首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
The Holland and Powell internally consistent data set version 5.5 has been augmented to include pyrite, troilite, trov (Fe0.875S), anhydrite, H2S, elemental S and S2 gas. Phase changes in troilite and pyrrhotite are modelled with a combination of multiple end‐members and a Landau tricritical model. Pyrrhotite is modelled as a solid solution between hypothetical end‐member troilite (trot) and Fe0.875S (trov); observed activity–composition relationships fit well to a symmetric formalism model with a value for wtrot?trov of ?3.19 kJ mol?1. The hypothetical end‐member approach is required to compensate for iron distribution irregularities in compositions close to troilite. Mixing in fluids is described with the van Laar asymmetric formalism model with aij values for H2O–H2S, H2S–CH4 and H2S–CO2 of 6.5, 4.15 and 0.045 kJ mol?1 respectively. The derived data set is statistically acceptable and replicates the input data and data from experiments that were not included in the initial regression. The new data set is applied to the construction of pseudosections for the bulk composition of mafic greenschist facies rocks from the Golden Mile, Kalgoorlie, Western Australia. The sequence of mineral assemblages is replicated successfully, with observed assemblages predicted to be stable at X(CO2) increasing with increasing degree of hydrothermal alteration. Results are compatible with those of previous work. Assemblages are insensitive to the S bulk content at S contents of less than 1 wt%, which means that volatilization of S‐bearing fluids and sulphidation are unlikely to have had major effects on the stable mineral assemblage in less metasomatized rocks. The sequence of sulphide and oxide phases is predicted successfully and there is potential to use these phases qualitatively for geobarometry. Increases in X(CO2) stabilized, in turn, pyrite–magnetite, pyrite–hematite and anhydrite–pyrite. Magnetite–pyrrhotite is predicted at temperatures greater than 410 °C. The prediction of a variety of sulphide and oxide phases in a rock of fixed bulk composition as a function of changes in fluid composition and temperature is of particular interest because it has been proposed that such a variation in phase assemblage is produced by the infiltration of multiple fluids with contrasting redox state. The work presented here shows that this need not be the case.  相似文献   

2.
3.
4.
5.
6.
We present, as a progress report, a revised and much enlarged version of the thermodynamic dataset given earlier (Holland & Powell, 1985). This new set includes data for 123 mineral and fluid end-members made consistent with over 200 P–T–XCO2fO2 phase equilibrium experiments. Several improvements and advances have been made, in addition to the increased coverage of mineral phases: the data are now presented in three groups ranked according to reliability; a large number of iron-bearing phases has been included through experimental and, in some cases, natural Fe:Mg partitioning data; H2O and CO2 contents of cordierites are accounted for with the solution model of Kurepin (1985); simple Landau theory is used to model lambda anomalies in heat capacity and the Al/Si order–disorder behaviour in some silicates, and Tschermak-substituted end-members have been derived for iron and magnesium end-members of chlorite, talc, muscovite, biotite, pyroxene and amphibole. For the subset of data which overlap those of Berman (1988), it is encouraging to find both (1) very substantial agreement between the two sets of thermodynamic data and (2) that the two sets reproduce the phase equilibrium experimental brackets to a very similar degree of accuracy. The main differences in the two datasets involve size (123 as compared to 67 end-members), the methods used in data reduction (least squares as compared to linear programming), and the provision for estimation of uncertainties with this dataset. For calculations on mineral assemblages in rocks, we aim to maximize the information available from the dataset, by combining the equilibria from all the reactions which can be written between the end-members in the minerals. For phase diagram calculations, we calculate the compositions of complex solid solutions (together with P and T) involved in invariant, univariant and divariant assemblages. Moreover we strongly believe in attempting to assess the probable uncertainties in calculated equilibria and hence provide a framework for performing simple error propagation in all calculations in thermocalc, the computer program we offer for an effective use of the dataset and the calculation methods we advocate.  相似文献   

7.
8.
9.
10.
11.
12.
13.
14.
15.
3-D Geological Modeling–Concept, Methods and Key Techniques   总被引:1,自引:0,他引:1  
3-D geological modeling plays an increasingly important role in Petroleum Geology, Mining Geology and Engineering Geology. The complexity of geological conditions requires different modeling methods in different situations. This paper summarizes the general concept of geological modeling; compares the characteristics of borehole-based modeling, cross-section based modeling and multi-source interactive modeling; analyses key techniques in 3-D geological modeling; and highlights the main difficulties and directions of future studies.  相似文献   

16.
17.
Inter‐laboratory comparison of laser ablation ICP‐MS and SIMS U‐Pb dating of synthetic detrital zircon samples provides an insight into the state‐of‐the art of sedimentary provenance studies. Here, we report results obtained from ten laboratories that routinely perform this type of work. The achieved level of bias was mostly within ± 2% relative to the ID‐TIMS U‐Pb ages of zircons in the detrital sample, and the variation is likely to be attributed to variable Pb/U elemental fractionation due to zircon matrix differences between the samples and the reference materials used for standardisation. It has been determined that ~ 5% age difference between adjacent age peaks is currently at the limit of what can be routinely resolved by the in situ dating of detrital zircon samples. Precision of individual zircon age determination mostly reflects the data reduction and procedures of measurement uncertainty propagation, and it is largely independent of the instrumentation, analytical technique and reference samples used for standardisation. All laboratories showed a bias towards selection of larger zircon grains for analysis. The experiment confirms the previously published estimates of the minimum number of grains that have to be analysed in order to detect minor zircon age populations in detrital samples.  相似文献   

18.
The LA‐ICP‐MS U‐(Th‐)Pb geochronology international community has defined new standards for the determination of U‐(Th‐)Pb ages. A new workflow defines the appropriate propagation of uncertainties for these data, identifying random and systematic components. Only data with uncertainties relating to random error should be used in weighted mean calculations of population ages; uncertainty components for systematic errors are propagated after this stage, preventing their erroneous reduction. Following this improved uncertainty propagation protocol, data can be compared at different uncertainty levels to better resolve age differences. New reference values for commonly used zircon, monazite and titanite reference materials are defined (based on ID‐TIMS) after removing corrections for common lead and the effects of excess 230Th. These values more accurately reflect the material sampled during the determination of calibration factors by LA‐ICP‐MS analysis. Recommendations are made to graphically represent data only with uncertainty ellipses at 2s and to submit or cite validation data with sample data when submitting data for publication. New data‐reporting standards are defined to help improve the peer‐review process. With these improvements, LA‐ICP‐MS U‐(Th‐)Pb data can be considered more robust, accurate, better documented and quantified, directly contributing to their improved scientific interpretation.  相似文献   

19.
20.
A new natural zircon reference material SA01 is introduced for U‐Pb geochronology as well as O and Hf isotope geochemistry by microbeam techniques. The zircon megacryst is homogeneous with respect to U‐Pb, O and Hf isotopes based on a large number of measurements by laser ablation‐inductively coupled plasma‐mass spectrometry (LA‐ICP‐MS) and secondary ion mass spectrometry (SIMS). Chemical abrasion isotope dilution thermal ionisation mass spectrometry (CA‐ID‐TIMS) U‐Pb isotopic analyses produced a mean 206Pb/238U age of 535.08 ± 0.32 Ma (2s, n = 10). Results of SIMS and LA‐ICP‐MS analyses on individual shards are consistent with the TIMS ages within uncertainty. The δ18O value determined by laser fluorination is 6.16 ± 0.26‰ (2s, n = 14), and the mean 176Hf/177Hf ratio determined by solution MC‐ICP‐MS is 0.282293 ± 0.000007 (2s, n = 30), which are in good agreement with the statistical mean of microbeam analyses. The megacryst is characterised by significant localised variations in Th/U ratio (0.328–4.269) and Li isotopic ratio (?5.5 to +7.9‰); the latter makes it unsuitable as a lithium isotope reference material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号