首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rare earth elements (REEs) are a group of metals essential to high technology industries. This high demand, combined with a high supply risk, has led to an understanding that REEs are critical to society. Despite the potential that hyperspectral imaging (HSI) data offers for a fast and non-invasive characterization of the REEs, it is still poorly understood whether REEs have some information in the long-wave infrared (LWIR; 8–12 μm) wavelength range that can be used for their identification. To partially fill this gap, we have investigated the spectroscopy of twelve REE-bearing mineral samples using relatively high spatial and spectral resolution LWIR hyperspectral imaging data. These samples were formerly characterized using electron probe microanalysis (EPMA), scanning electron microscopy (SEM), and hyperspectral imaging data acquired in the 0.4–2.5 μm wavelength range. Results from these analyses were compared to and used to guide the analysis of the HSI data recorded in the LWIR range. This information was further compared to a reference spectral library of rare earth oxides. Our findings suggest that the spectral features of the samples can generally be traced to the asymmetric degenerate stretching and bending modes of the X-O (X = C, Si, P) groups. Moreover and contrary to what has been observed in the shorter wavelengths, there are no definitive spectral features in the LWIR wavelength region that could be assigned to any specific REE.  相似文献   

2.
Spectral features of plant species in the visible to SWIR (0.4–2.5 μm) region have been studied extensively, but scanty attention has been given to plant thermal infrared (TIR: 4–14 μm) properties. This paper presents preliminary results of a study that was conducted first time in India to measure radiance and emissivity properties of eight plant species in TIR spectral region in the field conditions using a FTIR (Fourier Transform Infrared) field spectroradiometer working in 4–14 μm at an agriculture experimental farm. Several spectral features in the emissivity spectra of plant species were observed that are probably related to the leaf chemical constituents, such as cellulose and xylan (hemicellulose) and structural aspects of leaf surface like abundance of trichomes and texture. Observations and results from the field measurements were supported by the laboratory measurements like biochemical analysis. These preliminary field emissivity measurements of leaves in TIR show that there is useful spectral information that may be detectable by field-based instrument. More detailed field and laboratory measurements are underway to explore this research theme.  相似文献   

3.
Abstract

Multi-sensor and multi-resolution source images consisting of optical and long-wave infrared (LWIR) images are analyzed separately and then combined for urban mapping in this study. The framework of its methodology is based on a two-level classification approach. In the first level, contributions of these two data sources in urban mapping are examined extensively by four types of classifications, i.e. spectral-based, spectral-spatial-based, joint classification, and multiple feature classification. In the second level, an objected-based approach is applied to decline the boundaries. The specificity of our proposed framework not only lies in the combination of two different images, but also the exploration of the LWIR image as one complementary spectral information for urban mapping. To verify the effectiveness of the presented classification framework and to confirm the LWIR’s complementary role in the urban mapping task, experiment results are evaluated by the grss_dfc_2014 data-set.  相似文献   

4.
5.
基于ASTER GED产品的地表发射率估算   总被引:1,自引:0,他引:1  
地表发射率是地表温度反演的重要输入参数,为了解决现有地表发射率估算方法在裸露地表精度较差的问题,本文基于最新的ASTER全球地表发射率产品(ASTER GED)和基于植被覆盖度的方法(VCM),提出了一个改进的地表发射率估算方法。首先,利用ASTER GED产品求解裸土发射率,然后,利用ASTER波谱库中的植被发射率和植被覆盖度结合VCM方法计算地表发射率。利用张掖地区2012年11景ASTER TES算法反演的地表发射率产品和实测地表发射率数据进行了验证,同时利用一景Landsat 8 TIRS数据分析了对地表温度反演精度的影响。结果表明该方法估算的地表发射率整体精度较高,可以有效改进裸露地表的发射率估算精度,用于支持利用多种热红外传感器数据生产高精度的地表温度产品。  相似文献   

6.
For a satellite sensor with only one or two thermal infrared channels, it is difficult to retrieve the surface emissivity from the received emissive signal. Empirical linear relationship between surface emissivity and red reflectance are already established for deriving emissivity, but the inner physical mechanism remains unclear. The optical constants of various minerals that cover the spectral range from 0.44 to 13.5 μm in conjunction with modern radiative transfer models were used to produce corresponding surface reflectance and emissivity spectra. Compared to the commonly used empirical linear relationship, a more accurate multiple linear relationship between Landsat TM5 emissivity and optical reflectances was derived using the simulated data, which indicated the necessity of replacing the empirical relationship with the new one for improving surface emissivity estimate in the single channel algorithm. The significant multiple linear relationship between broadband emissivity (BBE, 8–13.5 μm) and MODIS spectral albedos was also derived using the same data. This paper demonstrates that there is a physical linkage between surface emissive and reflective variables, and provides a theoretical perspective on estimating surface emissivity for sensors with only one or two thermal infrared channels.  相似文献   

7.
The present study was undertaken with the objective to check effectiveness of spectral information divergence (SID) to develop spectra from image for crop classes based on spectral similarity with field spectra. In multispectral and hyperspectral remote sensing, classification of pixels is obtained by statistical comparison (by means of spectral similarity) of known field or library spectra to unknown image spectra. Though these algorithms are readily used, little emphasis has been placed on use of various spectral similarity measures to develop crop spectra from the image itself. Hence, in this study methodology suggested to develop spectra for crops based on SID. Absorption features are unique and distinct; hence, validation of the developed spectra is carried out using absorption features by comparing it with field spectra and finding average correlation coefficient r?=?0.982 and computed SID equivalent r?=?0.989. Effectiveness of developed spectra for image classification was computed by probability of spectral discrimination (PSD) and resulted in higher probability for the spectra developed based on SID. Image classification was carried out using field spectra and spectra assigned by SID. Overall classification accuracy of the image classified by field spectra is 78.30% and for the image classified by spectra assigned through SID-based approach is 91.82%. Z test shows that image classification carried out using spectra developed by SID is better than classification carried out using field spectra and significantly different. Validation by absorption features, effectiveness by PSD and higher classification accuracy show possibility of new approach for spectra development based on SID spectral similarity measure.  相似文献   

8.
Spectral library search is emerging as a viable approach for material identification and mapping by reusing spectral knowledge gained from hyperspectral remote sensing across space and time. The potential of retrieving meaningful spectral material identifications in the presence of reflectance of spectra of various material types and with various similarity metrics has been assessed in this study. Test reflectance spectra of various vegetation, minerals, soils and urban material types are identified by searching through the composite reflectance spectral library obtained by combining various institutional reflectance spectral libraries. The accuracy of material identifications under various conditions: (i) in the presence of identical, similar and dissimilar spectra; (ii) in the presence of only identical and dissimilar spectra; and (iii) in the presence of only dissimilar spectra has been assessed with several similarity metrics. Results indicate the possibility of obtaining 100% accurate material identifications by library search if the spectral library contains identical spectra. However, the presence of a large number of similar spectra, despite the presence of identical spectra, is found to increase false positives, thereby reducing the accuracy of retrievals to 82% at best. Further, the accuracy of material identifications in the presence of similar spectra is similarity metric-dependent and varied from about 52% (obtained from Binary Encoding) to 82% (obtained from Normalized Spectral Similarity Score). Overall, results support the possibility of using independent reflectance spectral libraries for material identification while calling for robust spectral similarity metrics.  相似文献   

9.
土壤的发射率具有较大的不确定性,为了准确提取土壤的发射率,利用ASTER光谱库中的58条土壤光谱,模拟产生了热红外高光谱数据集,利用这些数据进行了土壤的发射率提取试验,分析了较为典型的几种温度发射率分离方法,如NEM、ISSTES、α剩余法、MMD、TES在土壤发射率提取中的适用性、稳定性和精度,并根据分析的结果对各种算法在土壤发射率反演中的应用进行了相应改进.对于NEM方法,给出了最优的最大发射率;对于MMD方法,提出了一种比原平均-最小最大发射率之差更好的经验关系;在TES方法中,使用ISSTES代替原先的NEM方法,获得了精确的发射率初始值.基于模拟数据的算法分析结果表明,对于地面测量高光谱数据的土壤发射率信息提取,ISSTES准确度最高.最后给出了使用这5种方法由地面实测高光谱数据提取的土壤发射率光谱实例,提取的发射率光谱的分布情况很好印证了基于模拟数据的算法分析结果.  相似文献   

10.
Modern hyperspectral imaging and non-imaging spectroradiometer has the capability to acquire high-resolution spectral reflectance data required for surface materials identification and mapping. Spectral similarity metrics, due to their mathematical simplicity and insensitiveness to the number of reference labelled spectra, have been increasingly used for material mapping by labelling reflectance spectra in hyperspectral data labelling. For a particular hyperspectral data set, the accuracy of spectral labelling depends considerably upon the degree of unambiguous spectral matching achieved by the spectral similarity metric used. In this work, we propose a new methodology for quantifying spectral similarity for hyperspectral data labelling for surface materials identification. Developed adopting the multiple classifier system architecture, the proposed methodology unifies into a single framework the differential performances of eight different spectral similarity metrics for the quantification of spectral matching for surface materials. The proposed methodology has been implemented on two types of hyperspectral data viz. image (airborne hyperspectral images) and non-image (library spectra) for numerous surface materials identification. Further, the performance of the proposed methodology has been compared with the support vector machines (SVM) approach, and with all the base spectral similarity metrics. The results indicate that, for the hyperspectral images, the performance of the proposed methodology is comparable with that of the SVM. For the library spectra, the proposed methodology shows a consistently higher (increase of about 30% when compared to SVM) classification accuracy. The proposed methodology has the potential to serve as a general library search method for materials identification using hyperspectral data.  相似文献   

11.
We develop a new algorithm, the simplified urban-extent (SUE) algorithm, to estimate the surface urban heat island (UHI) intensity at a global scale. We implement the SUE algorithm on the Google Earth Engine platform using Moderate Resolution Imaging Spectroradiometer (MODIS) images to calculate the UHI intensity for over 9500 urban clusters using over 15 years of data, making this one of the most comprehensive characterizations of the surface UHI to date. The results from this algorithm are validated against previous multi-city studies to demonstrate the suitability of the method. The dataset created is then filtered for elevation differentials and percentage of urban area and used to estimate the diurnal, monthly, and long-term variability in the surface UHI in different climate zones. The global mean surface UHI intensity is 0.85 °C during daytime and 0.55 °C at night. Cities in arid climate show distinct diurnal and seasonal patterns, with higher surface UHI during nighttime (compared to daytime) and two peaks throughout the year. The diurnal variability in surface UHI is highest for equatorial climate zone (0.88 °C) and lowest for arid zone (0.53 °C). The seasonality is highest in the snow climate zone and lowest for equatorial climate zone. While investigating the change in the surface UHI over a decade and a half, we find a consistent increase in the daytime surface UHI in the urban clusters of the warm temperate climate zone (0.04 °C/decade) and snow climate zone (0.05 °C/decade). Only arid climate zones show a statistically significant increase in the nighttime surface UHI intensity (0.03 °C/decade). Globally, the change is mainly seen during the daytime (0.03 °C/decade). Finally, the importance of vegetation differential between urban and rural areas on the spatiotemporal variability is examined. Vegetation has a strong control on the seasonal variability of the surface UHI and may also partly control the long-term variability. The complete UHI data are available through this website (https://yceo.yale.edu/research/global-surface-uhi-explorer) and allows the user to query the UHI of urban clusters using a simple interface.  相似文献   

12.
基于ASTER数据的城市热环境遥感监测研究   总被引:1,自引:0,他引:1  
以ASTER数据为数据源,采用同一颗卫星上的MODIS数据得到大气透过率;利用可见光和近红外波段对下垫面类型进行分类和利用JPL(Jet Propulsion Lab)提供的光谱库计算地表比辐射率,进而采用劈窗算法进行地表温度(Land Surface Temperature,LST)的反演。在此基础上,利用反演的LST、分类结果和归一化差值植被指数(NDVI),对沧州地区的城市热环境进行了定量分析,研究结果可为进一步深入探讨城市热岛的发生发展规律以及城市热环境的模拟调控、优化布局提供一定的科学依据。  相似文献   

13.
地物以其固有的特性反射、吸收、辐射和透射电磁波。不同地物表面对不同波长的电磁波反射/辐射/散射特性不同,成为利用遥感手段进行目标物探测与识别的理论基础,而地物波谱数据库的建成对定量遥感建模、地表参数反演及环境生态监测等具有重要作用。近年来,国内外各研究机构已建成部分地物波谱数据库,通过收集典型地物波谱数据,记录长期积累且相对稳定的波谱信息及其配套参数,支持地物分类、目标识别等领域的研究。本文综述了国内外主要地物波谱数据的建库历程,阐述了波谱数据库在各专业领域的主要应用成果,分析比较现有的国内外波谱数据库平台在波段覆盖、地物类型、配套参数及共享方式的特点及不足。在此基础上,针对波谱数据库在建设中存在的数据管理分散、测量质量控制和配套参数的标准规范不完善、数据利用效率不充分等问题,给出了初步建议。最后,探讨各学科对波谱数据库平台的应用需求,并对波谱数据库建设重点将面向全波段、多尺度、多时相的通用型知识库的发展趋势进行展望。  相似文献   

14.
Since the release of the ETOPO1 global Earth topography model through the US NOAA in 2009, new or significantly improved topographic data sets have become available over Antarctica, Greenland and parts of the oceans. Here, we present a suite of new 1′ (arc-min) models of Earth’s topography, bedrock and ice-sheets constructed as a composite from up-to-date topography models: Earth2014. Our model suite relies on SRTM30_PLUS v9 bathymetry for the base layer, merged with SRTM v4.1 topography over the continents, Bedmap2 over Antarctica and the new Greenland bedrock topography (GBT v3). As such, Earth2014 provides substantially improved information of bedrock and topography over Earth’s major ice sheets, and more recent bathymetric depth data over the oceans, all merged into readily usable global grids. To satisfy multiple applications of global elevation data, Earth2014 provides different representations of Earth’s relief. These are grids of (1) the physical surface, (2) bedrock (Earth’s relief without water and ice masses), (3) bedrock and ice (Earth without water masses), (4) ice sheet thicknesses, (5) rock-equivalent topography (ice and water masses condensed to layers of rock) as mass representation. These models have been transformed into ultra-high degree spherical harmonics, yielding degree 10,800 series expansions of the Earth2014 grids as input for spectral modelling techniques. As further variants, planetary shape models were constructed, providing distances between relief points and the geocenter. The paper describes the input data sets, the development procedures applied, the resulting gridded and spectral representations of Earth2014, external validation results and possible applications. The Earth2014 model suite is freely available via http://ddfe.curtin.edu.au/models/Earth2014/.  相似文献   

15.
An hyperspectral imaging spectrometer measuring in the longwave thermal infrared (7.6-11.6 mum), with a spatial resolution less than 5 mm at a range of 10 m, was used in the field to observe the variability of emissivity spectra of individual rock surfaces. The rocks were obtained commercially, were on the order of 20 cm in size, and were selected to have distinct spectral features: they include alabaster (gypsum), soapstone (steatite with talc), obsidian (volcanic glass), norite (plagioclase and orthopyroxene), and ldquojasperrdquo (silica with iron oxides). The advantages of using an imaging spectrometer to characterize these rocks spectrally are apparent. Large spectral variations were observed within individual rocks that may be attributed to roughness, surface geometry, and compositional variation. Nonimaging spectrometers would normally miss these variations as would small samples used in laboratory measurements, spatially averaged spectra can miss the optimum spectra for identification of materials, and spatially localized components of the rock can be obscured.  相似文献   

16.
Mountain Glaciers are natural resources of fresh water and these affect the stream flow of the rivers, regional climate and further global climate. Observed trends and projected future evolutions of climate and Cryospheric variables clearly suggest a need to monitor these changes. Accordingly, the article presents the glacier features mapping using Hyperspectral remote sensing imagery. A freely available Hyperion satellite imagery acquired over Gepang Gath glacier in Himachal Pradesh, India is used for the study. Each class is identified based on their surface characteristics of spectral reflectance properties. Identification is simplified by demarcating the study glacier into accumulation and ablation areas through snowline. Accumulation area is characterized with high reflectance clean snow/ice and reduced moderate reflectance Snow/firn. The identification of classes in Hyperion imagery is validated using the spectral library from USGS and ASTER, and field spectra obtained from literature.  相似文献   

17.
In this study, we presented a mono-window (MW) algorithm for land surface temperature retrieval from Landsat 8 TIRS. MW needs spectral radiance and emissivity of thermal infrared bands as input for deriving LST. The spectral radiance was estimated using band 10, and the surface emissivity value was derived with the help of NDVI and vegetation proportion parameters for which OLI bands 5 and 4 were used. The results in comparison with MODIS (MOD11A1) products indicated that the proposed algorithm is capable of retrieving accurate LST values, with a correlation coefficient of 0.850. The industrial area, public facilities and military area show higher surface temperature (more than 37 °C) in comparison with adjoining areas, while the green spaces in urban areas (34 °C) and forests (29 °C) were the cooler part of the city. These successful results obtained in the study could be used as an efficient method for the environmental impact assessment.  相似文献   

18.
Classification of hyperspectral images has been receiving considerable attention with many new applications reported from commercial and military sectors. Hyperspectral images are composed of a large number of spectral channels, and have the potential to deliver a great deal of information about a remotely sensed scene. However, in addition to high dimensionality, hyperspectral image classification is compounded with a coarse ground pixel size of the sensor for want of adequate sensor signal to noise ratio within a fine spectral passband. This makes multiple ground features jointly occupying a single pixel. Spectral mixture analysis typically begins with pixel classification with spectral matching techniques, followed by the use of spectral unmixing algorithms for estimating endmembers abundance values in the pixel. The spectral matching techniques are analogous to supervised pattern recognition approaches, and try to estimate some similarity between spectral signatures of the pixel and reference target. In this paper, we propose a spectral matching approach by combining two schemes—variable interval spectral average (VISA) method and spectral curve matching (SCM) method. The VISA method helps to detect transient spectral features at different scales of spectral windows, while the SCM method finds a match between these features of the pixel and one of library spectra by least square fitting. Here we also compare the performance of the combined algorithm with other spectral matching techniques using a simulated and the AVIRIS hyperspectral data sets. Our results indicate that the proposed combination technique exhibits a stronger performance over the other methods in the classification of both the pure and mixed class pixels simultaneously.  相似文献   

19.
Understanding the Unique Spectral Signature of Winter Rape   总被引:1,自引:0,他引:1  
Driven by significant technological developments in the hyperspectral imaging, material mapping using reference spectra has received renewed interest of the remote sensing community. The applicability of reference spectral signatures in image classification depends mainly on the material type and its spectral signature behaviour. Identification and spectral characterization of materials which exhibit unique spectral behaviour is the first step in this approach. Consequently there have been active researches for the identification of surface materials which exhibit unique spectral signatures. The uniqueness of reflectance signature of winter rape relative to its co-occurring crop species was reported in this study. Reflectance spectral libraries constructed from field spectral reflectance measurements collected over five agricultural crops (alfalfa, winter barley, winter rape, winter rye, and winter wheat) during four subsequent growing seasons were classified by the linear discriminant analysis (LDA). Further, the reference field spectral database was used for the spectral feature fitting and classification of a historical HyMAP airborne hyperspectral imagery acquired at a separate site, by spectral library search. Results indicate the existence of a meaningful spectral matching between image and field spectra for winter rape and demonstrate the potential for transferring spectral library for hyperspectral image classification. The observed consistency in the discrimination of winter rape demonstrates experimentally the fundamental principle of remote sensing which suggests the theoretical existence of unique spectral signatures for materials which can be incorporated as reference spectral signatures for hyperspectral image classification.  相似文献   

20.
Successful retrieval of urban impervious surface area is achieved with remote sensing data using the multiple endmember spectral mixture analysis (MESMA). MESMA is well suited for studying the urban impervious surface area because it allows the number and types of the endmembers to vary on a per-pixel basis, thereby, allowing the control of the large spectral variability. However, MESMA must calculate all potential endmember combinations of each pixel to determine the best-fit one. Therefore, it is a time-consuming and inefficient unmixing technology, especially for hyperspectral images because these images have more complicated endmember categories. Hence, in this paper, we design an improved MESMA (SASD-MESMA: spectral angle and spectral distance MESMA) to enhance the computational efficiency of conventional MESMA, and we validate this new method by analyzing the Hyperion image (Jan-2011) and the field-spectra data of Guangzhou (China). In SASD-MESMA, the parameters of spectral angle (SA) and spectral distance (SD) are used to evaluate the similarity degree between library spectra and image spectra in order to identify the most representative endmember combination for each pixel. Results demonstrate that the SA and SD parameters are useful to reduce misjudgment in selecting candidate endmembers and effective for determining the appropriate endmembers in one pixel. Meanwhile, this research indicates that the proposed SASD-MESMA performs very well in retrieving impervious surface area, forest, grass and soil distributions on the sub-pixel level (the overall root mean square error (RMSE) is 0.15 and the correlation coefficient of determination (R2) is 0.68).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号