首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Theoretical and Applied Climatology - Viticulture represents an important economic activity for Greek agriculture. Winegrapes are cultivated in many areas covering the whole Greek territory, due to...  相似文献   

2.
Abstract

A þrst climate simulation performed with the novel Canadian Regional Climate Model (CRCM) is presented. The CRCM is based on fully elastic non‐hydrostatic þeld equations, which are solved with an efþcient semi‐implicit semi‐Lagrangian (SISL) marching algorithm, and on the parametrization package of subgrid‐scale physical effects of the second‐generation Canadian Global Climate Model (GCMII). Two 5‐year integrations of the CRCM nested with GCMII simulated data as lateral boundary conditions are made for conditions corresponding to current and doubled CO2 scenarios. For these simulations the CRCM used a grid size of 45 km on a polar‐stereographic projection, 20 scaled‐height levels and a time step of 15 min; the nesting GCMII has a spectral truncation of T32, 10 hybrid‐pressure levels and a time step of 20 min. These simulations serve to document: (1) the suitability of the SISL numerical scheme for regional climate modelling, (2) the use of GCMII physics at much higher resolution than in the nesting model, (3) the ability of the CRCM to add realistic regional‐scale climate information to global model simulations, and (4) the climate of the CRCM compared to that of GCMII under two greenhouse gases (GHG) scenarios.  相似文献   

3.
The fifth-generation Canadian Regional Climate Model (CRCM5) was used to dynamically downscale two Coupled Global Climate Model (CGCM) simulations of the transient climate change for the period 1950–2100, over North America, following the CORDEX protocol. The CRCM5 was driven by data from the CanESM2 and MPI-ESM-LR CGCM simulations, based on the historical (1850–2005) and future (2006–2100) RCP4.5 radiative forcing scenario. The results show that the CRCM5 simulations reproduce relatively well the current-climate North American regional climatic features, such as the temperature and precipitation multiannual means, annual cycles and temporal variability at daily scale. A cold bias was noted during the winter season over western and southern portions of the continent. CRCM5-simulated precipitation accumulations at daily temporal scale are much more realistic when compared with its driving CGCM simulations, especially in summer when small-scale driven convective precipitation has a large contribution over land. The CRCM5 climate projections imply a general warming over the continent in the 21st century, especially over the northern regions in winter. The winter warming is mostly contributed by the lower percentiles of daily temperatures, implying a reduction in the frequency and intensity of cold waves. A precipitation decrease is projected over Central America and an increase over the rest of the continent. For the average precipitation change in summer however there is little consensus between the simulations. Some of these differences can be attributed to the uncertainties in CGCM-projected changes in the position and strength of the Pacific Ocean subtropical high pressure.  相似文献   

4.
Early proxy-based studies suggested that there potentially occurred a "southern drought/northern flood" (SDNF) over East China in the mid-Holocene (from roughly 7000 to 5000 years before present).In this study,we used both global and regional atmospheric circulation models to demonstrate that the SDNF-namely,the precipitation increases over North China and decreases over the the lower reaches of the Yangtze River Valley--could have taken place in the mid-Holocene.We found that the SDNF in the mid-Holocene was likely caused by the lower SST in the Pacific.The lowered SST and the higher air temperature over mainland China increased the land-sea thermal contrast and,as a result,strengthened the East Asian summer monsoon and enhanced the precipitation over North China.  相似文献   

5.
A detailed climatology of the cyclogenesis over the Southern Atlantic Ocean (SAO) from 1990 to 1999 and how it is simulated by the RegCM3 (Regional Climate Model) is presented here. The simulation used as initial and boundary conditions the National Centers for Environmental Prediction—Department of Energy (NCEP/DOE) reanalysis. The cyclones were identified with an automatic scheme that searches for cyclonic relative vorticity (ζ10) obtained from a 10-m height wind field. All the systems with ζ10 ≤ ?1.5 × 10?5 s?1 and lifetime equal or larger than 24 h were considered in the climatology. Over SAO, in 10 years were detected 2,760 and 2,787 cyclogeneses in the simulation and NCEP, respectively, with an annual mean of 276.0 ± 11.2 and 278.7 ± 11.1. This result suggests that the RegCM3 has a good skill to simulate the cyclogenesis climatology. However, the larger model underestimations (?9.8%) are found for the initially stronger systems (ζ10 ≤ ?2.5 × 10?5 s?1). It was noted that over the SAO the annual cycle of the cyclogenesis depends of its initial intensity. Considering the systems initiate with ζ10 ≤ ?1.5 × 10?5 s?1, the annual cycle is not well defined and the higher frequency occurs in the autumn (summer) in the NCEP (RegCM3). The stronger systems (ζ10 ≤ ?2.5 × 10?5 s?1) have a well-characterized high frequency of cyclogenesis during the winter in both NCEP and RegCM3. This work confirms the existence of three cyclogenetic regions in the west sector of the SAO, near the South America east coast and shows that RegCM3 is able to reproduce the main features of these cyclogenetic areas.  相似文献   

6.
N. Vigaud  B. Pohl  J. Crétat 《Climate Dynamics》2012,39(12):2895-2916
The Weather Research and Forecasting model (WRF) forced by ERA40 re-analyses, is used to examine, at regional scale, the role of key features of the local atmospheric circulation on the origin and development of Tropical Temperate Troughs (TTTs) representing a major contribution to South African rainfall during austral summer. A cluster analysis applied on 1971–2000 ERA40 and WRF simulated daily outgoing longwave radiation reveals for the November–February season three coherent regimes characteristic of TTTs over the region. Analyses of WRF simulated TTTs suggest that their occurrence is primarily linked with mid-latitude westerly waves and their phasing. Ensemble experiments designed for the case of austral summer 1996/1997 allow to examine the reproducibility of TTT events. The results obtained illustrate the importance of westerly waves phasing regarding the persistence of rain-producing continental TTT events. Moreover, oceanic surface conditions prevailing over the Agulhas current regions of the South West Indian Ocean (SWIO) are also found to influence TTT persistence for regional experiments with an oceanic mixed layer, warmer sea surface temperatures being associated with increased moisture advection from the SWIO where latent heat release is enhanced, favoring baroclinic instability and thus sustaining convection activity locally.  相似文献   

7.
利用基于 RegCM2的区域气候模式并单向嵌套澳大利亚 CSIRO R21L9全球海-气耦合模式,进行了温室气体二氧化碳浓度倍增对中国气候变化影响的数值试验研究。控制试验结果表明:区域模式由于具有较高的分辨率,因而对中国区域地面气温和降水的模拟效果较全球模式有了较大提高;模式对 2×CO2敏感性试验结果表明了在 CO2浓度倍增情况下,由于温室效应,中国区域的地面气温将有明显升高,降水也将呈增加趋势。  相似文献   

8.
Precipitation amounts simulated by the regional climate model COSMO-CLM are compared with observations from rain gauges at German precipitation stations for the period 1960–2000. The model overestimates precipitation by about 26 %. This bias is accompanied with a shift of the frequency distribution of rain intensities. The model overestimation varies regionally. A correction function is derived which adjusts rain intensities at every model grid point to the observations.  相似文献   

9.
10.
11.
 The realism of the Hadley Centre’s coupled climate model (HadCM2) is evaluated in terms of its simulation of the winter North Atlantic Oscillation (NAO), a major natural mode of the Northern Hemisphere atmosphere that is currently the subject of considerable scientific interest. During 1400 y of a control integration with present-day radiative forcing levels, HadCM2 exhibits a realistic NAO associated with spatial patterns of sea level pressure, synoptic activity, temperature and precipitation anomalies that are very similar to those observed. Spatially, the main model deficiency is that the simulated NAO has a teleconnection with the North Pacific that is stronger than observed. In a temporal sense the simulation is compatible with the observations if the recent observed trend (from low values in the 1960s to high values in the early 1990s) in the winter NAO index (the pressure difference between Gibraltar and Iceland) is ignored. This recent trend is, however, outside the range of variability simulated by the control integration of HadCM2, implying that either the model is deficient or that external forcing is responsible for the variation. It is shown, by analysing two ensembles, each of four HadCM2 integrations that were forced with historic and possible future changes in greenhouse gas and sulphate aerosol concentrations, that a small part of the recent observed variation may be a result of anthropogenic forcing. If so, then the HadCM2 experiments indicate that the anthropogenic effect should reverse early next century, weakening the winter pressure gradient between Gibraltar and Iceland. Even combining this anthropogenic forcing and internal variability cannot explain all of the recent observed variations, indicating either some model deficiency or that some other external forcing is partly responsible. Received: 20 August 1998 / Accepted: 12 May 1999  相似文献   

12.
满文敏  周天军  张洁  吴波 《气象学报》2011,69(4):644-654
分析了中国科学院大气物理研究所大气科学和地球流体力学国家重点实验室(LASG/IAP)发展的快速耦合气候系统模式FGOALS_gl对近100年气温变化的模拟,讨论了20世纪气温变化的机理。结果表明,在自然因素和人为因素的共同强迫作用下,FGOALS_gl能够合理再现20世纪全球平均和纬向平均地表气温随时间的演变。利用太阳辐照度等自然强迫、温室气体和气溶胶等人为强迫因子来驱动耦合模式,能够模拟出过去100年全球平均气温的增温趋势和年代际变化。耦合模式可以较好地模拟出20世纪全球气温变化趋势的空间分布。对区域气温变化模拟效果的分析表明,除北大西洋外,FGOALS_gl对其他地区具有较高的模拟技巧,表明外强迫是造成多数地区气温变化的主要原因。FGOALS_gl的主要缺陷在于模拟的变暖强度偏弱,大气模式自身的偏差以及耦合模式对温室气体响应的敏感度偏低是造成上述缺陷的主要原因。总体而言,FGOALS_gl对20世纪气温变化的模拟效果较为理想,特别是在全球、半球和大陆尺度上,该模式对过去100年气温变化的模拟较为合理。  相似文献   

13.
基于1980—2016年长江流域站点观测降水,评估了CWRF区域气候模式对长江流域面雨量和极端降水气候事件的模拟能力.结果表明:CWRF模式能较好地再现1980—2016年长江流域及不同分区降水空间分布及月/季面雨量年际变率,且在冬、春季表现较好,夏、秋季次之.CWRF模式对长江流域面雨量存在系统性高估,对面雨量的模拟...  相似文献   

14.
In this study, we investigate the response of a Regional Climate Model (RCM) to errors in the atmospheric data used as lateral boundary conditions (LBCs) using a perfect-model framework nick-named the “Big-Brother Experiment” (BBE). The BBE has been designed to evaluate the errors due to the nesting process excluding other model errors. First, a high-resolution (45 km) RCM simulation is made over a large domain. This simulation, called the Perfect Big Brother (PBB), is driven by the National Centres for Environmental Prediction (NCEP) reanalyses; it serves as reference virtual-reality climate to which other RCM runs will be compared. Next, errors of adjustable magnitude are introduced by performing RCM simulations with increasingly larger domains at lower horizontal resolution (90 km mesh). Such simulations with errors typical of today’s Coupled General Circulation Models (CGCM) are called the Imperfect Big-Brother (IBB) simulations. After removing small scales in order to achieve low-resolution typical of today’s CGCMs, they are used as LBCs for driving smaller domain high-resolution RCM runs; these small-domain high-resolution simulations are called Little-Brother (LB) simulations. The difference between the climate statistics of the IBB and those of PBB simulations mimic errors of the driving model. The comparison of climate statistics of the LB to those of the PBB provides an estimate of the errors resulting solely from nesting with imperfect LBCs. The simulations are performed over the East Coast of North America using the Canadian RCM, for five consecutive February months (from 1990 to 1994). It is found that the errors contained in the large scales of the IBB driving data are transmitted to and reproduced with little changes by the LB. In general, the LB restores a great part of the IBB small-scale errors, even if they do not take part in the nesting process. The small scales are seen to improve slightly in regions with important orographic forcing due to the finer resolution of the RCM. However, when the large scales of the driving model have errors, the small scales developed by the LB have errors as well, suggesting that the large scales precondition the small scales. In order to obtain correct small scales, it is necessary to provide the accurate large-scale circulation at the lateral boundary of the RCM.  相似文献   

15.
16.
Summary We use the regional climate model RegCM nested within time-slice atmospheric general circulation model experiments to investigate the possible changes of intense and extreme precipitation over the French Maritime Alps in response to global climate change. This is a region with complex orography where heavy and/or extended precipitation episodes induced catastrophic floods during the last decades. Output from a 30-year simulation of present-day climate (1961–1990) is first analysed and compared with NCEP reanalysed 700 hPa geopotential heights (Z700) and daily precipitation observations from the Alpine Precipitation Climatology (1966–1999). Two simulations under forcing from the A2 and B2 IPCC emission scenarios for the period 2071–2100 are used to investigate projected changes in extreme precipitation for our region of interest. In general, the model overestimates the annual cycle of precipitation. The climate change projections show some increase of precipitation, mostly outside the warm period for the B2 scenario, and some increase in the variability of the annual precipitation totals for the A2 scenario. The model reproduces the main observed patterns of the spatial leading EOFs in the Z700 field over the Atlantic-European domain. The simulated large scale circulation (LSC) variability does not differ significantly from that of the reanalysis data provided the EOFs are computed on the same domain. Two similar clusters of LSC corresponding to heavy precipitation days were identified for both simulated and observed data and their patterns do not change significantly in the climate change scenarios. The analysis of frequency histograms of extreme indices shows that the control simulation systematically underestimates the observed heavy precipitation expressed as the 90th percentile of rainday amounts in all seasons except summer and better reproduces the greatest 5-day precipitation accumulation. The main hydrological changes projected for the Maritime Alps consist of an increase of most intense wet spell precipitation during winters for both scenarios and during autumn for the B2 scenario. Case studies of heavy precipitation events show that the RegCM is capable to reproduce the physical mechanisms responsible for heavy precipitation over our region of interest.  相似文献   

17.

This study evaluates the performance of two bias correction techniques—power transformation and gamma distribution adjustment—for Eta regional climate model (RCM) precipitation simulations. For the gamma distribution adjustment, the number of dry days is not taken as a fixed parameter; rather, we propose a new methodology for handling dry days. We consider two cases: the first case is defined as having a greater number of simulated dry days than the observed number, and the second case is defined as the opposite. The present climate period was divided into calibration and validation sets. We evaluate the results of the two bias correction techniques using the Kolmogorov-Smirnov nonparametric test and the sum of the differences between the cumulative distribution curves. These tests show that both correction techniques were effective in reducing errors and consequently improving the reliability of the simulations. However, the gamma distribution correction method proved to be more efficient, particularly in reducing the error in the number of dry days.

  相似文献   

18.
The capability of a current state-of-the-art regional climate model for simulating the diurnal and annual cycles of rainfall over a complex subtropical region is documented here. Hourly rainfall is simulated over Southern Africa for 1998–2006 by the non-hydrostatic model weather research and forecasting (WRF), and compared to a network of 103 stations covering South Africa. We used five simulations, four of which consist of different parameterizations for atmospheric convection at a 0.5 × 0.5° resolution, performed to test the physic-dependency of the results. The fifth experiment uses explicit convection over tropical South Africa at a 1/30° resolution. WRF simulates realistic mean rainfall fields, albeit wet biases over tropical Africa. The model mean biases are strongly modulated by the convective scheme used for the simulations. The annual cycle of rainfall is well simulated over South Africa, mostly influenced by tropical summer rainfall except in the Western Cape region experiencing winter rainfall. The diurnal cycle shows a timing bias, with atmospheric convection occurring too early in the afternoon, and causing too abundant rainfall. This result, particularly true in summer over the northeastern part of the country, is weakly physic-dependent. Cloud-resolving simulations do not clearly reduce the diurnal cycle biases. In the end, the rainfall overestimations appear to be mostly imputable to the afternoon hours of the austral summer rainy season, i.e., the periods during which convective activity is intense over the region.  相似文献   

19.
Responses of late spring (21 April 20 May) rainfall to the upper tropospheric cooling over East Asia are investigated with a regional climate model based on Laboratoire de M6t6orologie Dynamique Zoom (LMDZ4-RCM). A control experiment is performed with two runs driven by the mean ERA-40 data during 1958-1977 and 1981 2000, respectively. The model reproduces the major decadal-scale circulation changes in late spring over East Asia, including a cooling in the upper troposphere and an anomalous meridional cell. Accordingly, the precipitation decrease is also captured in the southeast of the upper-level cooling region. To quantify the role of the upper-level cooling in the drought mechanism, a sensitivity experiment is further conducted with the cooling imposed in the upper troposphere. It is demonstrated that the upper-level cooling can generate the anomalous meridional cell and consequently the drought to the southeast of the cooling center. Therefore, upper tropospheric cooling should have played a dominant role in the observed late spring drought over Southeast China in recent decades.  相似文献   

20.
In this study the potential future changes in various aspects of daily precipitation events over Europe as a consequence of the anticipated future increase in the atmospheric greenhouse gas concentrations are investigated. This is done by comparing two 3-member ensembles of simulations with the HIRHAM regional climate model for the period 1961–1990 and 2071–2100, respectively. Daily precipitation events are characterized by their frequency and intensity, and heavy precipitation events are described via 30-year return levels of daily precipitation. Further, extended periods with and without rainfall (wet and dry spells) are studied, considering their frequency and length as well as the average and extreme amounts of precipitation accumulated during wet spells, the latter again described via 30-year return levels. The simulations show marked changes in the characteristics of daily precipitation in Europe due to the anticipated greenhouse warming. In winter, for instance, the frequency of wet days is enhanced over most of the European continent except for the region on the Norwegian west coast and the Mediterranean region. The changes in the intensity and the 30-year return level of daily precipitation are characterized by a similar pattern except for central Europe with a tendency of decreased 30-year return levels and increased precipitation intensity. In summer, on the other hand, the frequency of wet days is decreased over most of Europe except for northern Scandinavia and the Baltic Sea region. In contrast, the precipitation intensity and the 30-year return level of daily precipitation are increased over entire Scandinavia, central and eastern Europe. The changes in the 30-year return level of daily precipitation are generally stronger than the corresponding changes in the precipitation intensity but can have opposite signs in some regions. Also the distribution of wet days is changed in the future. During summer, for instance, both the frequency and the length of dry spells are substantially increased over most of the European continent except for the Iberian Peninsula. The frequency and the length of wet spells, on the other hand, are generally reduced during summer and increased during winter, again, with the exception of the Iberian Peninsula. The future changes in the frequency of wet days in winter are related to a change in the large-scale flow over the North Atlantic and a corresponding shift of the North Atlantic storm track. The reduction in the frequency of wet days in summer is related to a northward extension of the dry subtropical region in the future, with a reduction of the convective activity because of the large-scale sinking motion in the downward branch of the Hadley cell. Because the atmosphere contains more moisture in the warmer future climate, the amount of precipitation associated with individual low-pressure systems or with individual convective events is increased, leading to a general increase in the intensity of individual precipitation events. Only in regions, where all the moisture evaporates from the ground already in spring, the intensity of precipitation events is reduced in summer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号