO4Al12(OH)24(H2O)127+ (Al13) molecule, which is a model for aluminum-hydroxide solids in water. Proton lifetimes were measured using 1H NMR at pH ∼ 5 in both aqueous and mixed solvents. The 1H NMR peak for protons on bound waters (η-H2O) lies near 8 ppm in a 2.5:1 mixture of H2O/acetone-d6 and broadens over the temperature range −20 to −5 °C. Extrapolated to 298 K, the lifetime of a proton on a η-H2O is τ298 ∼ 0.0002 s, which is surprisingly close to the lifetime of an oxygen in the η-H2O (∼0.0009 s), but in the same general range as lifetimes for protons on fully protonated monomer ions of trivalent metals (e.g., Al(H2O)63+). The lifetime is reduced somewhat by acid addition, indicating that there is a contribution from the partly deprotonated Al13 molecule in addition to the fully protonated Al13 at self-buffered pH conditions. Proton lifetimes on the two distinct sets of hydroxyls bridging two Al(III) (μ2-OH) differ substantially and are much shorter than the lifetime of an oxygen at these sites. The average lifetimes for hydroxyl protons were measured in a 2:1 mixture of H2O/dmso-d6 over the temperature range 3.7-95.2 °C. The lifetime of a hydrogen on one of the μ2-OH was also measured in D2O. The τ298 values are ∼0.013 and ∼0.2 s in the H2O/dmso-d6 solution and the τ298 value for the μ2-OH detectable in D2O is τ298 ∼ 0.013 s. The 1H NMR peak for the more reactive μ2-OH broadens slightly with acid addition, indicating a contribution from an exchange pathway that involves a proton or hydronium ion. These data indicate that surface protons on minerals will equilibrate with near-surface waters on the diffusional time scale.  相似文献   

13.
The objective of this research is to assess critically the experimental rate data for O2 oxidation of dissolved Mn(II) species at 25°C and to interpret the rates in terms of the solution species of Mn(II) in natural waters. A species kinetic rate expression for parallel paths expresses the total rate of Mn(II) oxidation as Σki aij, where ki is the rate constant of species i and aij is the species concentration fraction in solution j. Among the species considered in the rate expression are Mn(II) hydrolysis products, carbonate complexes, ammonia complexes, and halide and sulfate complexes, in addition to the free aqueous ion. Experiments in three different laboratory buffers and in seawater yield an apparent rate constant for Mn(II) disappearance, kapp,j ranging from 8.6 × 10−5 to 2.5 × 10−2 (M−1s−1), between pH 8.03 and 9.30, respectively. Observed values of kapp exceed predictions based on Marcus outer-sphere electron transfer theory by more than four orders of magnitude, lending strong support to the proposal that Mn(II) + O2 electron transfer follows an inner-sphere path. A multiple linear regression analysis fit of the observed rates to the species kinetic rate expression yields the following oxidation rate constants (M−1s−1) for the most reactive species: MnOH+, 1.66 × 10−2; Mn(OH)2, 2.09 × 101; and Mn(CO3)22−, 8.13 × 10−2. The species kinetic rate expression accounts for the influence of pH and carbonate on oxidation rates of Mn(II), through complex formation and acid-base equilibria of both reactive and unreactive species. At pH ∼8, the greater fraction of the total rate is carried by MnOH+. At pH greater than ∼8.4, the species Mn(OH)2 and Mn(CO3)22− make the greater contributions to the total rate.  相似文献   

14.
We report rates of oxygen exchange with bulk solution for an aqueous complex, IVGeO4Al12(OH)24(OH2)128+(aq) (GeAl12), that is similar in structure to both the IVAlO4Al12(OH)24(OH2)127+(aq) (Al13) and IVGaO4Al12(OH)24(OH2)127+(aq) (GaAl12) molecules studied previously. All of these molecules have ε-Keggin-like structures, but in the GeAl12 molecule, occupancy of the central tetrahedral metal site by Ge(IV) results in a molecular charge of +8, rather than +7, as in the Al13 and GaAl12. Rates of exchange between oxygen sites in this molecule and bulk solution were measured over a temperature range of 274.5 to 289.5 K and 2.95 < pH < 4.58 using 17O-NMR.Apparent rate parameters for exchange of the bound water molecules (η-OH2) are kex298 = 200 (±100) s−1, ΔH = 46 (±8) kJ · mol−1, and ΔS = −46 (±24) J · mol−1 K−1 and are similar to those we measured previously for the GaAl12 and Al13 complexes. In contrast to the Al13 and GaAl12 molecules, we observe a small but significant pH dependence on rates of solvolysis that is not yet fully constrained and that indicates a contribution from the partly deprotonated GeAl12 species.The two topologically distinct μ2-OH sites in the GeAl12 molecule exchange at greatly differing rates. The more labile set of μ2-OH sites in the GeAl12 molecule exchange at a rate that is faster than can be measured by the 17O-NMR isotopic-equilibration technique. The second set of μ2-OH sites have rate parameters of kex298 = 6.6 (±0.2) · 10−4 s−1, ΔH = 82 (±2) kJ · mol−1, and ΔS = −29 (±7) J · mol−1 · K−1, corresponding to exchanges ≈40 and ≈1550 times, respectively, more rapid than the less labile μ2-OH sites in the Al13 and GaAl12 molecules. We find evidence of nearly first-order pH dependence on the rate of exchange of this μ2-OH site with bulk solution for the GeAl12 molecule, which contrasts with Al13 and GaAl12 molecules.  相似文献   

15.
Yavapaiite, KFe(SO4)2, is a rare mineral in nature, but its structure is considered as a reference for many synthetic compounds in the alum supergroup. Several authors mention the formation of yavapaiite by heating potassium jarosite above ca. 400°C. To understand the thermal decomposition of jarosite, thermodynamic data for phases in the K-Fe-S-O-(H) system, including yavapaiite, are needed. A synthetic sample of yavapaiite was characterized in this work by X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and thermal analysis. Based on X-ray diffraction pattern refinement, the unit cell dimensions for this sample were found to be a = 8.152 ± 0.001 Å, b = 5.151 ± 0.001 Å, c = 7.875 ± 0.001 Å, and β = 94.80°. Thermal decomposition indicates that the final breakdown of the yavapaiite structure takes place at 700°C (first major endothermic peak), but the decomposition starts earlier, around 500°C. The enthalpy of formation from the elements of yavapaiite, KFe(SO4)2, ΔH°f = −2042.8 ± 6.2 kJ/mol, was determined by high-temperature oxide melt solution calorimetry. Using literature data for hematite, corundum, and Fe/Al sulfates, the standard entropy and Gibbs free energy of formation of yavapaiite at 25°C (298 K) were calculated as S°(yavapaiite) = 224.7 ± 2.0 J.mol−1.K−1 and ΔG°f = −1818.8 ± 6.4 kJ/mol. The equilibrium decomposition curve for the reaction jarosite = yavapaiite + Fe2O3 + H2O has been calculated, at pH2O = 1 atm, the phase boundary lies at 219 ± 2°C.  相似文献   

16.
Equilibrium boron isotopic fractionations between trigonal B(OH)3 and tetragonal B(OH)4 aqueous species have been calculated at high P-T conditions using measured vibrational spectra (Raman and IR) and force-field modeling to compute reduced partition function ratios for B-isotopic exchange following Urey’s theory. The calculated isotopic fractionation factor at 300 K, α3/4 = 1.0176(2), is slightly lower than the formerly calculated value of α3/4 = 1.0193 (Kakihana and Kotaka, 1977), due to differences in the determined vibrational frequencies. The effect of pressure on α3/4 up to 10 GPa and 723 K is shown to be negligible relative to temperature or speciation (pH) effects. Implications for the interpretation of boron fractionation in experimental and natural systems are discussed. We also show that the relationship between seawater-mineral B isotope fractionation and pH can be expressed using two variables, α3/4 on one hand, and the pKa of the boric acid-borate equilibrium on the other hand. This latter value is given by the equilibrium of boron species in water for the carbonate-water exchange, but could be governed by mineral surface properties in the case of clays. This may allow defining intrinsic paleo-pHmeters from B isotope fractionation between carbonate and authigenic minerals. Finally, it is shown that fractionation of boron isotopes can be rationalized in terms of the changes in 1) coordination of B from trigonal to tetrahedral in both fluids and minerals; and 2) the ligand nature around B from OH in the fluid and some hydrous minerals to non-hydrogenated O in many minerals. Relationships are established that allow predicting the isotopic fractionation factor of B between minerals and fluid.  相似文献   

17.
The solubility of Fe-ettringite (Ca6[Fe(OH)6]2(SO4)3 · 26H2O) was measured in a series of precipitation and dissolution experiments at 20 °C and at pH-values between 11.0 and 14.0 using synthesised material. A time-series study showed that equilibrium was reached within 180 days of ageing. After equilibrating, the solid phases were analysed by XRD and TGA while the aqueous solutions were analysed by ICP-OES (calcium, sulphur) and ICP-MS (iron). Fe-ettringite was found to be stable up to pH 13.0. At higher pH-values Fe-monosulphate (Ca4[Fe(OH)6]2(SO4) · 6H2O) and Fe-monocarbonate (Ca4[Fe(OH)6]2(CO3) · 6H2O) are formed. The solubilities of these hydrates at 25 °C are:   相似文献   

18.
The equilibrium Mg isotope fractionation factor between epsomite and aqueous MgSO4 solution has been measured using the three isotope method in recrystallization experiments conducted at 7, 20, and 40 °C. Complete or near-complete isotopic exchange was achieved within 14 days in all experiments. The Mg isotope exchange rate between epsomite and MgSO4 solution is dependent on the temperature, epsomite seed crystal grain size, and experimental agitation method. The Mg isotope fractionation factors (Δ26Mgeps-sol) at 7, 20, and 40 °C are 0.63 ± 0.07‰, 0.58 ± 0.16‰, and 0.56 ± 0.03‰, respectively. These values are indistinguishable within error, indicating that the Mg isotope composition of epsomite is relatively insensitive to temperature. The magnitude of the isotope fractionation factor (Δ26Mgeps-sol = ca. 0.6‰ between 7 and 40 °C) indicates that significant Mg isotope variations can be produced in evaporite sequences, and Mg isotopes may therefore, constrain the degree of closed-system behavior, paleo-humidity, and hydrological history of evaporative environments.  相似文献   

19.
This study used batch reactors to quantify the mechanisms and rates of calcite dissolution in the presence and absence of a single heterotrophic bacterial species (Burkholderia fungorum). Experiments were conducted at T = 28°C and ambient pCO2 over time periods spanning either 21 or 35 days. Bacteria were supplied with minimal growth media containing either glucose or lactate as a C source, NH4+ as an N source, and H2PO4 as a P source. Combining stoichiometric equations for microbial growth with an equilibrium mass-balance model of the H2O-CO2-CaCO3 system demonstrates that B. fungorum affected calcite dissolution by modifying pH and alkalinity during utilization of ionic N and C species. Uptake of NH4+ decreased pH and alkalinity, whereas utilization of lactate, a negatively charged organic anion, increased pH and alkalinity. Calcite in biotic glucose-bearing reactors dissolved by simultaneous reaction with H2CO3 generated by dissolution of atmospheric CO2 (H2CO3 + CaCO3 → Ca2+ + 2HCO3) and H+ released during NH4+ uptake (H+ + CaCO3 → Ca2+ + HCO3). Reaction with H2CO3 and H+ supplied ∼45% and 55% of the total Ca2+ and ∼60% and 40% of the total HCO3, respectively. The net rate of microbial calcite dissolution in the presence of glucose and NH4+ was ∼2-fold higher than that observed for abiotic control experiments where calcite dissolved only by reaction with H2CO3. In lactate bearing reactors, most H+ generated by NH4+ uptake reacted with HCO3 produced by lactate oxidation to yield CO2 and H2O. Hence, calcite in biotic lactate-bearing reactors dissolved by reaction with H2CO3 at a net rate equivalent to that calculated for abiotic control experiments. This study suggests that conventional carbonate equilibria models can satisfactorily predict the bulk fluid chemistry resulting from microbe-calcite interactions, provided that the ionic forms and extent of utilization of N and C sources can be constrained. Because the solubility and dissolution rate of calcite inversely correlate with pH, heterotrophic microbial growth in the presence of nonionic organic matter and NH4+ appears to have the greatest potential for enhancing calcite weathering relative to abiotic conditions.  相似文献   

20.
Traditionally, the application of stable isotopes in Carbon Capture and Storage (CCS) projects has focused on δ13C values of CO2 to trace the migration of injected CO2 in the subsurface. More recently the use of δ18O values of both CO2 and reservoir fluids has been proposed as a method for quantifying in situ CO2 reservoir saturations due to O isotope exchange between CO2 and H2O and subsequent changes in δ18OH2O values in the presence of high concentrations of CO2. To verify that O isotope exchange between CO2 and H2O reaches equilibrium within days, and that δ18OH2O values indeed change predictably due to the presence of CO2, a laboratory study was conducted during which the isotope composition of H2O, CO2, and dissolved inorganic C (DIC) was determined at representative reservoir conditions (50 °C and up to 19 MPa) and varying CO2 pressures. Conditions typical for the Pembina Cardium CO2 Monitoring Pilot in Alberta (Canada) were chosen for the experiments. Results obtained showed that δ18O values of CO2 were on average 36.4 ± 2.2‰ (1σ, n = 15) higher than those of water at all pressures up to and including reservoir pressure (19 MPa), in excellent agreement with the theoretically predicted isotope enrichment factor of 35.5‰ for the experimental temperatures of 50 °C. By using 18O enriched water for the experiments it was demonstrated that changes in the δ18O values of water were predictably related to the fraction of O in the system sourced from CO2 in excellent agreement with theoretical predictions. Since the fraction of O sourced from CO2 is related to the total volumetric saturation of CO2 and water as a fraction of the total volume of the system, it is concluded that changes in δ18O values of reservoir fluids can be used to calculate reservoir saturations of CO2 in CCS settings given that the δ18O values of CO2 and water are sufficiently distinct.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号